17.3.2025

2025/460

Solo los textos originales de la CEPE surten efectos jurídicos con arreglo al Derecho internacional público. La situación y la fecha de entrada en vigor del presente Reglamento deben verificarse en la última versión del documento de situación de la CEPE «TRANS/WP.29/343», que puede consultarse en: https://unece.org/status-1958-agreement-and-annexed-regulations

Reglamento n.º 127 de las Naciones Unidas - Disposiciones uniformes relativas a la homologación de vehículos de motor por lo que se refiere a sus prestaciones en relación con la seguridad de los peatones [2025/460]

Incorpora todo el texto válido hasta:

El suplemento 2 de la serie 04 de enmiendas del Reglamento. Fecha de entrada en vigor: 17 de mayo de 2025

El presente documento tiene valor meramente informativo. Los textos auténticos y jurídicamente vinculantes son los siguientes:

ECE/TRANS/WP.29/2015/99

ECE/TRANS/WP.29/2022/70

ECE/TRANS/WP.29/2022/130

ECE/TRANS/WP.29/2022/129

ECE/TRANS/WP.29/2023/50

ECE/TRANS/WP.29/2024/136

Índice

Reglamento

- Ámbito de aplicación
- 2. Definiciones
- 3. Solicitud de homologación
- 4. Homologación
- 5. Especificaciones
- 6. Modificación del tipo de vehículo y extensión de la homologación
- 7. Conformidad de la producción
- 8. Sanciones por no conformidad de la producción
- 9. Cese definitivo de la producción
- 10. Nombres y direcciones de los servicios técnicos responsables de realizar los ensayos de homologación y de las autoridades de homologación de tipo
- 11. Disposiciones transitorias

Anexos

Parte 1. Modelo: Ficha técnica n.º ... relativa a la homologación de tipo de un vehículo en lo referente a la protección de los peatones

Parte 2.

Comunicación

- 2 Disposición de las marcas de homologación
- 3 Condiciones generales del ensayo
- 4 Especificaciones del impactador de ensayo
- 5 Procedimientos de ensayo
- 6 Certificación del impactador

1. Ámbito de aplicación

El presente Reglamento se aplica a los vehículos de motor de las categorías M₁ y N₁. (¹)

No obstante, los vehículos de la categoría N_1 en los que la posición del conductor (el punto R) se sitúe bien por delante del eje delantero o bien por detrás de este como máximo a 1 100 mm en dirección longitudinal respecto a la línea que atraviesa transversalmente el centro del eje delantero, están exentos de los requisitos del presente Reglamento.

El presente Reglamento no se aplica a los vehículos de la categoría M_1 cuya masa máxima sea superior a 2 500 kg y que sean derivados de vehículos de la categoría N_1 , y en los que la posición del conductor (el punto R) se sitúe bien por delante del eje delantero o bien por detrás de este como máximo a 1 100 mm en dirección longitudinal respecto a la línea que atraviesa transversalmente el centro del eje delantero; para estas categorías de vehículos, las Partes contratantes podrán seguir aplicando los requisitos que ya estuvieran en vigor a tales efectos en el momento en que se adhirieron al presente Reglamento.

2. Definiciones

Para realizar las mediciones descritas en la presente parte, el vehículo estará en disposición normal de circulación.

Si el vehículo está provisto de algún emblema, figura u otra estructura que pudiera doblarse o ceder al aplicarse una carga de 100 N como máximo, esta deberá aplicarse antes de las mediciones o durante las mismas.

Los componentes del vehículo que puedan cambiar de forma o posición que no sean componentes de la suspensión u otros sistemas activos de protección de los peatones, deberán encontrarse en su posición fija.

A los efectos del presente Reglamento, se entenderá por:

- 2.1. «Zona de ensayo de la parte superior del capó pertinente para el simulador de cabeza de adulto»: zona de las superficies exteriores de la estructura delantera. La zona está delimitada:
 - a) por delante, por una distancia perimétrica (WAD) de 1 700 mm o una línea a 82,5 mm por detrás de la línea de referencia del borde frontal del capó, la que esté situada más atrás en una posición lateral dada;
 - b) por detrás, por una WAD2 500 (²) o una línea a 82,5 mm por delante de la línea de referencia trasera del capó (³), la que esté situada más adelante en una posición lateral dada; y
 - c) por cada lateral, por una línea a 82,5 mm por dentro de la línea de referencia lateral.

La distancia de 82,5 mm se medirá con una cinta métrica flexible tensada a lo largo de la superficie exterior del vehículo.

- 2.2. «Intervalo de evaluación» del impactador simulador de pierna flexible: período de tiempo definido y limitado por el instante del primer contacto del impactador simulador de pierna flexible con el vehículo y el instante del último paso por el punto cero de todos los segmentos del fémur y la tibia después de su primer máximo local posterior a cualquier valor marginal de 15 Nm, dentro de sus fases comunes de paso por el punto cero concretas. El intervalo de evaluación es idéntico para todos los segmentos óseos y ligamentos de la rodilla. En caso de que un segmento óseo no tenga un paso por el punto cero durante las fases comunes de paso por dicho punto, las curvas temporales de todos los segmentos óseos se desplazan hacia abajo hasta que todos los momentos de flexión atraviesen el punto cero. El desplazamiento hacia abajo debe aplicarse únicamente para determinar el intervalo de evaluación.
- 2.3. «Pilar A»: soporte delantero y exterior del techo que va del bastidor al techo del vehículo.

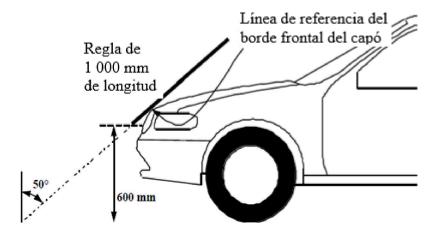
⁽¹) Con arreglo a la definición que figura en la Resolución consolidada sobre la construcción de vehículos (R.E.3), documento ECE/TRANS/WP.29/78/Rev.6, apartado 2. - www.unece.org/trans/main/wp29/wp29wgs/wp29gen/wp29resolutions.html.

⁽²⁾ o una WAD2 100 de conformidad con los puntos 11.19 a 11.21.

^(*) En caso de que la BRRL no esté en el capó y la línea a 82,5 mm por delante de la BRRL esté por detrás de la WAD2 100, se utilizará como BRRL el borde físico trasero del capó, de conformidad con los puntos 11.22 y 11.23.

2.4. «Homologación de un tipo de vehículo»: el procedimiento completo mediante el cual una Parte contratante en el Acuerdo certifica que un tipo de vehículo cumple los requisitos técnicos del presente Reglamento.

- 2.5. «Borde frontal del capó»: borde de la parte delantera de la estructura superior externa del vehículo, que abarca el capó, las aletas, las partes superiores y laterales del marco de los faros y cualquier otro accesorio acoplable. La línea de referencia que identifica la posición del borde frontal del capó está definida por su altura por encima del plano de referencia del suelo y por la distancia horizontal que la separa del parachoques (saliente del parachoques).
- 2.6. «Altura del borde frontal del capó»: distancia vertical, en cualquier punto del borde frontal del capó, entre el plano de referencia del suelo y la línea de referencia del borde frontal del capó en ese punto.
- 2.7. «Línea de referencia del borde frontal del capó»: trazo geométrico que forman los puntos de contacto entre una regla de 1 000 mm de longitud y la superficie frontal del capó cuando la regla, colocada en paralelo al plano vertical longitudinal del vehículo e inclinada 50° hacia atrás y con el extremo inferior a 600 mm por encima del suelo, se desplaza de un lado a otro del borde frontal del capó manteniéndose en contacto con el mismo (véase la figura 1).


En los vehículos cuya parte superior del capó tenga una inclinación de 50°, de forma que la regla esté en contacto continuo o en contacto con múltiples puntos en lugar de tener un punto de contacto único, la línea de referencia se determinará con la regla inclinada 40° hacia atrás con respecto a la vertical.

En los vehículos en los que el primer contacto se produzca con el extremo inferior de la regla, se tomará ese contacto como línea de referencia del borde frontal del capó, en esa posición lateral.

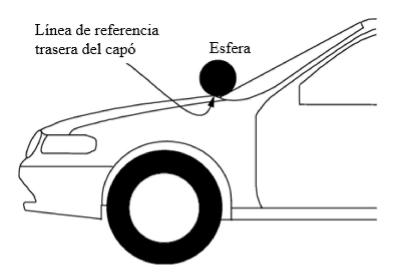
En los vehículos en los que el primer contacto se produzca entre el extremo superior de la regla y el vehículo, se tomará como línea de referencia del borde frontal del capó en esa posición lateral el trazo geométrico de la distancia perimétrica de 1 000 mm.

El borde superior del parachoques se considerará también borde frontal del capó a los efectos del presente Reglamento cuando haya contacto entre este y la regla.

Figura 1 Línea de referencia del borde frontal del capó

2.8. «Línea de referencia trasera del capó» (BRRL): trazo geométrico de los puntos de contacto posteriores entre una esfera de 165 mm de diámetro y la estructura delantera del vehículo, cuando la esfera se desplaza de un lado a otro de la estructura delantera del vehículo manteniéndose en contacto con el parabrisas (véase la figura 2). Para realizar esta operación se retirarán las escobillas y las varillas de los limpiaparabrisas.

Si la línea de referencia trasera del capó y la línea de referencia lateral no se cruzan, la línea de referencia trasera del capó se extenderá o modificará utilizando una plantilla semicircular de un radio de 100 mm. La plantilla consistirá en una fina lámina de material flexible que pueda adoptar fácilmente una curvatura simple en cualquier dirección. De preferencia, la plantilla no deberá adoptar curvaturas dobles o complejas que puedan dar lugar a arrugas. El material recomendado es una fina lámina de plástico revestida de espuma para que la plantilla pueda «agarrarse» a la superficie del vehículo.


Con la plantilla extendida en una superficie plana, se determinarán en ella cuatro puntos, A a D, como se indica en la figura 3.

La plantilla se colocará sobre el vehículo de manera que las esquinas A y B coincidan con la línea de referencia lateral. Tras asegurarse de que las dos esquinas coinciden con la línea de referencia lateral, la plantilla se deslizará progresivamente hacia atrás hasta que su arco entre en contacto con la línea de referencia trasera del capó. En este proceso, la plantilla deberá adoptar de la manera más precisa posible el contorno exterior de la parte superior del capó del vehículo sin arrugarse ni doblarse. Si el contacto entre la plantilla y la línea de referencia trasera del capó es tangencial y el punto de tangencia se encuentra fuera del arco delimitado por los puntos C y D, deberá extenderse o modificarse la línea de referencia trasera del capó siguiendo la circunferencia de la plantilla hasta la línea de referencia lateral del capó, como se ilustra en la figura 4.

Si no se consigue que la plantilla esté en contacto simultáneo con la línea de referencia lateral del capó en los puntos A y B y, de manera tangencial, con la línea de referencia trasera del capó, o si el punto en el que se tocan la línea de referencia trasera del capó y la plantilla se encuentra dentro del arco delimitado por los puntos C y D, deberán utilizarse plantillas adicionales con incrementos progresivos del radio de 20 mm hasta que se cumplan todos los requisitos descritos anteriormente.

Figura 2

Línea de referencia trasera del capó

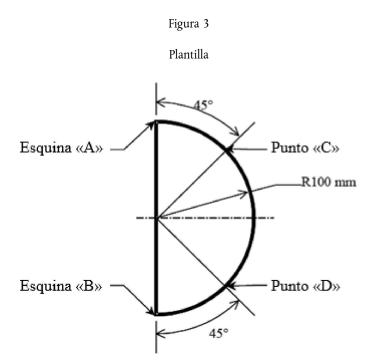
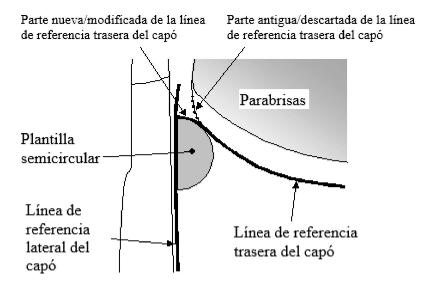



Figura 4

Marcado de la intersección entre las líneas de referencia trasera y lateral del capó

- 2.9. «Parte superior del capó»: zona comprendida entre a), b) y c) de la manera siguiente:
 - a) la línea de referencia del borde frontal del capó;
 - b) la línea de referencia trasera del capó;
 - c) las líneas de referencia laterales.
- 2.10. «Zona de ensayo de la parte superior del capó»: zona formada por la zona de ensayo de la parte superior del capó pertinente para el simulador de cabeza de niño y por la zona de ensayo de la parte superior del capó pertinente para el simulador de cabeza de adulto, tal como se definen en los puntos 2.1 y 2.16, respectivamente.
- 2.11. «Parachoques»: estructura inferior delantera externa del vehículo. Incluye todas las estructuras destinadas a proteger el vehículo en caso de colisión frontal a baja velocidad, así como los eventuales accesorios que estas estructuras puedan llevar. La altura y los límites laterales de referencia del parachoques están definidos por las esquinas y las líneas de referencia del parachoques.

- 2.12. «Viga del parachoques»: traviesa estructural, situada por detrás del panel del parachoques de haberlo, que protege la parte delantera del vehículo. La viga no incluye la espuma, las fijaciones de la cubierta ni los dispositivos de protección de los peatones.
- 2.13. «Saliente del parachoques» (de cualquier corte longitudinal del vehículo): distancia horizontal medida en un determinado plano vertical longitudinal del vehículo entre la línea de referencia superior del parachoques y la línea de referencia del borde frontal del capó.
- 2.14. «Zona de ensayo del parachoques»: panel delantero del vehículo, bien entre las esquinas izquierda y derecha del parachoques, tal como se definen en el punto 2.17, menos las zonas que se encuentran a una distancia de 42 mm hacia dentro de cada esquina del parachoques, medida horizontalmente y en perpendicular respecto al plano mediano longitudinal del vehículo, o bien entre los extremos más exteriores de la viga del parachoques, tal como se define en el punto 2.12 (véase la figura 5D), menos las zonas que se encuentran a una distancia de 42 mm hacia dentro de cada extremo de la viga del parachoques, medida horizontalmente y en perpendicular respecto al plano mediano longitudinal del vehículo, la que sea más amplia.
- 2.15. «Centro de la rodilla» del impactador simulador de pierna: punto efectivo de flexión de la rodilla.
- 2.16. «Zona de ensayo de la parte superior del capó pertinente para el simulador de cabeza de niño»: zona de las superficies exteriores de la estructura delantera. La zona está delimitada:
 - a) por delante, por una
 WAD1 000 o una línea a 82,5 mm por detrás de la línea de referencia del borde frontal del capó, la que esté situada más atrás en una posición lateral dada, y
 - b) por detrás, por una WAD1 700 o una línea a 82,5 mm por delante de la línea de referencia trasera del capó, la que esté situada más adelante en una posición lateral dada, y
 - c) por cada lateral, por una línea a 82,5 mm por dentro de la línea de referencia lateral.

La distancia de 82,5 mm se medirá con una cinta métrica flexible tensada a lo largo de la superficie exterior del vehículo.

2.17. «Esquina del parachoques»: posición transversal del punto de contacto del vehículo con un indicador de esquinas, tal como se define en la figura 5B.

Para determinar la esquina del parachoques, la superficie frontal del indicador de esquinas se desplaza en paralelo a un plano vertical con un ángulo de 60° respecto del plano central longitudinal vertical del vehículo (véanse las figuras 5A y 5C) a cualquier altura del punto central del indicador de esquinas entre:

- a) una altura igual o por encima del punto localizado en la línea vertical que se cruza con la línea de referencia inferior del parachoques en la posición de evaluación en dirección transversal o a 75 mm por encima del plano de referencia del suelo, el que sea mayor;
- b) una altura igual o por debajo del punto localizado en la línea vertical que se cruza con la línea de referencia superior del parachoques en la posición de evaluación en dirección transversal o a 1 003 mm por encima del plano de referencia del suelo, el que sea inferior.

Para determinar la esquina del parachoques, el indicador se desplaza hasta que esté en contacto con el contorno exterior/el panel delantero del vehículo, tocando la línea central vertical del indicador. La línea central horizontal del indicador se mantiene en paralelo respecto del plano del suelo.

Las esquinas del parachoques en ambos lados se definen entonces como los puntos extremos exteriores de contacto del indicador con el contorno exterior/el panel delantero del vehículo determinados de acuerdo con este procedimiento. Los puntos de contacto en los extremos superior e inferior del indicador no se tienen en cuenta. No se tendrán en cuenta los dispositivos externos de visión indirecta ni los neumáticos.

Figura 5A

Ejemplo de esquina del parachoques (véase el punto 2.17; nótese que el indicador de esquinas ha de desplazarse en sentido vertical y horizontal para permitir el contacto con el contorno exterior/el panel delantero del vehículo)

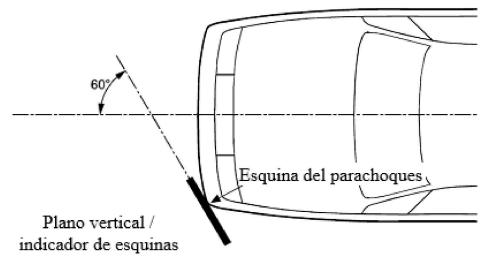
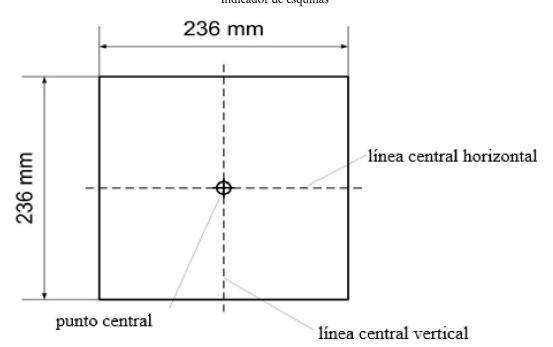



Figura 5B Indicador de esquinas

La superficie frontal del indicador de esquinas es plana.

El punto central es la intersección de la línea central vertical y la horizontal en la superficie frontal.

Figura 5C

Determinación de la esquina del parachoques con el indicador de esquinas (colocado en una ubicación aleatoria)

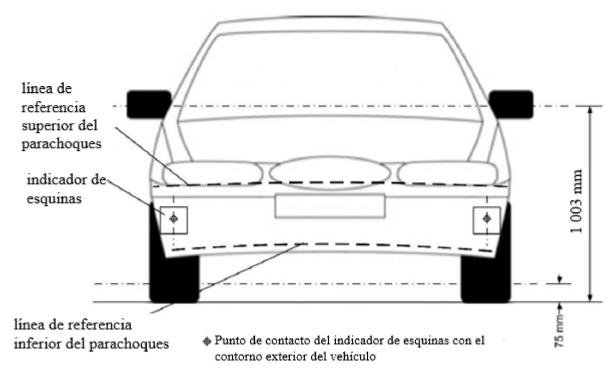
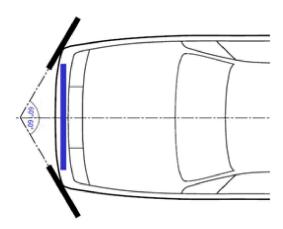
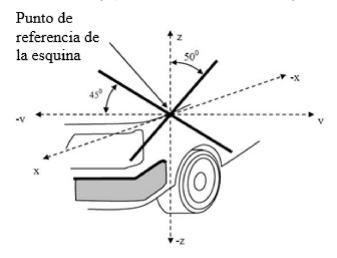



Figura 5D


Determinación de la zona de ensayo del parachoques (nótese que los indicadores de esquinas han de desplazarse en sentido vertical y horizontal para permitir el contacto con el contorno exterior/el panel delantero del vehículo)

2.18. «Punto de referencia de la esquina»: punto de intersección entre la línea de referencia del borde frontal del capó y la línea de referencia lateral del capó (véase la figura 6).

Figura 6

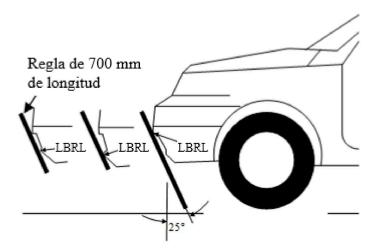
Determinación del punto de referencia de la esquina; punto de intersección entre la línea de referencia del borde frontal del capó y la línea de referencia lateral del capó

- 2.19. «Masa del conductor»: masa nominal de un conductor, que será de 75 kg (subdividida en 68 kg de masa de ocupante en el asiento y 7 kg de masa de equipaje con arreglo a la norma ISO 2416–1992).
- 2.20. «Fémur» del impactador simulador de pierna: conjunto de componentes o partes de componentes (incluidos la masa muscular, el revestimiento dérmico, el amortiguador, los instrumentos y soportes, las poleas y otros accesorios fijados al impactador para su lanzamiento) situados por encima del nivel del centro de la rodilla.
- 2.21. «Línea de referencia delantera para el simulador de cabeza de niño»: trazo geométrico descrito en la estructura delantera del vehículo utilizando una línea WAD1000. En el caso de los vehículos en que la distancia perimétrica hasta la línea de referencia del borde frontal del capó sea superior a 1 000 mm en cualquier punto, se utilizará la línea de referencia del borde frontal del capó como línea de referencia delantera para el simulador de cabeza de niño en ese punto.
- 2.22. «Estructura delantera»: todas las estructuras exteriores del vehículo salvo el parabrisas, el marco superior del parabrisas, los pilares A y las estructuras situadas detrás de ellos. Así pues, incluye, entre otros elementos, el parachoques, el capó, las aletas, el panel del salpicadero, las varillas de los limpiaparabrisas y el marco inferior del parabrisas.
- 2.23. «Plano de referencia del suelo»: plano horizontal, real o imaginario, que atraviesa los puntos de contacto inferiores para todos los neumáticos de un vehículo en disposición normal de circulación. Si el vehículo se encuentra sobre el suelo, el nivel del suelo y el plano de referencia del suelo son lo mismo. Si el vehículo está elevado por encima del suelo, por ejemplo, para contar con espacio adicional por debajo del parachoques, el plano de referencia del suelo se sitúa por encima del nivel del suelo.

2.24. «Criterio de lesión en la cabeza (HIC)»: resultado calculado de los tiempos registrados por el acelerómetro utilizando la siguiente fórmula:

HIC =
$$\left[\frac{1}{t_2 - t_1} \int_{t_1}^{t_2} a \, dt\right]^{2.5} (t_2 - t_1)$$

Donde:


«a» es la aceleración resultante medida en unidades de gravedad «g» (1 $g = 9.81 \text{ m/s}^2$);

« t_1 » y « t_2 » son los dos puntos temporales (expresados en segundos) durante el impacto, que definen un intervalo entre el principio y el final del período de registro para el cual el valor de HIC es un máximo (t_2 - $t_1 \le 15$ ms).

- 2.25. «Altura inferior del parachoques»: distancia vertical entre el plano de referencia del suelo y la línea de referencia inferior del parachoques, con el vehículo en disposición normal de circulación.
- 2.26. «Línea de referencia inferior del parachoques»: extremo inferior respecto a los puntos de contacto significativos entre el parachoques y un peatón. Se define como el trazo geométrico que forman los puntos inferiores de contacto entre una regla de 700 mm de longitud y el parachoques cuando la regla, colocada en paralelo al plano vertical longitudinal del vehículo e inclinada 25° hacia delante respecto a la vertical, se desplaza de un lado a otro de la parte delantera del vehículo manteniéndose en contacto con el suelo y con la superficie del parachoques (véase la figura 8).

Figura 7

Línea de referencia inferior del parachoques (LBRL)

- 2.27. «Masa en orden de marcha»: masa nominal de un vehículo determinada por la suma de la masa del vehículo sin carga y la masa del conductor.
- 2.28. «Punto de medición»:

también denominado «punto de ensayo» o «punto de impacto». En todos los casos, el resultado del ensayo se atribuirá a este punto, independientemente de dónde se produzca el primer contacto.

2.28.1. «Punto de medición» para el ensayo con simulador de cabeza: punto en la superficie exterior del vehículo seleccionado para evaluación. El punto de medición se corresponde con el lugar en que el perfil del simulador de cabeza entra en contacto con la sección transversal de la superficie exterior del vehículo en un plano longitudinal vertical a través del centro de gravedad del simulador de cabeza (véase la figura 8A).

2.28.2. El «punto de medición» para el ensayo de impacto del simulador de pierna contra el parachoques y el ensayo de impacto del simulador de muslo y cadera contra el parachoques se ubica en el plano longitudinal vertical a través del eje central del impactador (véase la figura 8B).

Figura 8A

Punto de medición en el plano longitudinal vertical a través del centro del impactador simulador de cabeza (véase el punto 2.28.1.) (4)

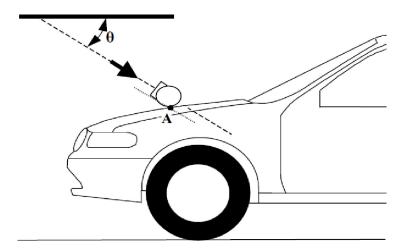
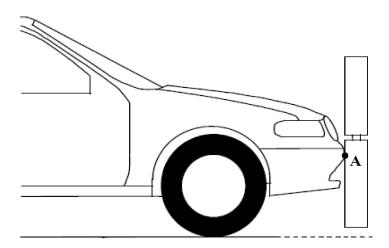



Figura 8B

Punto de medición en el plano longitudinal vertical a través del eje central del impactador simulador de pierna (véase el punto 2.28.2.)

⁽⁴⁾ Observación: como consecuencia de la geometría espacial de la parte superior del capó, el primer contacto puede no producirse en el mismo plano longitudinal o transversal vertical que contiene el punto de medición A.

2.29. «Disposición normal de circulación»: la disposición del vehículo situado sobre una superficie horizontal plana con su masa en orden de marcha, con los neumáticos inflados a la presión recomendada por el fabricante, las ruedas delanteras de frente y con una masa de pasajero situada en el asiento delantero del pasajero. Los asientos delanteros están colocados en la posición nominal a mitad del raíl. La suspensión se fijará en las condiciones normales de marcha especificadas por el fabricante para una velocidad de 40 km/h.

- 2.29.1. «Sistema de suspensión de altura de circulación regulable (ARHSS)»: sistema que puede cambiar la altura del vehículo durante la conducción (por ejemplo, una suspensión activa).
- 2.30. «Masa de pasajero»: masa nominal de un pasajero, que será de 68 kg, con un margen adicional de 7 kg para equipaje que se colocará en el maletero con arreglo a la norma ISO 2416-1992.
- 2.31. «Marcas primarias de referencia»: los orificios, superficies, marcas y signos de identificación de la carrocería del vehículo. El fabricante del vehículo deberá indicar el tipo de marca de referencia utilizada y la posición vertical (Z) de cada una de ellas respecto al suelo de acuerdo con las condiciones de marcha especificadas en el punto 2.27. Estas marcas se seleccionarán de forma que permitan comprobar fácilmente las alturas de circulación frontal y trasera del vehículo, así como la disposición de este.
 - Si las marcas primarias de referencia se encuentran a ± 25 mm de la posición prevista por el fabricante en el eje vertical (Z), se considerará la posición prevista por el fabricante como altura normal de circulación. Si se cumple esta condición, el vehículo se ajustará a la posición prevista por el fabricante o bien se ajustarán todas las demás mediciones, y se realizarán los ensayos, de forma que se simule que el vehículo está en la posición prevista por el fabricante.
- 2.32. «Línea de referencia lateral»: trazo geométrico que forman los puntos de contacto superiores entre una regla de 700 mm de longitud y los laterales del vehículo, cuando la regla, colocada en paralelo al plano vertical transversal del vehículo e inclinada 45° hacia la parte interior, se desplaza hacia abajo y se mantiene en contacto con los laterales de la estructura delantera (véase la figura 9).

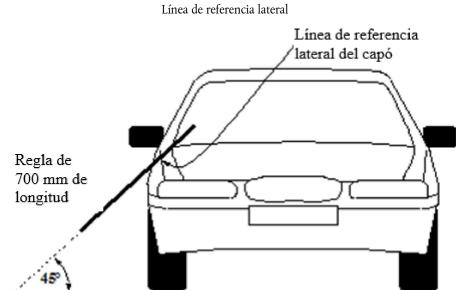
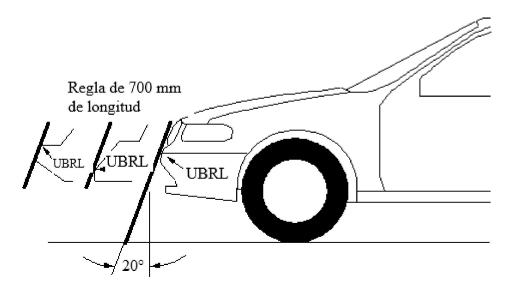


Figura 9

- 2.33. «Tercio del borde frontal del capó»: trazo geométrico comprendido entre los puntos de referencia de las esquinas, medido con una cinta métrica flexible que recorra el contorno exterior del borde frontal, dividido en tres partes iguales.
- 2.34. «Tercio de la parte superior del capó»: trazo geométrico de la zona comprendida entre las líneas de referencia laterales del capó, medido con una cinta métrica flexible que recorra el contorno exterior de la parte superior del capó en cualquier sección transversal, dividido en tres partes iguales.

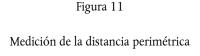

2.35. «Tercio del parachoques»: trazo geométrico comprendido entre las esquinas del parachoques, medido con una cinta métrica flexible que recorra el contorno exterior del parachoques, dividido en tres partes iguales.

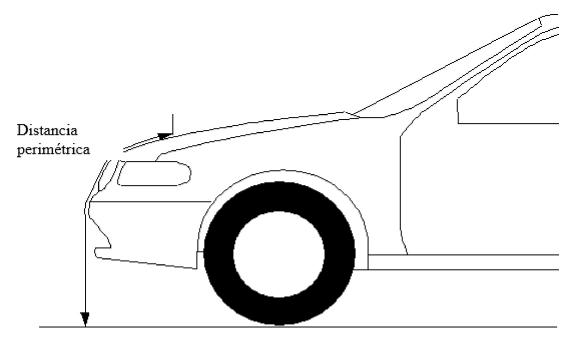
- 2.36. «Tibia» del impactador simulador de pierna: conjunto de componentes o partes de componentes (incluidos la masa muscular, el revestimiento dérmico, el amortiguador, los instrumentos y soportes, las poleas y otros accesorios fijados al impactador para su lanzamiento) situados por debajo del nivel del centro de la rodilla. Debe tenerse en cuenta que la tibia, tal como se define, incluye márgenes de tolerancia para la masa, etc., del pie.
- 2.37. «Masa del vehículo sin carga»: masa nominal de un vehículo completo determinada mediante los siguientes criterios:
- 2.37.1. Masa del vehículo con carrocería y todos los equipos instalados en fábrica, los equipos eléctricos y auxiliares para el funcionamiento normal del vehículo, incluidos líquidos, herramientas, extintores de incendios, piezas de recambio estándar, calzos y rueda de repuesto, en su caso.
- 2.37.2. El depósito de combustible se llenará por lo menos al 90 % de la capacidad nominal y el resto de los sistemas que contengan líquidos (salvo los destinados al agua usada), al 100 % de la capacidad especificada por el fabricante.
- 2.38. «Línea de referencia superior del parachoques»: línea que identifica el extremo superior respecto a los puntos de contacto significativos entre el parachoques y un peatón. Se define como el trazo geométrico que forman los puntos superiores de contacto entre una regla de 700 mm de longitud y el parachoques, cuando la regla, colocada en paralelo al plano vertical longitudinal e inclinada 20° hacia atrás, se desplaza de un lado a otro de la parte delantera del vehículo manteniéndose en contacto con el suelo y con la superficie del parachoques (véase la figura 10).

Si es necesario, se cortará la regla para evitar el contacto con estructuras situadas por encima del parachoques.

Figura 10

Línea de referencia superior del parachoques (UBRL)

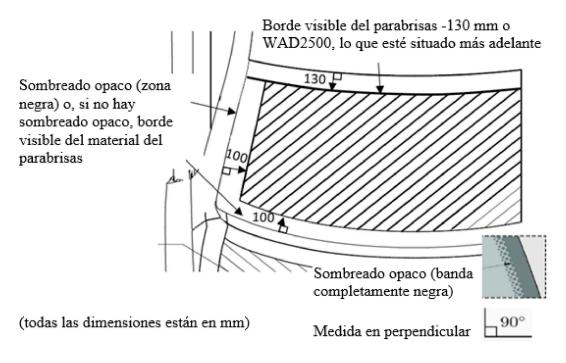

- 2.39. «Tipo de vehículo por lo que respecta a los requisitos de protección de los peatones»: categoría de vehículos que, por delante de los pilares A, no difieren en ninguno de los aspectos esenciales siguientes:
 - a) la estructura;
 - b) las dimensiones principales;
 - c) los materiales de las superficies exteriores del vehículo;
 - d) la disposición de los componentes (externos o internos);


en la medida en que se considere que puedan tener un efecto negativo en los resultados de los ensayos de impacto establecidos en el presente Reglamento.

2.40. «Vehículos de la categoría M₁ derivados de la categoría N₁»: los vehículos de la categoría M₁ que, por delante de los pilares A, poseen la misma estructura general y forma que un vehículo preexistente de la categoría N₁.

- 2.41. «Vehículos de la categoría N₁ derivados de la categoría M₁»: los vehículos de la categoría N₁ que, por delante de los pilares A, poseen la misma estructura general y forma que un vehículo preexistente de la categoría M₁.
- 2.42. «Parabrisas»: el acristalamiento frontal del vehículo, situado entre los pilares A.
- 2.43. «Distancia perimétrica (WAD)»: trazo geométrico descrito en la superficie exterior de la estructura delantera de un vehículo por el extremo de una cinta métrica flexible cuando se coloca en un plano vertical longitudinal del vehículo y se desplaza de un lado a otro de la estructura delantera. La cinta métrica se mantendrá tensa durante la operación, manteniendo un extremo al mismo nivel que el plano de referencia del suelo en la vertical de la cara delantera del parachoques y el otro extremo en contacto con la estructura delantera (véase la figura 11). El vehículo deberá encontrarse en disposición normal de circulación.

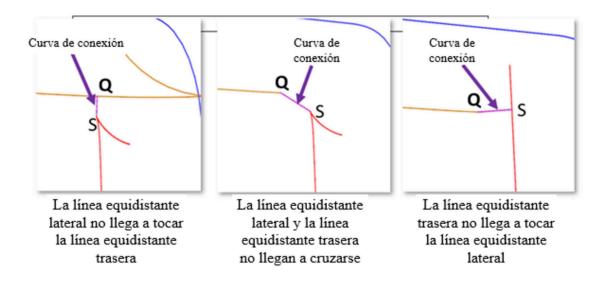
Este procedimiento se aplicará, utilizando cintas métricas alternativas de longitud adecuada, para describir distancias perimétricas de 1 000 mm (WAD1000), 1 700 mm (WAD1700) y 2 500 mm (WAD2500) (5).


- 2.44. «Zona de ensayo del parabrisas»: zona de la superficie exterior del parabrisas. Está delimitada (véase la figura 12):
 - a) por delante, por una línea a 100 mm por detrás del sombreado opaco del parabrisas. Si no hay sombreado opaco, la línea se mide a partir del borde visible delantero del material del parabrisas.
 - b) por detrás, por una WAD2 500 mm o una línea a 130 mm por delante del borde visible trasero del material del parabrisas, la que esté situada más adelante en una posición lateral dada, y
 - c) por cada lateral, por una línea a 100 mm por dentro del sombreado opaco del parabrisas. Si no hay sombreado opaco, la línea se mide a partir del borde visible lateral del material del parabrisas.

⁽⁵⁾ o una WAD2 100 de conformidad con el punto 11.9.

Para a) y c): las distancias de 100 mm se medirán con una cinta métrica flexible tensada a lo largo de la superficie exterior del vehículo, con un ángulo de 90° con respecto a la línea tangente al límite del sombreado opaco o, si no lo hay, desde el borde visible.

Para b): las distancias de 130 mm se medirá con una cinta métrica flexible tensada a lo largo de la superficie exterior del vehículo, con un ángulo de 90° con respecto a la línea tangente al borde visible trasero del parabrisas.


Figura 12 Zona de ensayo del parabrisas

Dependiendo de la geometría, en caso de que no haya intersección entre b) y c) y ello dé lugar a una zona de ensayo abierta, el marcado se modificará utilizando la distancia más corta para cerrar la zona de ensayo abierta (véase la figura 13).

Figura 13

Definición de la esquina superior con la «distancia más corta»

Los ensayos asignados a cualquier punto de medición situado en la zona del parabrisas que esté por delante o en el límite de la WAD1 700 se realizan con el impactador simulador de cabeza de niño. Los ensayos asignados a cualquier punto de medición situado en la zona del parabrisas que esté por detrás de la WAD1 700 se realizan con el impactador simulador de cabeza de adulto.

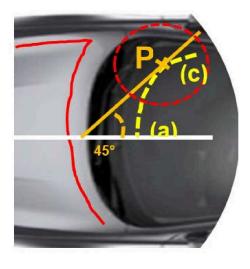
2.45. «Zona de control de la cubierta»: zona generalmente situada cerca de la parte trasera de la zona de ensayo del capó y de la parte delantera de la zona de ensayo del parabrisas.

Para los ensayos con cabeza de adulto, si los hay, esta zona está delimitada:

- a) por delante, por el límite más adelantado de la zona de ensayo de la parte superior del capó pertinente para el simulador de cabeza de adulto, tal como se define en el punto 2.1, o por una línea a 82,5 mm por delante de la línea de referencia trasera del capó, lo que esté más atrás en una posición lateral determinada; y
- b) por detrás, por una WAD2 500 (6) o por la parte delantera de la zona de ensayo del parabrisas, lo que esté situado más adelante en una posición lateral dada.

Para los ensayos con cabeza de niño, si los hay, esta zona está delimitada:

- a) por delante, por el límite más adelantado de la zona de ensayo de la parte superior del capó pertinente para el simulador de cabeza de niño, tal como se define en el punto 2.16, o por una línea a 82,5 mm por delante de la línea de referencia trasera del capó, lo que esté más atrás en una posición lateral determinada; y
- b) por detrás, por una WAD1 700 o por la parte delantera de la zona de ensayo del parabrisas, lo que esté situado más adelante en una posición lateral dada.

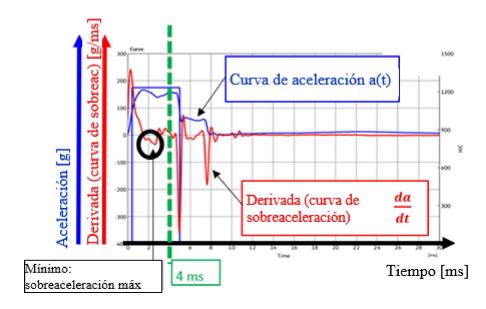

A cada lado, la zona de control de la cubierta está delimitada por la línea TP (véase la figura 14), donde:

- a) el «punto T» es la esquina trasera de la zona de ensayo de la parte superior del capó; y
- b) el «punto P de esquina» es la esquina inferior de la zona de ensayo del parabrisas; utilizando de una cinta métrica flexible tensada desde el punto T hasta el punto P.

Figura 14 Límites laterales de la zona de control de la cubierta

Figura 15 Caso particular, si no hay un único «punto P» de esquina

Si no existe un único «punto P» donde se cruzan las líneas definidas en el punto 2.44, letras a) y c), el «punto P» queda definido por el primer contacto de un plano vertical que corte el plano central vertical longitudinal del vehículo con un ángulo de 45° con la transición a)-c) del límite de la zona de ensayo del parabrisas, como se muestra en la figura 15.


⁽⁶⁾ desde el límite WAD2 100, si procede, con arreglo a los puntos 11.19 a 11.21.

Los ensayos asignados a cualquier punto de control situado en la zona de control de la cubierta que esté por delante o en el límite de la WAD1 700 se realizan con el impactador simulador de cabeza de niño. Los ensayos asignados a cualquier punto de control situado en la zona de control de la cubierta que esté por detrás de la WAD1 700 se realizan con el impactador simulador de cabeza de adulto.

- 2.46. «Sombreado opaco»: cualquier zona del acristalamiento que impida la transmisión de la luz, incluida cualquier zona del parabrisas de color completamente negro, a excepción de cualquier banda parasol, zona de puntos, texto o gráfico.
- 2.47. «Banda parasol» : cualquier zona del acristalamiento con una transmitancia de la luz reducida, excluyendo cualquier sombreado opaco.
- 2.48. «Comportamiento de rotura atípica del parabrisas»: aquel en el que el impacto del simulador de cabeza con el parabrisas dé lugar a por lo menos uno de los casos siguientes:
 - a) El valor absoluto del valor mínimo de la derivada de la aceleración del simulador de cabeza con respecto al tiempo es inferior a 180 g/ms durante los primeros 4 ms tras el contacto inicial del simulador de cabeza con el parabrisas, como se muestra en la figura 16; o

Figura 16
Gráfico y fórmula del criterio de sobreaceleración

$$| \min \left(\frac{da}{dt} \right) | < 180 \text{ g/ms, para } 0 < t < 4 \text{ ms}$$

- b) El valor mínimo de la aceleración por debajo de 300 m/s2 en los 10 milisegundos posteriores al pico inicial se alcanza tras más de 4 ms en el trazado tiempo/aceleración, o no se observa de forma visible una rotura del vidrio que se extienda a todo el parabrisas.
- 2.49. «Un tercio de la zona de ensayo del parabrisas»: zona comprendida entre los límites laterales de la zona de ensayo del parabrisas definidos en el punto 2.44, letra c), dividida por las líneas que pasan por las marcas que dividen en tercios las líneas de P a P' y de Q a Q' (los puntos de las esquinas superiores de la zona de ensayo del parabrisas), como se muestra en la figura 17. Todas las líneas se trazarán con una cinta métrica flexible que siga el contorno exterior del parabrisas, y las tres partes iguales se medirán de igual forma. En el caso de que Q y Q' coincidan con P y P', Q y Q' se crearán en las líneas del límite lateral definidas en el punto 2.44, letra c) por detrás de P y P' respectivamente.

Si no existe un único «punto Q» donde se cruzan las líneas definidas en el punto 2.44, letras b) y c), el «punto Q» queda definido por el primer contacto de un plano vertical V_{45} , que corte el plano central vertical longitudinal del vehículo con un ángulo de 45°, con la transición b)-c) del límite de la zona de ensayo del parabrisas.

Si no hay intersección entre b) y c) y la zona de ensayo abierta se cierra mediante una línea de conexión, como se ilustra en la figura 13, el «punto Q» se sitúa en el centro de esta línea de conexión.

Figura 17
Tercios de la zona de ensayo del parabrisas

Marcas que dividen en tercios las líneas

3. Solicitud de homologación

- 3.1. La solicitud de homologación de un tipo de vehículo por lo que respecta a los requisitos de protección de los peatones deberá presentarla el fabricante del vehículo o su representante autorizado.
- 3.2. Deberá ir acompañada de los documentos que se mencionan a continuación, por triplicado, e incluir la siguiente información:
- 3.2.1. El fabricante facilitará a la autoridad de homologación de tipo una ficha técnica que se ajuste al modelo de la parte 1 del anexo 1 que incluya la descripción del tipo de vehículo por lo que respecta a los elementos mencionados en el punto 2.39, junto con dibujos acotados. Deberán precisarse los números o símbolos identificativos del tipo de vehículo.
- 3.3. Se presentará al servicio técnico encargado de la realización de los ensayos de homologación un vehículo representativo del tipo de vehículo cuya homologación se solicita.
- 4. Homologación
- 4.1. Si el tipo de vehículo presentado para homologación con arreglo al presente Reglamento cumple los requisitos del punto 5, se concederá la homologación.
- 4.2. Se asignará un número de homologación a cada tipo homologado de conformidad con el apéndice 4 del Acuerdo (E/ECE/TRANS/505/Rev.3). La sección 2 del número de homologación se completará con una barra oblicua y uno de los caracteres siguientes, según proceda:
 - a) la letra «T» para los vehículos homologados con arreglo a las disposiciones específicas relativas al límite WAD2 100 de conformidad con el punto 11.19; o

b) la letra «E» para los vehículos homologados con el límite extendido WAD2 500.

Ejemplo:

Ejemplo de la primera extensión de la 2439.ª homologación de tipo expedida por el Reino Unido de Gran Bretaña e Irlanda del Norte para la homologación de un vehículo de conformidad con el Reglamento n.º 127 de las Naciones Unidas, tercera serie de enmiendas, y su suplemento 1, con arreglo a las disposiciones específicas relativas al límite WAD2 100;

E11*127R03/01/T*2439*01.

c) la letra «F» para los vehículos homologados con arreglo a las disposiciones específicas relativas a la BRRL de conformidad con los puntos 11.22 y 11.23.

Ejemplo:

Ejemplo de la primera extensión de la 2439.ª homologación de tipo expedida por el Reino Unido de Gran Bretaña e Irlanda del Norte para la homologación de un vehículo de conformidad con el Reglamento n.º 127 de las Naciones Unidas, cuarta serie de enmiendas, y su suplemento 1, con arreglo a las disposiciones específicas relativas a la BRRL;

E11*127R04/01/F*2439*01.

- 4.3. La concesión, la denegación o la retirada de la homologación con arreglo al presente Reglamento se notificará a las Partes en el Acuerdo que apliquen el presente Reglamento por medio de un formulario que deberá ajustarse al modelo que figura en el anexo 1, parte 2, y las fotografías y planos facilitados por el solicitante deberán estar en un formato que no sea superior al A4 (210 × 297 mm), o bien plegados en dicho formato, y a una escala adecuada.
- 4.4. Todo vehículo conforme con un tipo de vehículo homologado con arreglo al presente Reglamento deberá llevar, de manera claramente visible y en un lugar de fácil acceso especificado en el formulario de homologación, una marca de homologación internacional conforme con el modelo descrito en el anexo 2 y consistente en:
- 4.4.1. Un círculo que rodee la letra «E» seguida por el número distintivo del país que ha concedido la homologación (7).
- 4.4.2. el número del presente Reglamento, seguido de la letra «R», un guion y el número de homologación a la derecha del círculo prescrito en el punto 4.4.1.
- 4.5. Si el vehículo es conforme con un tipo de vehículo homologado de acuerdo con uno o varios Reglamentos anejos al Acuerdo en el país que ha concedido la homologación con arreglo al presente Reglamento, no será necesario repetir el símbolo establecido en el punto 4.4.1; en ese caso, los números del Reglamento y de la homologación, así como los símbolos adicionales, se colocarán en columnas verticales a la derecha del símbolo prescrito en el punto 4.4.1.
- 4.6. La marca de homologación será claramente legible e indeleble.
- 4.7. La marca de homologación se pondrá en la placa de datos del vehículo o cerca de la misma.
- 5. Especificaciones
- 5.1. Ensayo de impacto del simulador de pierna contra el parachoques:

Para los vehículos con una altura inferior del parachoques en la posición de ensayo menor de 425 mm se aplicarán los requisitos del punto 5.1.1.

Para los vehículos con una altura inferior del parachoques en la posición de ensayo igual o superior a 425 mm pero inferior a 500 mm, se aplicarán los requisitos del punto 5.1.1 o del punto 5.1.2, a elección del fabricante.

⁽⁷⁾ Los números distintivos de las Partes contratantes en el Acuerdo de 1958 figuran en el anexo 3 de la Resolución consolidada sobre la construcción de vehículos (R.E.3), documento ECE/TRANS/WP.29/78/Rev.6 - www.unece.org/trans/main/wp29/wp29wgs/wp29gen/wp29resolutions.html.

Para los vehículos con una altura inferior del parachoques en la posición de ensayo igual o superior a 500 mm, se aplicarán los requisitos del punto 5.1.2.

5.1.1. Simulador de pierna flexible contra el parachoques:

En los ensayos realizados de conformidad con al anexo 5, punto 1, (impactador simulador de pierna flexible), el valor absoluto del alargamiento dinámico máximo del ligamento lateral interno en la rodilla no excederá de 22 mm, y el alargamiento dinámico máximo del ligamento cruzado anterior y el ligamento cruzado posterior no excederá de 13 mm. El valor absoluto de los momentos de flexión dinámicos en la tibia no excederá de 340 Nm. Además, el fabricante podrá especificar anchuras de ensayo del parachoques de hasta 264 mm en total, donde el valor absoluto del momento de flexión de la tibia no excederá de 380 Nm. Una Parte contratante podrá restringir la aplicación del requisito de zona de relajación en su legislación nacional si decide que dicha restricción resulta oportuna.

El impactador simulador de pierna flexible se certificará con arreglo al anexo 6, punto 1.

5.1.2. Impacto del simulador de muslo y cadera contra el parachoques

En los ensayos realizados de conformidad con al anexo 5, punto 2, (impacto del simulador de muslo y cadera contra el parachoques), la suma instantánea de las fuerzas de impacto respecto al tiempo no será superior a 7,5 kN y el momento de flexión del impactador de ensayo no superará los 510 Nm.

El impactador simulador de muslo y cadera se certificará con arreglo al anexo 6, punto 2.

5.2. Ensayos con simuladores de cabeza

5.2.1. Ensayos con simuladores de cabeza de niño y de adulto:

En los ensayos realizados de conformidad con al anexo 5, puntos 3, 4 y 5, el HIC registrado no será superior a 1 000 en dos tercios de la zona resultante de la combinación de la zona de ensayo de la parte superior del capó y la zona de ensayo del parabrisas. Además, el HIC registrado no será superior a 1 000 en dos tercios de la zona de ensayo de la parte superior del capó. El HIC de las demás zonas de ensayo no será superior a 1 700 para ninguno de los dos simuladores de cabeza. No se tendrán en cuenta los puntos de medición situados en la zona de control de la cubierta para evaluar los requisitos de rendimiento establecidos en el presente apartado. Los resultados de los ensayos respectivos se utilizan únicamente con fines de control y no contribuyen al cálculo de la zona correspondiente a un tercio y dos tercios.

En caso de que solo haya una zona de ensayo pertinente para el simulador de cabeza de niño, el HIC registrado no será superior a 1 000 en dos tercios de la zona de ensayo. Para la zona restante, el HIC no será superior a 1 700.

5.2.2. Impacto del simulador de cabeza de niño

En los ensayos realizados de conformidad con al anexo 5, puntos 3 y 4, el HIC registrado no será superior a 1 000 en al menos la mitad de la zona de ensayo pertinente para el simulador de cabeza de niño. El HIC de las demás zonas no será superior a 1 700.

- 5.2.3. Los impactadores simuladores de cabeza se certificarán con arreglo al anexo 6, punto 3.
- 5.3. En el caso de un vehículo equipado con un ARHSS, que pueda cambiar la altura del vehículo en el eje delantero en más de 20 mm con respecto a la nominal para cualquier velocidad del vehículo comprendida entre 25 y 40 km/h, las disposiciones de los puntos 5.1 y 5.2, además de las condiciones normales de marcha especificadas por el fabricante para una velocidad del vehículo de 40 km/h, se cumplirán para todas las regulaciones de altura fijas del vehículo correspondientes a velocidades del vehículo comprendidas entre 25 y 40 km/h.

Para estos ensayos, a petición del fabricante y con el acuerdo del servicio técnico, se utilizarán, o bien las velocidades de impacto definidas en los puntos 5.1 y 5.2, o bien la velocidad de impacto correspondiente a la regulación de altura del vehículo. En este último caso, la relación entre el impacto de la cabeza y la correspondiente velocidad del vehículo será de 0,9.

5.3.1. Se considerará que se cumplen los requisitos del punto 5.3 si el vehículo está equipado con un ARHSS que satisface plenamente las condiciones de los puntos 5.3.1.1 o 5.3.1.2.

- 5.3.1.1. El ARHSS no puede activarse en las vías públicas y únicamente se activa para uso fuera de carreteras. El ARHSS volverá automáticamente a la disposición normal de circulación cuando el vehículo circule por vías públicas. Al inicio de cada nuevo ciclo de encendido/marcha del motor, la situación por defecto del ARHSS en vías públicas es la de altura normal de circulación.
- 5.3.1.2. El ARHSS puede activarse en las vías públicas en casos excepcionales de uso a baja velocidad (por ejemplo, inundaciones/fuerte nevada). En tales casos, el ARHSS volverá automáticamente a la altura normal de circulación cuando la velocidad del vehículo supere los 25 km/h o cuando el conductor desactive manualmente el sistema. Cuando el ARHSS esté activado para su uso en casos excepcionales de uso a baja velocidad, se informará de ello al conductor al menos mediante una señal de aviso óptica.
- 5.3.1.3. El fabricante del vehículo demostrará el cumplimiento de las condiciones de los puntos 5.3.1.1 o 5.3.1.2, a satisfacción del servicio técnico, por medios independientes (por ejemplo, un ensayo físico). La información pertinente se detallará en la ficha técnica del anexo I. El caso excepcional de uso a baja velocidad del punto 5.3.1.2 se describirá con mayor detalle en el manual del propietario del vehículo.
- 5.3.2. Se utilizará el impactador simulador de pierna utilizado para el ensayo de impacto del simulador de pierna contra el parachoques en condiciones normales de marcha para una velocidad de 40 km/h.
- 5.3.3. Con el acuerdo del servicio técnico, la conformidad se demostrará mediante un número limitado de ensayos con el simulador de pierna o mediante simulación numérica con arreglo a la especificación establecida en el punto 5.3, de modo que se cumplan los límites biomecánicos establecidos en los puntos 5.1.1 y 5.1.2, respectivamente.
- 5.3.4. Con el acuerdo del servicio técnico, la conformidad se demostrará mediante un número limitado de ensayos de impacto de la cabeza o mediante simulación numérica que demuestren la conformidad con el requisito del HIC de 1 700 en la zona de ensayo adicional de la cabeza.
- 6. Modificación del tipo de vehículo y extensión de la homologación
- 6.1. Toda modificación del tipo de vehículo con arreglo a la definición del punto 2.37 deberá notificarse a la autoridad de homologación de tipo que lo homologó. A continuación, dicha autoridad podrá:
- 6.1.1. Considerar que las modificaciones realizadas no tienen un efecto adverso en las condiciones de concesión de la homologación y conceder una extensión de la homologación.
- 6.1.2. Considerar que las modificaciones realizadas afectan a las condiciones de concesión de la homologación y exigir nuevos ensayos o controles adicionales antes de conceder una extensión de la homologación.
- 6.2. La confirmación o denegación de la homologación se comunicará a las Partes contratantes en el Acuerdo que apliquen el presente Reglamento, especificándose los cambios, mediante el procedimiento indicado en el punto 4.3.
- 6.3. La autoridad de homologación de tipo informará de la extensión a las demás Partes contratantes mediante el formulario de comunicación según el modelo que figura en el anexo 1, parte 2, del presente Reglamento. Asignará un número de serie a cada extensión, denominado número de extensión.

- 7. Conformidad de la producción
- 7.1. Los procedimientos relativos a la conformidad de la producción se ajustarán a las disposiciones generales definidas en el apéndice 1 del Acuerdo (E/ECE/TRANS/505/Rev.3) y cumplirán los siguientes requisitos:
- 7.2. Todo vehículo homologado con arreglo al presente Reglamento estará fabricado de manera que sea conforme al tipo homologado cumpliendo los requisitos del punto 5.
- 7.3. La autoridad de homologación de tipo que haya concedido la homologación podrá verificar en todo momento la conformidad de los métodos de control aplicables a cada unidad de producción. La frecuencia normal de las verificaciones será de una vez cada dos años.
- 8. Sanciones por no conformidad de la producción
- 8.1. Podrá retirarse la homologación concedida con respecto a un tipo de vehículo con arreglo al presente Reglamento si no se cumplen los requisitos establecidos en el punto 7.
- 8.2. Cuando una Parte contratante retire una homologación que había concedido anteriormente, informará de ello inmediatamente a las demás Partes contratantes que apliquen el presente Reglamento enviándoles un formulario de comunicación conforme al modelo que figura en el anexo 1, parte 2, de dicho Reglamento.
- 9. Cese definitivo de la producción

Cuando el titular de una homologación cese definitivamente de fabricar un tipo de vehículo homologado con arreglo al presente Reglamento, informará de ello a la autoridad de homologación de tipo que haya concedido la homologación, la cual, a su vez, informará inmediatamente a las demás Partes contratantes en el Acuerdo que apliquen el presente Reglamento mediante un formulario de comunicación conforme con el modelo del anexo 1, parte 2.

10. Nombres y direcciones de los servicios técnicos responsables de realizar los ensayos de homologación y de las autoridades de homologación de tipo

Las Partes contratantes en el Acuerdo que apliquen el presente Reglamento comunicarán a la Secretaría de las Naciones Unidas el nombre y la dirección de los servicios técnicos responsables de realizar los ensayos de homologación y de las autoridades de homologación de tipo que concedan la homologación y a las cuales deban remitirse los formularios que certifiquen la concesión, la extensión, la denegación o la retirada de la homologación.

- 11. Disposiciones transitorias
- 11.1. A partir de la fecha oficial de entrada en vigor de la serie 02 de enmiendas, ninguna Parte contratante que aplique el presente Reglamento denegará la concesión o la aceptación de homologaciones de tipo con arreglo a este en su versión modificada por la serie 02 de enmiendas.
- 11.2. A partir del 31 de diciembre de 2017, las Partes contratantes que apliquen el presente Reglamento únicamente concederán homologaciones de tipo si el tipo de vehículo que se somete a homologación cumple los requisitos establecidos en el presente Reglamento en su versión modificada por la serie 02 de enmiendas.
- 11.3. Las Partes contratantes que apliquen el presente Reglamento no denegarán la concesión de extensiones de homologaciones de tipo que hayan sido concedidas a tipos de vehículos existentes con arreglo a la serie original del presente Reglamento o a la serie 01 de enmiendas del mismo.
- 11.4. Las Partes contratantes que apliquen el presente Reglamento seguirán aceptando las homologaciones de tipo en virtud de la serie original del presente Reglamento y de la serie 01 de enmiendas del mismo.

11.5. A partir de la fecha oficial de entrada en vigor de la serie 03 de enmiendas, ninguna Parte contratante que aplique el presente Reglamento denegará la concesión o la aceptación de homologaciones de tipo con arreglo a este en su versión modificada por la serie 03 de enmiendas.

- 11.6. A partir del 7 de julio de 2024, las Partes contratantes que apliquen el presente Reglamento no estarán obligadas a aceptar homologaciones de tipo concedidas conformes a las series anteriores de enmiendas, expedidas por primera vez después del 7 de julio de 2024.
- 11.7. Hasta el 7 de julio de 2026, las Partes contratantes que apliquen el presente Reglamento aceptarán homologaciones de tipo conformes a las series anteriores de enmiendas, expedidas por primera vez antes del 7 de julio de 2024.
- 11.8. A partir del 7 de julio de 2026, las Partes contratantes que apliquen el presente Reglamento no estarán obligadas a aceptar homologaciones de tipo expedidas con arreglo a las series anteriores de enmiendas del presente Reglamento.
- 11.9. Hasta el 1 de septiembre de 2028, las Partes contratantes que apliquen el presente Reglamento seguirán concediendo homologaciones de tipo con arreglo a los procedimientos de ensayo relativos al comportamiento de rotura atípica del parabrisas (véase el anexo 5, puntos 4.8 y 5.8) y a las disposiciones específicas relativas al límite WAD2 100 (véanse los puntos 2.1 y 2.45).
- 11.10. Hasta el 1 de septiembre de 2029, las Partes contratantes que apliquen el presente Reglamento seguirán aceptando homologaciones de tipo expedidas con arreglo a las disposiciones específicas relativas al límite WAD2 100 (véanse los puntos 2.1 y 2.45).
- 11.11. A partir del 1 de septiembre de 2029, las Partes contratantes que apliquen el presente Reglamento no estarán obligadas a aceptar homologaciones de tipo expedidas para un vehículo con un límite WAD2 100 en la parte superior del capó (véanse los puntos 2.1 y 2.45).
- 11.12. Las Partes contratantes que apliquen el presente Reglamento podrán conceder homologaciones de tipo con arreglo a cualquiera de las series anteriores de enmiendas del presente Reglamento.
- 11.13. Las Partes contratantes que apliquen el presente Reglamento seguirán concediendo extensiones de las homologaciones existentes con arreglo a cualquiera de las series anteriores de enmiendas del presente Reglamento.
- 11.14. A partir de la fecha oficial de entrada en vigor de la serie 04 de enmiendas, ninguna Parte contratante que aplique el presente Reglamento de las Naciones Unidas denegará la concesión o la aceptación de homologaciones de tipo con arreglo a este en su versión modificada por la serie 04 de enmiendas.
- 11.15. A partir del 1 de septiembre de 2026, las Partes contratantes que apliquen el presente Reglamento de las Naciones Unidas no estarán obligadas a aceptar homologaciones de tipo conformes a las series anteriores de enmiendas, expedidas por primera vez después del 1 de septiembre de 2026.
- 11.16. Las Partes contratantes que apliquen el presente Reglamento de las Naciones Unidas seguirán aceptando las homologaciones de tipo expedidas con arreglo a las series anteriores de enmiendas del presente Reglamento de las Naciones Unidas, expedidas por primera vez antes del 1 de septiembre de 2026.
- 11.17. Hasta el 1 de septiembre de 2028, las Partes contratantes que apliquen el presente Reglamento de las Naciones Unidas seguirán concediendo homologaciones de tipo con arreglo a los procedimientos de ensayo relativos al comportamiento de rotura atípica del parabrisas (véase el anexo 5, puntos 4.8 y 5.8) y a las disposiciones específicas relativas al límite WAD2 100 (véanse los puntos 2.1 y 2.45).
- 11.18. Hasta el 1 de septiembre de 2029, las Partes contratantes que apliquen el presente Reglamento de las Naciones Unidas seguirán aceptando homologaciones de tipo expedidas con arreglo a las disposiciones específicas relativas al límite WAD2 100 (véanse los puntos 2.1 y 2.45).
- 11.19. A partir del 1 de septiembre de 2029, las Partes contratantes que apliquen el presente Reglamento de las Naciones Unidas no estarán obligadas a aceptar homologaciones de tipo expedidas para un vehículo con un límite WAD2 100 en la parte superior del capó (véanse los puntos 2.1 y 2.45).
- 11.20. Las Partes contratantes que apliquen el presente Reglamento de las Naciones Unidas podrán conceder homologaciones de tipo con arreglo a cualquiera de las series anteriores de enmiendas del presente Reglamento de las Naciones Unidas.

- 11.21. Las Partes contratantes que apliquen el presente Reglamento de las Naciones Unidas seguirán concediendo extensiones de las homologaciones existentes con arreglo a cualquiera de las series anteriores de enmiendas del presente Reglamento de las Naciones Unidas.
- 11.22. No obstante lo dispuesto en el punto 11.19, hasta el 1 de septiembre de 2030, las Partes contratantes que apliquen el presente Reglamento seguirán concediendo homologaciones de tipo con arreglo a las disposiciones específicas relativas a la BRRL (véase la nota a pie de página 2 del punto 2.1).
- 11.23. No obstante lo dispuesto en los puntos 11.20 y 11.21, hasta el 1 de septiembre de 2031, las Partes contratantes que apliquen el presente Reglamento de las Naciones Unidas seguirán aceptando homologaciones de tipo expedidas con arreglo a las disposiciones específicas relativas a la BRRL (véase la nota a pie de página 2 del punto 2.1).

Anexo 1

Parte 1

Modelo

Ficha técnica n.º ... sobre la homologación de tipo de un vehículo en lo referente a la protección de los peatones

La información que figura a continuación deberá presentarse, en su caso, por triplicado e ir acompañada de un índice de contenidos. Los planos que vayan a entregarse se presentarán a la escala adecuada, suficientemente detallados y en formato A4 o doblados de forma que se ajusten a dicho formato. Si se presentan fotografías, deberán ser suficientemente detalladas.

Si los sistemas, componentes o unidades técnicas independientes tienen mandos electrónicos, se facilitará la información relativa a sus prestaciones.

- Generalidades
- 0.1. Marca (nombre comercial del fabricante):
- 0.2. Tipo:
- 0.2.1. Denominación comercial (si está disponible):
- 0.3. Medio de identificación del tipo, si está marcado en el vehículo (¹)· (²):
- 0.3.1. Ubicación de esa marca:
- 0.4. Categoría de vehículo (3):
- 0.5. Nombre y dirección del fabricante:
- 0.6. Nombre y dirección de la(s) planta(s) de montaje:
- 0.7. Nombre y dirección del representante del fabricante (en su caso):
- 1. Características generales de fabricación del vehículo
- 1.1. Fotografías o planos de un vehículo representativo:

⁽¹) Táchese lo que no proceda (si es aplicable más de una opción, puede que no sea necesario tachar nada).

⁽²) Si el medio de identificación del tipo contiene caracteres no pertinentes para describir el tipo de vehículo objeto de la presente ficha técnica, tales caracteres se representarán en la documentación por el símbolo «?» (por ejemplo, ABC??123??).

⁽³⁾ Con arreglo a la definición que figura en la Resolución consolidada sobre la construcción de vehículos (R.E.3), documento ECE/TRANS/WP.29/78/Rev.6, apartado 2. - www.unece.org/trans/main/wp29/wp29wgs/wp29gen/wp29resolutions.html.

- 1.6. Localización y disposición del motor:
- 9. Carrocería
- 9.1. Tipo de carrocería:
- 9.2. Materiales utilizados y métodos de fabricación:
- 9.23. Protección de los peatones
- 9.23.1. Se facilitará una descripción detallada, que incluya fotografías o planos, del tipo de vehículo en cuanto a la estructura, dimensiones, líneas de referencia pertinentes y materiales que constituyen la parte delantera del vehículo (exterior e interior). Esta descripción incluirá detalles de cualquier sistema de protección activa instalado y de cualquier sistema que pueda cambiar la altura del vehículo en el eje delantero durante la conducción (por ejemplo, el ARHSS).

ELI: http://data.europa.eu/eli/reg/2025/460/oj

Anexo 1

Parte 2

Comunicación

[Formato máximo: A4 (210 x 297 mm)]

	expedida por:	Nombre de la administración:
(□ <i>.)</i>		

relativa a (2):

la concesión de la homologación la extensión de la homologación la denegación de la homologación la retirada de la homologación el cese definitivo de la producción

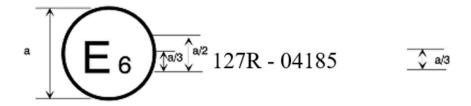
de un tipo de vehículo por lo que se refiere a las prestaciones en relación con la seguridad de los peatones en virtud del Reglamento n.º 127 de las Naciones Unidas.

N.º de	homologación:
1.	Marca:
2.	Tipo y denominaciones comerciales:
3.	Nombre y dirección del fabricante:
4.	En su caso, nombre y dirección del representante del fabricante:
5.	Breve descripción del vehículo:
6.	Fecha de presentación del vehículo para su homologación:
7.	Servicio técnico que realiza los ensayos de homologación:
8.	Fecha del informe expedido por dicho servicio:
9.	Número del informe expedido por dicho servicio:
10. peato	Se concede/deniega (²) la homologación por lo que se refiere a las prestaciones en relación con la seguridad de los nes:
11.	Lugar:
12.	Fecha:
13.	Firma:

⁽¹) Número distintivo del país que ha concedido/extendido/denegado/retirado la homologación (véanse las disposiciones sobre homologación del Reglamento).

⁽²⁾ Táchese lo que no proceda.

14.	Se adjuntan a la presente	comunicación los sig	uientes documentos, c	on el número de homologacio	ón antes indicado:
Dibu	jos acotados				
Vista	explosionada o fotografía	del vehículo			
15.	Observaciones:				
punto		WAD	Coordenada Y (³)	Velocidad de impacto	Valor HIC
1.					
2.					
	e WAD2 100 con arreglo a Zona que incorpora cara externo, estructura despl	cterísticas de mitigacio	ón de lesiones en la cal	peza de peatones o ciclistas, po	or ejemplo, airbag
Pilar A	A	WAD	Coordenada Y	Velocidad de impacto	Valor HIC
1.					
2.					
Marc paral	o superior del orisas				
(3.)					
(4.)					
Cubi	erta				
(5.)					
(6.)					
•••					
16.3.	Puntos de impacto solici	tados por el fabricante	e en soluciones innovad	doras (si procede).	
Pilar 1	4	WAD	Coordenada Y	Velocidad de impacto	Valor HIC
1.					
2.					
Marc parab	o superior del orisas				
(3.)					
(4.)					


⁽³) Sistema de coordenadas definido en el apéndice 2 del anexo 1 de la Resolución consolidada sobre la construcción de vehículos (R.E.3) (documento ECE/TRANS/WP.29/78/Rev.6). https://unece.org/transport/standards/transport/vehicle-regulations-wp29/resolutions.

Pilar A	WAD	Coordenada Y	Velocidad de impacto	Valor HIC
Cubierta				
(5.)				
(6.)				

Anexo 2

Disposición de las marcas de homologación

(véanse los puntos 4.4 a 4.4.2 del presente Reglamento)

a = 8 mm min.

Esta marca de homologación colocada en un vehículo indica que el tipo de vehículo en cuestión ha sido homologado en Bélgica (E 6) por lo que se refiere a las prestaciones en relación con la seguridad de los peatones con arreglo al Reglamento n.º 127 de las Naciones Unidas. Los dos primeros dígitos del número de homologación indican que la homologación ha sido concedida de conformidad con los requisitos del Reglamento n.º 127 de las Naciones Unidas en su versión modificada por la serie 04 de enmiendas.

Anexo 3

Condiciones generales del ensayo

- 1. Temperatura y humedad
- 1.1. En el momento del ensayo, el laboratorio de ensayo y el vehículo o subsistema tendrán una humedad relativa del 40 ± 30 % y una temperatura estabilizada de 20 °C ± 4 °C.
- 2. Lugar del ensayo de impacto
- 2.1. El lugar de ensayo consistirá en una superficie plana, lisa y dura con una inclinación que no exceda del 1 %.
- 3. Preparación del vehículo
- 3.1. Para realizar el ensayo, se utilizará o bien un vehículo completo o una sección del mismo que se ajuste a las condiciones que se indican a continuación.
- 3.1.1. El vehículo estará en disposición normal de circulación y montado de forma segura sobre soportes elevados o parado en una superficie horizontal plana con el freno de estacionamiento aplicado.
- 3.1.2. En el ensayo, la sección del vehículo incluirá todas las partes de la estructura delantera del vehículo, todos los componentes situados debajo del capó y todos los componentes situados detrás del parabrisas que puedan intervenir en un impacto frontal con un usuario vulnerable de la vía pública, a fin de que pueda comprobarse las prestaciones y las interacciones de todas las partes implicadas del vehículo. La sección del vehículo estará montada de forma segura en la disposición normal de circulación del vehículo.
- 3.2. Todos los dispositivos concebidos para proteger a los usuarios vulnerables de la vía pública en caso de recibir el impacto del vehículo estarán correctamente activados antes de realizarse el ensayo correspondiente, o estar en funcionamiento durante el mismo. La responsabilidad de demostrar que los dispositivos actúan de la forma prevista en caso de impacto con un peatón corresponderá al fabricante.
- 3.3. Los vehículos que dispongan de componentes que puedan cambiar de forma o posición que no sean dispositivos activos de protección de los peatones y que tengan más de una forma o posición fijas deberán cumplir los requisitos con esos componentes en cada una de estas formas o posiciones.

Anexo 4

Especificaciones del impactador de ensayo

- 1. Impactador simulador de pierna flexible
- 1.1. El impactador simulador de pierna flexible constará de segmentos óseos alargados, flexibles y con masa muscular y piel (que representarán el fémur y la tibia), y una articulación de la rodilla, tal como se muestra en la figura 1. El impactador ensamblado tendrá una masa total de 13,2 kg ± 0,4 kg. Las dimensiones del impactador completamente ensamblado serán las especificadas en la figura 1.

Los soportes, las poleas, las protecciones, las piezas de conexión, etc., fijados al impactador para su lanzamiento o protección podrán exceder las dimensiones y tolerancias que figuran en la figura 1 y en las figuras 2 a) y b).

- 1.2. La forma transversal de los segmentos del cuerpo principal del fémur, los segmentos del cuerpo principal de la tibia y sus caras de impacto serán las definidas en la figura 2 a).
- 1.3. La forma transversal de la articulación de la rodilla y su cara de impacto serán las definidas en la figura 2 b).
- 1.4. Las masas del fémur y la tibia sin la masa muscular y sin la piel, incluidas las piezas de conexión a la articulación de la rodilla, serán de 2,46 kg ± 0,12 kg y 2,64 kg ± 0,13 kg respectivamente. La masa de la articulación de la rodilla sin la masa muscular y sin la piel será de 4,28 kg ± 0,21 kg. La masa ensamblada del fémur, la articulación de la rodilla y la tibia sin la masa muscular y sin la piel será de 9,38 kg ± 0,3 kg.

Los centros de gravedad del fémur y la tibia sin la masa muscular y sin la piel, incluidas las piezas de conexión a la articulación de la rodilla, serán los definidos en la figura 1. El centro de gravedad de la articulación de la rodilla será el definido en la figura 1.

El momento de inercia del fémur y la tibia sin la masa muscular y sin la piel, incluidas las piezas de conexión insertadas en la articulación de la rodilla, en torno al eje X a través del respectivo centro de gravedad será de $0.0325~kgm^2 \pm 0.0016~kgm^2$ y de $0.0467~kgm^2 \pm 0.0023~kgm^2$ respectivamente. El momento de inercia de la articulación de la rodilla en torno al eje X a través del respectivo centro de gravedad será de $0.0180~kgm^2 \pm 0.0009~kgm^2$.

- 2. Instrumental del simulador de pierna
- 2.1. Se instalarán cuatro transductores en la tibia para medir los momentos de flexión en los puntos dentro de la tibia. Se instalarán tres transductores en el fémur para medir los momentos de flexión aplicados al fémur. Los puntos de detección de cada transductor se definen en la figura 3. El eje de medición de cada transductor será el eje X del impactador.
- 2.2. Se instalarán tres transductores en la articulación de la rodilla para medir el alargamiento del ligamento lateral interno, el ligamento cruzado anterior y el ligamento cruzado posterior. Los puntos de medición de cada transductor se recogen en la figura 3. Los puntos de medición se situarán a no más de ±4 mm a lo largo del eje X a partir del centro de la articulación de la rodilla.
- 2.3. El valor de categoría de frecuencia del canal (CFC) de la respuesta de los instrumentos, definido en la norma ISO 6487:2002, será de 180 para todos los transductores. Los valores de respuesta de la categoría de amplitud del canal (CAC), definidos en la norma ISO 6487:2002, serán de 30 mm para los alargamientos de los ligamentos de la rodilla y de 400 Nm para los momentos de flexión de la tibia y el fémur. Ello no supone que el propio impactador tenga que poder alargarse o doblarse físicamente hasta dichos valores.

2.4. La determinación de todos los momentos máximos de flexión de la tibia y los alargamientos de los ligamentos del impactador simulador de pierna flexible se limitará al intervalo de evaluación definido en el punto 2.2 del presente Reglamento.

Figura 1

Impactador simulador de pierna flexible

Dimensiones y ubicaciones de los centros de gravedad del fémur, la articulación de la rodilla y la tibia (vista lateral)

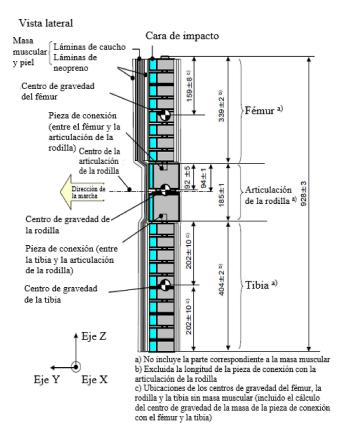
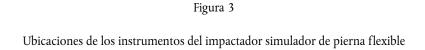
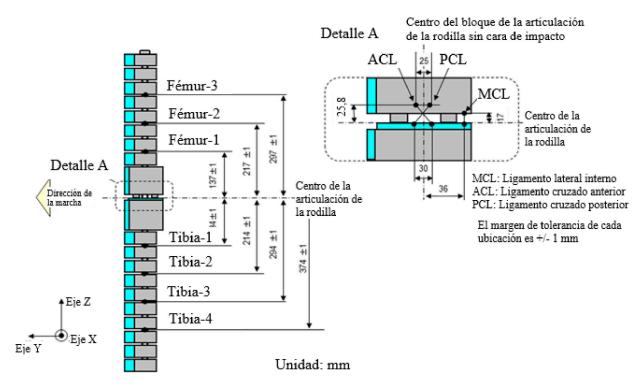
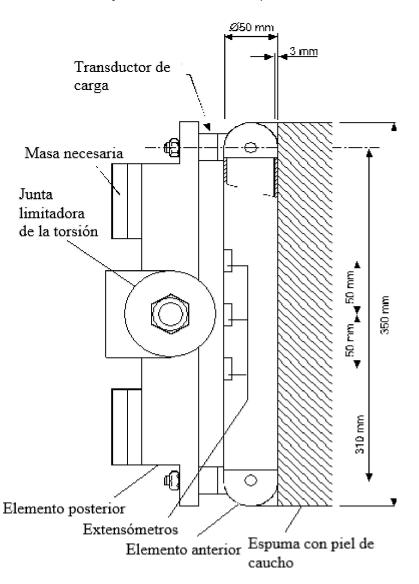




Figura 2

Vistas de las dimensiones del fémur, la tibia y la articulación de la rodilla del esquema del impactador simulador de pierna flexible (vista en planta)

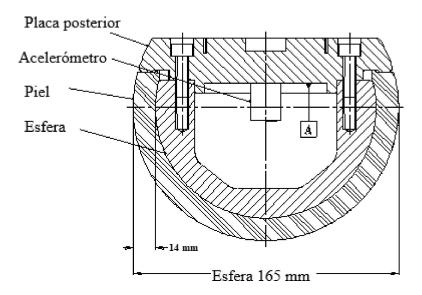


- 3. Impactador simulador de muslo y cadera
- 3.1. El impactador simulador de muslo y cadera será rígido, tendrá recubierta de espuma la cara del impacto y una longitud de 350 mm ± 5 mm (véase la figura 4).
- 3.2. La masa total del impactador simulador de muslo y cadera, incluidos los elementos de propulsión y guía que formen parte del mismo durante el impacto, será de 9,5 kg ± 0,1 kg.
- 3.3. La masa total del elemento anterior y otros componentes situados delante de las fijaciones de los transductores de carga, más las partes de las fijaciones de los transductores de carga situadas delante de los elementos activos, sin incluir la espuma y la piel, será de 1,95 kg ± 0,05 kg.
- 3.4. Para el ensayo contra el parachoques, el impactador simulador de muslo y cadera se montará en el sistema de propulsión mediante una junta limitadora de la torsión y será insensible a las cargas fuera de eje. El impactador se moverá únicamente en la dirección de impacto especificada al entrar en contacto con el vehículo y se evitará que se mueva en otras direcciones, incluida la rotación sobre cualquier eje.
- 3.5. La junta limitadora de la torsión se instalará de modo que el eje longitudinal del elemento anterior esté vertical en el momento del impacto, con un margen de tolerancia de ± 2°; la torsión por fricción de la junta será de 675 Nm ± 25 Nm.
- 3.6. El centro de gravedad de las partes del impactador situadas delante de la junta limitadora de la torsión, incluidos los pesos adicionales fijados, estará situado en la línea central longitudinal del impactador, con un margen de tolerancia de ±10 mm.
- 3.7. El espacio entre las líneas centrales de los transductores de carga será de 310 mm ± 1 mm, y el diámetro del elemento anterior será de 50 mm ± 1 mm.

- 4. Instrumental del simulador de muslo y cadera
- 4.1. El elemento anterior deberá ir equipado con extensómetros para medir los momentos de flexión en tres puntos, como muestra la figura 4, para lo cual cada uno de ellos utilizará un canal separado. Los extensómetros se situarán en la parte trasera del elemento anterior del impactador. Los dos extensómetros exteriores se situarán a 50 mm ± 1 mm del eje de simetría del impactador. El extensómetro central estará situado sobre el eje de simetría, con un margen de tolerancia de ± 1 mm.
- 4.2. Se instalarán dos transductores de carga para medir por separado las fuerzas aplicadas a cada extremo del impactador, y extensómetros para medir los momentos de flexión en el centro del impactador simulador de muslo y cadera y en puntos situados a una distancia de 50 mm a cada lado de la línea central (véase la figura 4).
- 4.3. El valor CFC de la respuesta de los instrumentos, definido en la norma ISO 6487:2002, será de 180 para todos los transductores. Los valores de respuesta CAC, definidos en la norma ISO 6487:2002, serán de 10 kN para los transductores de fuerza y de 1 000 Nm para las mediciones de los momentos de flexión.

Figura 4

Impactador simulador de muslo y cadera

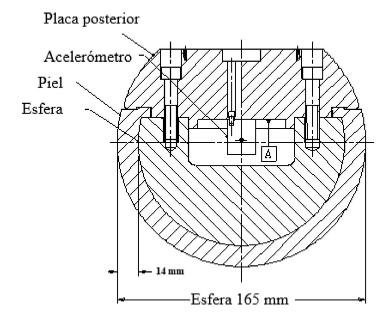

- 5. Impactadores simuladores de cabeza de niño y de adulto
- 5.1. Impactador simulador de cabeza de niño (véase la figura 5)

5.1.1. El impactador simulador de cabeza de niño será de aluminio, de construcción homogénea y forma esférica. El diámetro total será de 165 mm ± 1 mm. La masa será de 3,5 kg ± 0,07 kg. El momento de inercia en torno al eje a través del centro de gravedad y perpendicular a la dirección del impacto se situará en el rango de entre 0,008 y 0,012 kgm². El centro de gravedad del impactador simulador de cabeza, incluidos los instrumentos, estará situado en el centro geométrico de la esfera con un margen de tolerancia de ±2 mm.

Al menos la mitad de la esfera estará cubierta con piel sintética de 14 mm ± 0,5 mm de grosor.

- 5.1.2. La primera frecuencia natural del impactador simulador de cabeza de niño será superior a 5 000 Hz.
- Instrumental del simulador de cabeza de niño
- 5.2.1. La esfera deberá estar provista de un hueco para montar un acelerómetro triaxial o tres acelerómetros uniaxiales con una tolerancia de posicionamiento de la masa sísmica de ±10 mm del centro de la esfera respecto del eje de medición y de ±1 mm del centro de la esfera respecto de la dirección perpendicular al eje de medición.
- 5.2.2. Si se utilizan tres acelerómetros uniaxiales, el eje sensible de uno de los acelerómetros será perpendicular a la cara de montaje A (véase la figura 5), y su masa sísmica deberá situarse en un campo de tolerancia cilíndrico de 1 mm de radio y 20 mm de longitud. La línea central del campo de tolerancia será perpendicular a la cara de montaje y su punto medio coincidirá con el centro de la esfera del impactador simulador de cabeza.
- 5.2.3. Los acelerómetros restantes tendrán sus ejes sensibles perpendiculares entre sí y paralelos a la cara de montaje A, y su masa sísmica se posicionará dentro de un campo de tolerancia esférico de un radio de 10 mm. El centro del campo de tolerancia coincidirá con el centro de la esfera del impactador simulador de cabeza.
- 5.2.4. El valor CFC de la respuesta de los instrumentos, definido en la norma ISO 6487:2002, será de 1 000. El valor de la amplitud del canal de respuesta, definido en la norma ISO 6487:2002, será de 500 g para la aceleración.

Figura 5
Impactador simulador de cabeza de niño


5.3. Impactador simulador de cabeza de adulto (véase la figura 6)

5.3.1. El impactador simulador de cabeza de adulto será de aluminio, de construcción homogénea y forma esférica. El diámetro total es 165 mm ± 1 mm, tal como se muestra en la figura 6. La masa será 4,5 kg ± 0,1 kg. El momento de inercia en torno al eje a través del centro de gravedad y perpendicular a la dirección del impacto se situará en el rango de entre 0,010 y 0,013 kgm². El centro de centro de gravedad del impactador simulador de cabeza, incluidos los instrumentos, estará situado en el centro geométrico de la esfera con un margen de tolerancia de ±5 mm.

Al menos la mitad de la esfera estará cubierta con piel sintética de 14 mm ± 0,5 mm de grosor.

Impactador simulador de cabeza de adulto

Figura 6

- 5.3.2. La primera frecuencia natural del impactador simulador de cabeza será superior a 5 000 Hz.
- 5.4. Instrumental del simulador de cabeza de adulto
- 5.4.1. La esfera deberá estar provista de un hueco para montar un acelerómetro triaxial o tres acelerómetros uniaxiales con una tolerancia de posicionamiento de la masa sísmica de ±10 mm del centro de la esfera respecto del eje de medición y de ±1 mm del centro de la esfera respecto de la dirección perpendicular al eje de medición.
- 5.4.2. Si se utilizan tres acelerómetros uniaxiales, el eje sensible de uno de los acelerómetros será perpendicular a la cara de montaje A (véase la figura 6), y su masa sísmica deberá situarse en un campo de tolerancia cilíndrico de 1 mm de radio y 20 mm de longitud. La línea central del campo de tolerancia será perpendicular a la cara de montaje y su punto medio coincidirá con el centro de la esfera del impactador simulador de cabeza.
- 5.4.3. Los acelerómetros restantes tendrán sus ejes sensibles perpendiculares entre sí y paralelos a la cara de montaje A, y su masa sísmica se posicionará dentro de un campo de tolerancia esférico de un radio de 10 mm. El centro del campo de tolerancia coincidirá con el centro de la esfera del impactador simulador de cabeza.

- 5.4.4. El valor CFC de la respuesta de los instrumentos, definido en la norma ISO 6487:2002, será de 1 000. El valor de la amplitud del canal de respuesta, definido en la norma ISO 6487:2002, será de 500 g para la aceleración.
- 5.5. Cara posterior de los impactadores simuladores de cabeza de niño y de adulto

En la superficie exterior de los impactadores simuladores de cabeza, en perpendicular a la dirección de la marcha y, normalmente, en perpendicular al eje de uno de los acelerómetros, se incorporará una cara posterior plana constituida por una placa plana que permita acceder a los acelerómetros y ofrezca un punto de sujeción para el sistema de propulsión.

Anexo 5

Procedimientos de ensayo

- 1. Impactador simulador de pierna flexible
- 1.1. Para cada ensayo, el impactador (fémur, articulación de la rodilla y tibia) estará cubierto por masa muscular y piel formadas por láminas de caucho sintético (R1, R2) y láminas de neopreno (N1F, N2F, N1T, N2T, N3), tal como se muestra en la figura 1. El tamaño de las láminas se ajustará a los requisitos descritos en la figura 1. Las láminas deben presentar las características de compresión que se muestran en la figura 2. Las características de compresión se comprobarán utilizando material del mismo lote que las láminas utilizadas en la masa muscular y la piel del impactador.
- 1.2. Todos los componentes del impactador se almacenarán durante un período de tiempo suficiente en una zona de almacenamiento controlada con una temperatura estabilizada de 20 °C ± 4 °C antes de la retirada del impactador para el ensayo. Una vez se haya retirado de la zona de almacenamiento, el impactador no se someterá a condiciones distintas de las correspondientes a la zona de ensayo, tal como se definen en el anexo 3, punto 1.1.
- 1.3. Cada ensayo deberá completarse en un plazo de dos horas a partir del momento en que se retire el impactador que se vaya a utilizar de la zona de almacenamiento.
- 1.4. Los puntos de medición seleccionados estarán situados en la zona de ensayo del parachoques definida en el punto 2.14 del presente Reglamento.
- 1.5. Se realizarán como mínimo tres ensayos de impacto del simulador de pierna contra el parachoques, uno contra cada tercio (tercio central y tercios exteriores) de la zona de ensayo del parachoques, en los puntos considerados más susceptibles de causar lesiones. Cuando existan variaciones de los tipos de estructura en la zona evaluada, los ensayos se realizarán contra distintos tipos de estructura. Los puntos de ensayo seleccionados estarán separados por una distancia mínima de 84 mm medida horizontalmente y en perpendicular respecto del plano mediano longitudinal del vehículo. En el informe de ensayo se indicarán los puntos ensayados por los laboratorios.
- 1.6. La dirección del vector de velocidad del impacto se situará en el plano horizontal y será paralela al plano vertical longitudinal del vehículo. El margen de tolerancia aplicable a la dirección del vector de velocidad en el plano horizontal y el plano longitudinal será de ±2° en el momento del primer contacto. El eje del impactador será perpendicular al plano horizontal, con un margen de tolerancia del ángulo de balanceo y cabeceo de ±2° en los planos lateral y longitudinal. Los planos horizontal, longitudinal y lateral serán ortogonales entre sí (véase la figura 3).
- 1.7. En el momento del primer contacto con el parachoques, la base del impactador (sin las partes necesarias a efectos de lanzamiento o protección) estará 75 mm por encima del plano de referencia del suelo (véase la figura 4), con un margen de tolerancia de ±10 mm. Al fijar la altura del sistema de propulsión, deberá preverse un margen para el efecto de la fuerza de gravedad durante el período de vuelo libre del impactador.
- 1.8. Para los ensayos del parachoques, el impactador simulador de pierna se encontrará en situación de «vuelo libre» en el momento del impacto. El impactador se dejará en vuelo libre a suficiente distancia del vehículo para que, al rebotar, los resultados del ensayo no se vean afectados por el contacto del impactador con el sistema de propulsión.
 - El impactador podrá propulsarse por cualquier medio que reúna los requisitos del ensayo de manera demostrable.
- 1.9. En el momento del primer contacto, el impactador deberá tener la orientación prevista en su eje vertical de forma que la articulación de la rodilla reaccione correctamente, con un margen de tolerancia del ángulo de guiñada de ± 5° (véase la figura 3).
- 1.10. Para el ensayo del simulador de pierna, se aplicará un margen de tolerancia de impacto horizontal y vertical de ±10 mm. El laboratorio de ensayo podrá verificar en un número suficiente de puntos de medición que se puede cumplir está condición y que, por tanto, los ensayos se realizan con la precisión necesaria.

1.11. Durante el contacto entre el impactador y el vehículo, el primero no deberá tocar el suelo ni objeto alguno que no forme parte del vehículo.

- 1.12. La velocidad de impacto del impactador al golpear el parachoques será de 11,1 m/s ± 0,2 m/s. Al calcular la velocidad de impacto a partir de las mediciones realizadas antes del primer contacto, deberá tenerse en cuenta el efecto de la fuerza de gravedad.
- 1.13. Los momentos de flexión de la tibia no excederán de +/- 15 Nm en un intervalo de evaluación de 30 ms inmediatamente antes del impacto.
- 1.14. La compensación de la desviación se realizará con el impactador simulador de pierna flexible en la posición de descanso antes de la fase de ensayo/aceleración.

Figura 1

Impactador simulador de pierna flexible: dimensiones de la masa muscular y la piel

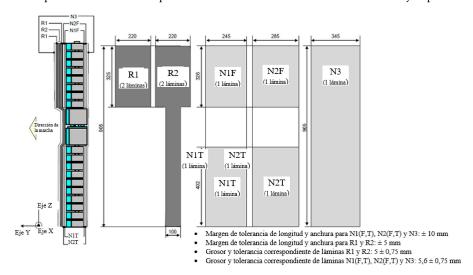
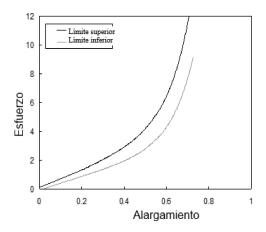



Figura 2

Impactador simulador de pierna flexible: características de compresión de la masa muscular y la piel

a) Láminas de caucho sintético

b) Láminas de neopreno

Figura 3

Márgenes de tolerancia de los ángulos para el impactador simulador de pierna flexible en el momento del primer impacto

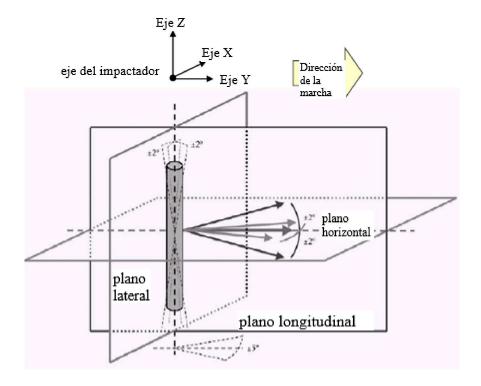
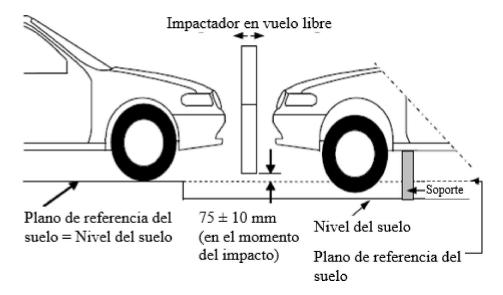
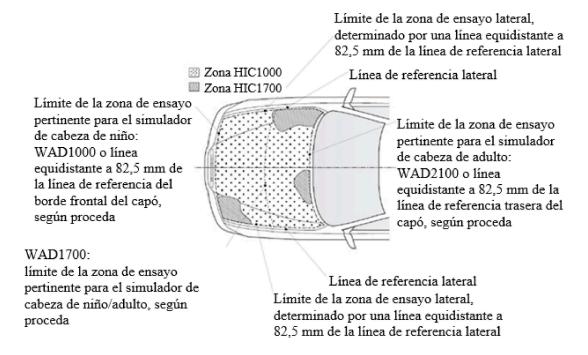



Figura 4

Ensayos de impacto del impactador simulador de pierna flexible contra el parachoques con vehículo completo en disposición normal de circulación (izquierda) y con sección del vehículo montado sobre soportes (derecha)

- 2. Impacto del simulador de muslo y cadera contra el parachoques
- 2.1. Para cada ensayo, la espuma que representa la masa muscular estará formada por dos nuevas láminas de 25 mm de grosor de espuma tipo CF-45 o equivalente, que se recortarán de la lámina del material utilizado para el ensayo dinámico de certificación. La piel será una lámina de caucho reforzada con fibra de un grosor de 1,5 mm. La masa de la espuma y la piel de caucho en conjunto será de 0,6 kg ± 0,1 kg (excluyendo todo refuerzo, elemento de montaje, etc., que se utilice para fijar los bordes traseros de la piel de caucho al elemento posterior). La espuma y la piel de caucho deberán estar dobladas hacia atrás, con la piel de caucho fijada mediante espaciadores al elemento posterior de forma que los laterales de la piel de caucho se mantengan paralelos. La espuma tendrá un tamaño y una forma que permitan mantener un espacio adecuado entre ella y los componentes situados detrás del elemento anterior, a fin de evitar transmisiones de carga significativas entre la espuma y estos componentes.
- 2.2. El impactador para el ensayo o, al menos, la espuma de la masa muscular, se mantendrá durante un período de al menos cuatro horas en una zona de almacenamiento controlada con una humedad estabilizada del 35 % ± 15 % y una temperatura estabilizada de 20 °C ± 4 °C antes de la retirada del impactador para el ensayo. Una vez se haya retirado de la zona de almacenamiento, el impactador no se someterá a condiciones distintas de las correspondientes a la zona de ensayo.
- 2.3. Cada ensayo deberá completarse en un plazo de dos horas a partir del momento en que se retire el impactador que se vaya a utilizar de la zona de almacenamiento.
- 2.4. Los puntos de medición seleccionados estarán situados en la zona de ensayo del parachoques definida en el punto 2.14 del presente Reglamento.
- 2.5. Se realizarán como mínimo tres ensayos de impacto del simulador de muslo y cadera contra el parachoques, uno contra cada tercio (tercio central y tercios exteriores) de la zona de ensayo del parachoques, en los puntos considerados más susceptibles de causar lesiones. Cuando existan variaciones de los tipos de estructura en la zona evaluada, los ensayos se realizarán contra distintos tipos de estructura. Los puntos de medición seleccionados estarán separados por una distancia mínima de 84 mm medida horizontalmente y en perpendicular respecto del plano mediano longitudinal del vehículo. En el informe de ensayo se indicarán los puntos ensayados por los laboratorios.
- 2.6. La dirección del impacto será paralela al eje longitudinal del vehículo, con el eje del simulador de muslo y cadera en posición vertical en el momento del primer contacto. El margen de tolerancia aplicable a esta dirección será de ± 2°.


En el momento del primer contacto, la línea central del impactador deberá coincidir con un punto equidistante verticalmente entre las líneas de referencia superior e inferior del parachoques, con un margen de tolerancia de ± 10 mm; la línea central vertical del impactador se colocará lateralmente con respecto al lugar de impacto elegido, con un margen de tolerancia de ± 10 mm. El laboratorio de ensayo podrá verificar en un número suficiente de puntos de medición que se puede cumplir esta condición y que, por tanto, los ensayos se realizan con la precisión necesaria.

2.7.	La velocidad de impacto del impactador simulador de muslo y cadera al golpear el parachoques será de 11,1 m/s \pm 0,2 m/s.
3.	Procedimientos de ensayo con simuladores de cabeza de niño y de adulto: especificaciones de ensayo comunes
3.1.	Propulsión de los impactadores simuladores de cabeza
3.1.1.	Los impactadores simuladores de cabeza se encontrarán en situación de «vuelo libre» en el momento del impacto, a la velocidad de impacto necesaria (especificada en los puntos 4.6 y 5.6) y la dirección de impacto necesaria (especificada en los puntos 4.7 y 5.7).
3.1.2.	Los impactadores se dejarán en «vuelo libre» a suficiente distancia del vehículo para que, al rebotar, los resultados del ensayo no se vean afectados por el contacto del impactador con el sistema de propulsión.
3.2.	Medición de la velocidad de impacto
3.2.1.	La velocidad del impactador simulador de cabeza se medirá en un punto determinado durante el vuelo libre antes del impacto, de conformidad con el método especificado en la norma ISO 3784:1976. La velocidad medida se ajustará teniendo en cuenta todos los factores que puedan afectar al impactador entre el punto de medición y el punto de impacto, a fin de determinar la velocidad del impactador en el momento del impacto. Se calculará o medirá el ángulo del vector de velocidad en el momento del impacto.
3.3.	Registro
3.3.1.	Se registrarán las resultantes aceleración-tiempo y se calculará el HIC. Se registrará el punto de medición en la estructura delantera del vehículo. El registro de los resultados de los ensayos se hará conforme a la norma ISO 6487:2002.

3.4. División de las zonas de ensayo con simuladores de cabeza

3.4.1. El fabricante deberá identificar las áreas de la zona de ensayo de la parte superior del capó y de la zona de ensayo del parabrisas en las que el HIC no excederá de 1 000 (zona HIC1000) o de 1 700 (zona HIC1700) (véase la figura 5).

Figura 5
Ejemplo de marcado de la zona HIC1000 y de la zona HIC1700

- 3.4.2. El marcado de la zona de ensayo de la «parte superior del capó», de la zona de ensayo del parabrisas así como de la «zona HIC1000» y la «zona HIC1700» se basará en un dibujo del fabricante visto desde un plano horizontal por encima del vehículo que sea paralelo al plano horizontal cero del vehículo. El fabricante indicará un número suficiente de coordenadas «x» e «y» para delimitar las zonas en el vehículo, teniendo en cuenta el contorno exterior del mismo en la dirección «z». La zona de control de la cubierta no se tiene en cuenta para el marcado de la «zona HIC1000» y la «zona HIC1700».
- 3.4.3. La «zona HIC1000» y la «zona HIC1700» pueden constar de un número ilimitado de partes. La determinación de la zona que sufre el impacto se lleva a cabo mediante el punto de medición.
- 3.4.4. El cálculo de la superficie de la zona de ensayo de la parte superior del capó, de la superficie de la zona de ensayo del parabrisas así como de las superficies de la «zona HIC1000» y la «zona HIC1700» se basará una proyección del capó y del parabrisas vistos desde un plano horizontal por encima del vehículo y paralelo al plano horizontal cero del vehículo, sobre la base de los datos de un dibujo del fabricante.
- 3.5. Puntos de medición: especificaciones particulares

Sin perjuicio de las disposiciones de los puntos 4.2 y 5.2, si se seleccionan varios puntos de medición en orden de potencial para causar lesiones y la zona de ensayo restante es demasiado pequeña para seleccionar otro punto de medición respetando la separación mínima entre los puntos, el número de ensayos por cada impactador podrá ser inferior a nueve. En el informe de ensayo se indicarán los puntos ensayados por los laboratorios. No obstante, los servicios técnicos responsables realizarán tantos ensayos como sea necesario para garantizar la conformidad del vehículo con los valores límite de los criterios de lesiones en la cabeza (HIC), a saber, 1 000 para la «zona HIC1000» y 1 700 para la «zona HIC1700», especialmente en los puntos próximos a los límites entre los dos tipos de zona.

- 4. Simulador de cabeza de niño: procedimiento de ensayo específico
- 4.1. Los ensayos se realizarán contra la estructura delantera dentro de los límites definidos en el punto 2.16 del presente Reglamento. También se realizarán ensayos contra el parabrisas, dentro de los límites descritos en el punto 2.44. En el caso de los ensayos realizados en la zona trasera de la parte superior del capó, el impactador simulador de cabeza no deberá entrar en contacto con el parabrisas o el pilar A antes de golpear la parte superior del capó. En el caso de los ensayos realizados en el parabrisas, el impactador simulador de cabeza no deberá entrar directamente en contacto con los pilares A, ni con el marco superior del parabrisas ni con la cubierta, salvo en el caso de los ensayos de control
- 4.2. Se realizarán como mínimo nueve ensayos con el impactador simulador de cabeza de niño en las zonas pertinentes para niños definidas por la zona de ensayo de la parte superior del capó y la zona de ensayo del parabrisas juntas, que consistirán en tres ensayos contra cada tercio (tercio central y tercios exteriores) de las zonas de ensayo pertinentes para niño/adulto pequeño, en los puntos considerados más susceptibles de causar lesiones. En la medida de lo posible, se realizará al menos uno de estos nueve ensayos en la zona de ensayo del parabrisas. Además, y a discreción del servicio técnico, uno de estos nueve ensayos podrá realizarse en la zona de control de la cubierta.

Para cada ensayo en el parabrisas se utilizará un parabrisas que no esté dañado y que no se haya sometido a ensayo.

Cuando existan variaciones de los tipos de estructura en la zona evaluada, los ensayos se realizarán contra distintos tipos de estructura, en los puntos considerados más susceptibles de causar lesiones. Teniendo en cuenta cualquier simetría del parabrisas y de las estructuras pertinentes, el número de ensayos en la zona de ensayo del parabrisas podrá reducirse a discreción del servicio técnico.

4.3. Los puntos de medición seleccionados para el impactador simulador de cabeza de niño/adulto pequeño deberán estar separados por una distancia mínima de 165 mm y estar situados dentro de las zonas de ensayo pertinentes para el simulador de cabeza de niño definidas en los puntos 2.16 y 2.44 del presente Reglamento de las Naciones Unidas.

Estas distancias mínimas se medirán con una cinta métrica flexible tensada a lo largo de la superficie exterior del vehículo.

- 4.4. Ningún punto de medición estará ubicado de forma que el impactador rebote en la zona de ensayo e impacte después con más fuerza fuera de la zona de ensayo.
- 4.5. Para el ensayo con simulador de cabeza de niño, se aplicará un margen de tolerancia de impacto longitudinal y transversal de ±10 mm. Dicho margen de tolerancia se medirá a lo largo de la superficie del capó o del parabrisas. El laboratorio de ensayo podrá verificar en un número suficiente de puntos de medición que se puede cumplir está condición y que, por tanto, los ensayos se realizan con la precisión necesaria.
- 4.6. La velocidad del simulador de cabeza en el momento del impacto será de 9,7 m/s \pm 0,2 m/s.
- 4.7. La dirección del impacto se encontrará en el plano vertical longitudinal del vehículo que se vaya a someter a ensayo con un ángulo de 50° ± 2° respecto al horizontal. La dirección del impacto de los ensayos realizados contra la estructura delantera será en sentido descendente y hacia atrás.
- 4.8. Los ensayos podrán repetirse en caso de rotura atípica del parabrisas. El ensayo se repetirá a petición del fabricante cuando el valor HIC sea superior o igual al límite respectivo de la zona de impacto de la cabeza. En este caso, el número máximo de repeticiones en un punto de medición es de 3 (es decir, 4 ensayos en total). A petición del servicio técnico, podrán repetirse los ensayos cuando el valor HIC esté por debajo del límite de la zona de impacto de la cabeza, por ejemplo, en el caso de estructuras subyacentes a menos de 100 mm del punto de medición.

Los ensayos con rotura atípica del parabrisas se registrarán debidamente en el informe de ensayo.

4.9. Si los pilares A o el marco superior del parabrisas incorporan características de mitigación de lesiones en la cabeza de peatones o ciclistas, que deberán ser declaradas por el fabricante (por ejemplo, airbag externo, estructura desplegable, elementos de absorción de energía), se llevarán a cabo ensayos de control adicionales en dicha estructura. Los resultados del control pueden no ser necesarios a efectos del reconocimiento y aceptación de homologaciones por las Partes contratantes si estas así lo indican.

En tal caso, los puntos de medición de los pilares A, el marco superior del parabrisas o la cubierta se seleccionarán de común acuerdo entre el servicio técnico y el fabricante de modo que pueda evaluarse científicamente la eficacia de la protección. Para este caso, no hay obligación de respetar las distancias de separación o las zonas de exclusión prescritas.

El fabricante del vehículo también podrá solicitar voluntariamente que se lleven a cabo ensayos de control si existe cualquier otra solución innovadora que reduzca los niveles de lesión en la cabeza en caso de contacto de la cabeza con los pilares A o el marco superior del parabrisas.

Los resultados del control se detallarán en el punto 16 del formulario de comunicación de la homologación de tipo.

También se incluirá en la ficha técnica una descripción detallada del sistema de protección, de los puntos de medición seleccionados y de los resultados de la evaluación.

- 5. Simulador de cabeza de adulto: procedimiento de ensayo específico
- 5.1. Los ensayos se realizarán contra la estructura delantera dentro de los límites definidos en el punto 2.1 del presente Reglamento de las Naciones Unidas. También se realizarán ensayos contra el parabrisas, dentro de los límites descritos en el punto 2.44. En el caso de los ensayos realizados sobre la parte trasera de la parte superior del capó, el impactador simulador de cabeza no deberá entrar en contacto con el parabrisas o el pilar A antes de golpear la parte superior del capó. En el caso de los ensayos realizados en el parabrisas, el impactador simulador de cabeza no deberá entrar directamente en contacto con los pilares A, ni con el marco superior del parabrisas ni con la cubierta, salvo en el caso de los ensayos de control.
- 5.2. Se realizarán como mínimo nueve ensayos con el impactador simulador de cabeza de adulto en las zonas pertinentes para adultos definidas por la zona de ensayo de la parte superior del capó y la zona de ensayo del parabrisas juntas, que consistirán en tres ensayos contra cada tercio (tercio central y tercios exteriores) de las zonas de ensayo pertinentes para adultos, en los puntos considerados más susceptibles de causar lesiones. En la medida de lo posible, se realizará al menos uno de estos nueve ensayos en la zona de ensayo del parabrisas. Además, y a discreción del servicio técnico, uno de estos nueve ensayos podrá realizarse en (cualquier tercio de) la zona de control de la cubierta.

Para cada ensayo en el parabrisas se utilizará un parabrisas que no esté dañado y que no se haya sometido a ensayo.

Cuando existan variaciones de los tipos de estructura en la zona evaluada, los ensayos se realizarán contra distintos tipos de estructura, en los puntos considerados más susceptibles de causar lesiones.

Teniendo en cuenta cualquier simetría del parabrisas y de las estructuras pertinentes, el número de ensayos en la zona de ensayo del parabrisas podrá reducirse a discreción del servicio técnico.

5.3. Los puntos de medición seleccionados para el impactador simulador de cabeza de adulto deberán estar separados por una distancia mínima de 165 mm y estar situados dentro de las zonas de ensayo pertinentes para el simulador de cabeza de adulto definidas en los puntos 2.1 y 2.44 del presente Reglamento de las Naciones Unidas.

Estas distancias mínimas se medirán con una cinta métrica flexible tensada a lo largo de la superficie exterior del vehículo.

- 5.4. Ningún punto de medición estará ubicado de forma que el impactador rebote en la zona de ensayo e impacte después con más fuerza fuera de la zona de ensayo.
- 5.5. Para el ensayo con simulador de cabeza de adulto, se aplicará un margen de tolerancia de impacto longitudinal y transversal de ±10 mm. Dicho margen de tolerancia se medirá a lo largo de la superficie del capó o del parabrisas. El laboratorio de ensayo podrá verificar en un número suficiente de puntos de medición que se puede cumplir está condición y que, por tanto, los ensayos se realizan con la precisión necesaria.
- 5.6. La velocidad del simulador de cabeza en el momento del impacto será de 9,7 m/s \pm 0,2 m/s.
- 5.7. La dirección del impacto se encontrará en el plano vertical longitudinal del vehículo que se vaya a ensayar a un ángulo de 65° ± 2° respecto al horizontal. La dirección del impacto de los ensayos realizados contra la estructura delantera será en sentido descendente y hacia atrás.

5.8. Los ensayos podrán repetirse en caso de rotura atípica del parabrisas. El ensayo se repetirá a petición del fabricante cuando el valor HIC sea superior o igual al límite respectivo de la zona de impacto de la cabeza. En este caso, el número máximo de repeticiones en un punto de medición es de 3 (es decir, 4 ensayos en total). A petición del servicio técnico, podrán repetirse los ensayos cuando el valor HIC esté por debajo del límite de la zona de impacto de la cabeza, por ejemplo, en el caso de estructuras subyacentes a menos de 100 mm del punto de medición.

Los ensayos con rotura atípica del parabrisas se registrarán debidamente en el informe de ensayo.

5.9. Si los pilares A o el marco superior del parabrisas incorporan características de mitigación de lesiones en la cabeza de peatones o ciclistas, que deberán ser declaradas por el fabricante (por ejemplo, airbag externo, estructura desplegable, elementos de absorción de energía), se llevarán a cabo ensayos de control adicionales en dicha estructura. Los resultados del control pueden no ser necesarios a efectos del reconocimiento y aceptación de homologaciones por las Partes contratantes si estas así lo indican.

En tal caso, los puntos de medición de los pilares A, el marco superior del parabrisas o la cubierta se seleccionarán de común acuerdo entre el servicio técnico y el fabricante de modo que pueda evaluarse científicamente la eficacia de la protección. Para este caso, no hay obligación de respetar las distancias de separación o las zonas de exclusión prescritas.

El fabricante del vehículo también podrá solicitar voluntariamente que se lleven a cabo ensayos de control si existe cualquier otra solución innovadora que reduzca los niveles de lesión en la cabeza en caso de contacto de la cabeza con los pilares A o el marco superior del parabrisas.

Los resultados del control se detallarán en el punto 16 del formulario de comunicación de la homologación de tipo.

También se incluirá en la ficha técnica una descripción detallada del sistema de protección, de los puntos de medición seleccionados y de los resultados de la evaluación.

Anexo 6

Certificación del impactador

- 1. Certificación del impactador simulador de pierna flexible
- 1.1. El impactador se certificará utilizando dos ensayos de certificación, a saber: en primer lugar, la certificación se efectuará de acuerdo con el procedimiento de ensayo de certificación inversa (CI) prescrito en el punto 1.4 del presente anexo antes de comenzar una serie de ensayos de un vehículo. En segundo lugar, tras un máximo de diez ensayos del vehículo, la certificación debería efectuarse de acuerdo con el procedimiento de ensayo de certificación pendular (CP) prescrito en el punto 1.3 del presente anexo. Así, los ensayos de certificación en curso deben seguir la secuencia CI CP CP CI CP CP –, etc., con un máximo de diez ensayos entre cada certificación.

Asimismo, el impactador se certificará de acuerdo con los procedimientos prescritos en el punto 1.2 al menos una vez al año.

- 1.2. Ensayos estáticos de certificación
- 1.2.1. El fémur y la tibia del impactador simulador de pierna flexible deberán reunir los requisitos especificados en el punto 1.2.2 del presente anexo cuando se sometan a ensayo con arreglo al punto 1.2.4 del mismo anexo. La articulación de la rodilla del impactador simulador de pierna deberá reunir los requisitos especificados en el punto 1.2.3 del presente anexo cuando se someta a ensayo con arreglo al punto 1.2.5 del mismo anexo. La temperatura estabilizada del impactador durante los ensayos de certificación será de 20 °C ± 2 °C.

Los valores de la amplitud del canal de respuesta, definidos en la norma ISO 6487:2002, serán de 30 mm para los alargamientos de los ligamentos de la rodilla y de 4 kN para la carga externa aplicada. En estos ensayos podrá aplicarse un filtro de paso bajo a una frecuencia adecuada, para eliminar los ruidos de frecuencia superior sin afectar significativamente a la medición de la respuesta del impactador.

- 1.2.2. Al aplicar la carga de flexión al fémur y la tibia del impactador de conformidad con el punto 1.2.4, el momento aplicado y la flexión generada en el centro del fémur y la tibia (M_c y D_c) estarán situados dentro de las franjas que se muestran en la figura 1.
- 1.2.3. Al aplicar la carga de flexión a la articulación de la rodilla del impactador de conformidad con el punto 1.2.5 del presente anexo, los alargamientos del ligamento lateral interno, el ligamento cruzado anterior y el ligamento cruzado posterior y el momento de flexión aplicado o la fuerza en el centro de la articulación de la rodilla (M_c o F_c) estarán situados dentro de las franjas que se muestran en la figura 2.
- 1.2.4. Los extremos del fémur y la tibia, partes rígidas, se montarán sobre el soporte con firmeza, tal como se muestra en las figuras 3 y 4. El eje Y del impactador estará en paralelo al eje de carga con un margen de tolerancia de 180° ± 2°. Para obtener cargas repetibles, debajo de cada soporte se colocarán almohadillas de plástico de politetrafluoretileno (PTFE) de baja fricción (véanse las figuras 3 y 4).

El centro de la fuerza de carga se aplicará en el centro del fémur y la tibia con un margen de tolerancia de ± 2 mm a lo largo del eje Z. La fuerza se incrementará de forma que se mantenga una velocidad de flexión de entre 10 y 100 mm/minuto hasta que el momento de flexión en la parte central (M_c) del fémur o la tibia alcance 380 Nm.

1.2.5. Los extremos de la articulación de la rodilla se montarán sobre el soporte con firmeza, tal como se muestra en la figura 5. El eje Y del impactador estará en paralelo al eje de carga con un margen de tolerancia de ± 2°. Para obtener cargas repetibles, debajo de cada soporte se colocarán almohadillas de plástico de politetrafluoretileno (PTFE) de baja fricción (véase la figura 5). Para evitar daños en el impactador, se colocará una lámina de neopreno por debajo del ariete de carga y se retirará la cara del impactador de la articulación de la rodilla descrita en la figura 3 del anexo 4. La lámina de neopreno utilizada en este ensayo tendrá las características de compresión que se muestran en el anexo 5, figura 2 b).

El centro de la fuerza de carga se aplicará en el centro de la articulación de la rodilla con un margen de tolerancia de ± 2 mm a lo largo del eje Z (véase la figura 5 a continuación). La carga externa se incrementará de forma que se mantenga una velocidad de flexión de entre 10 y 100 mm/minuto hasta que el momento de flexión en la parte central de la articulación de la rodilla (M_c) alcance 400 Nm.

- 1.3. Ensayos dinámicos de certificación (ensayo con péndulo)
- 1.3.1. Certificación
- 1.3.1.1. El laboratorio de ensayo utilizado para el ensayo de certificación tendrá una temperatura estabilizada de 20 °C ± 2 °C durante el ensayo.
- 1.3.1.2. La temperatura de la zona de certificación se medirá en el momento de la certificación y se registrará en un informe de certificación.
- 1.3.2. Requisitos
- 1.3.2.1. Cuando se utilice el impactador simulador de pierna flexible para un ensayo con arreglo al punto 1.3.3, el valor absoluto del momento de flexión máximo de la tibia en:
 - a) tibia-1 será de 235 Nm ≤ 272 Nm;
 - b) tibia-2 será de 187 Nm ≤ 219 Nm;
 - c) tibia-3 será de 139 Nm ≤ 166 Nm;
 - d) tibia-4 será de 90 Nm ≤ 111 Nm.
 - El valor absoluto del alargamiento máximo del:
 - a) ligamento lateral interno será de 20,5 mm ≤ 24,0 mm;
 - b) ligamento cruzado anterior será de 8,0 mm ≤ 10,5 mm;
 - c) ligamento cruzado posterior será de 3,5 mm ≤ 5,0 mm.

Para todos estos valores correspondientes al momento de flexión máximo y el alargamiento máximo, las lecturas utilizadas serán las comprendidas entre el instante del impacto inicial y 200 ms después del instante del impacto.

- 1.3.2.2. El valor CFC de la respuesta de los instrumentos, definido en la norma ISO 6487:2002, será de 180 para todos los transductores. Los valores de la amplitud del canal de respuesta, definidos en la norma ISO 6487:2002, serán de 30 mm para los alargamientos de los ligamentos de la rodilla y de 400 Nm para los momentos de flexión de la tibia
- 1.3.3. Procedimiento de ensayo
- 1.3.3.1. El impactador simulador de pierna flexible, incluida la masa muscular y la piel, se suspenderá del equipo de ensayo dinámico de certificación 15° ± 1° hacia arriba respecto a la horizontal, tal como se muestra en la figura 6. El impactador se liberará de la posición suspendida y se dejará caer libremente contra la charnela del equipo de ensayo, tal como se muestra en la figura 6.
- 1.3.3.2. El centro de la articulación de la rodilla del impactador estará situado 30 mm ± 1 mm por debajo de la línea inferior de la barra del tope, y la cara de impacto de la tibia, sin la masa muscular y sin la piel, estará ubicada a 13 mm ± 2 mm del borde superior delantero de la barra del tope cuando el impactador esté suspendido libremente, tal como se muestra en la figura 6.
- 1.4. Ensayos dinámicos de certificación (ensayo inverso)
- 1.4.1. Certificación
- 1.4.1.1. El laboratorio de ensayo utilizado para el ensayo de certificación tendrá una temperatura estabilizada de 20 °C ± 2 °C durante el ensayo.
- 1.4.1.2. La temperatura de la zona de certificación se medirá en el momento de la certificación y se registrará en un informe de certificación.
- 1.4.2. Requisitos

- 1.4.2.1. Cuando se utilice el impactador simulador de pierna flexible para el ensayo con arreglo al punto 1.4.3 del presente anexo, el valor absoluto del momento de flexión máximo de la tibia en:
 - a) tibia-1 será de 230 Nm ≤ 272 Nm;
 - b) tibia-2 será de 210 Nm ≤ 252 Nm;
 - c) tibia-3 será de 166 Nm ≤ 192 Nm;
 - d) tibia-4 será de 93 Nm ≤ 108 Nm.

El valor absoluto del alargamiento máximo del:

- a) ligamento lateral interno será de 17,0 mm ≤ 21,0 mm;
- b) ligamento cruzado anterior será de 8,0 mm ≤ 10,0 mm;
- c) ligamento cruzado posterior será de 4,0 mm ≤ 6,0 mm.

Para todos estos valores correspondientes al momento de flexión máximo y el alargamiento máximo, las lecturas utilizadas serán las comprendidas entre el instante del impacto inicial y 50 ms después del instante del impacto.

- 1.4.2.2. El valor CFC de la respuesta de los instrumentos, definido en la norma ISO 6487:2002, será de 180 para todos los transductores. Los valores de la amplitud del canal de respuesta, definidos en la norma ISO 6487:2002, serán de 30 mm para los alargamientos de los ligamentos de la rodilla y de 400 Nm para los momentos de flexión de la tibia
- 1.4.3. Procedimiento de ensayo
- 1.4.3.1. El impactador simulador de pierna flexible ensamblado (con la masa muscular y la piel) se colgará verticalmente y se suspenderá libremente de un equipo de ensayo, tal como se ilustra en la figura 7. A continuación, recibirá el impacto del borde superior de un impactador con estructura de panal de aluminio guiado linealmente, recubierto por un tejido de papel fino con un grosor máximo de 1 mm, a una velocidad de impacto de 11,1 m/s ± 0,2 m/s. El simulador de pierna alcanzará una condición de vuelo libre dentro de los 10 ms posteriores al momento del primer contacto del impactador con estructura de panal.
- 1.4.3.2. Las dimensiones de la estructura de panal, de aleación 5052 y fijada delante del ariete móvil, serán de 200 mm ± 5 mm de ancho, 160 mm ± 5 mm de alto y 60 mm ± 2 mm de profundidad, mientras que la resistencia a la compresión de la estructura será de 75 libras por pulgada cuadrada (psi) ±10 %. La estructura de panal estará compuesta por celdas de 3/16 pulgadas o ¼ pulgadas y tendrá una densidad de 2,0 libras por pie cúbico (pcf) si las celdas tienen 3/16 pulgadas o 2,3 pcf en el caso de ¼ pulgadas.
- 1.4.3.3. El borde superior de la cara de la estructura de panal estará alineado con la placa rígida del impactador guiado linealmente. En el momento del primer contacto, el borde superior de la estructura de panal estará alineado con la línea central de la articulación de la rodilla con un margen de tolerancia vertical de ±2 mm.

La estructura de panal no habrá sido deformada antes del ensayo de impacto.

- 1.4.3.4. En el momento del primer contacto, el ángulo de cabeceo (rotación alrededor del eje Y) del impactador simulador de pierna flexible, y, por tanto, el ángulo de cabeceo del vector de velocidad del impactador con estructura de panal, se situará dentro de un margen de tolerancia de ±2° respecto al plano vertical lateral. El ángulo de balanceo (rotación alrededor del eje X) del impactador simulador de pierna flexible, y, por tanto, el ángulo de balanceo del impactador con estructura de panal, se situará dentro de un margen de tolerancia de ±2° respecto al plano vertical longitudinal. El ángulo de guiñada (rotación alrededor del eje Z) del impactador simulador de pierna flexible, y, por tanto, el ángulo de guiñada del vector de velocidad del impactador con estructura de panal, se situará dentro de un margen de tolerancia de ±2°.
- 2. Certificación del impactador simulador de muslo y cadera
- 2.1. El impactador certificado podrá utilizarse en 20 impactos como máximo, tras lo cual deberá volver a certificarse (este límite no será aplicable a los elementos de propulsión o de guía). El impactador también volverá a certificarse si ha transcurrido más de un año desde su última certificación o si el resultado de cualquiera de sus transductores en cualquier impacto ha superado el CAC establecido.

2.2. Certificación

2.2.1. La espuma de la masa muscular del impactador de ensayo se mantendrá durante al menos cuatro horas en una zona de almacenamiento controlado con una humedad estabilizada de 35 % ± 10 % y una temperatura estabilizada de 20 °C ± 2 °C antes de retirar el impactador para su certificación. En el momento del impacto, la temperatura del impactador de ensayo será de 20 °C ± 2 °C. Los márgenes de tolerancia respecto de la temperatura del impactador serán aplicables con una humedad relativa del 40 % ± 30 % después de un período de estabilización de, como mínimo, cuatro horas antes de su utilización en un ensayo.

- 2.2.2. El laboratorio de ensayo utilizado para el ensayo de certificación tendrá una humedad estabilizada del 40 % ± 30 % y una temperatura estabilizada de 20 °C ± 4 °C durante la certificación.
- 2.2.3. Cada certificación deberá completarse en un plazo de dos horas a partir del momento en que se retire el impactador que se vaya a utilizar de la zona de almacenamiento.
- 2.2.4. La humedad relativa y la temperatura de la zona de certificación se medirán en el momento de la certificación y se registrarán en el informe de certificación.

2.3. Requisitos

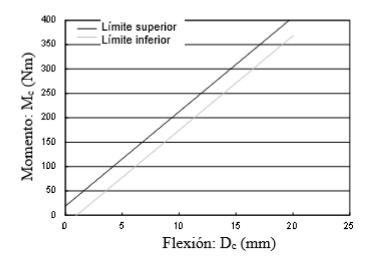
2.3.1. Al impulsar el impactador contra un péndulo cilíndrico estacionario, la fuerza máxima registrada en cada transductor de carga no será inferior a 1,20 kN ni superior a 1,55 kN, y la diferencia entre las fuerzas máximas registradas en los transductores de carga superior e inferior no será superior a 0,10 kN. Además, el momento máximo de flexión registrado por los extensómetros no será inferior a 190 Nm ni superior a 250 Nm en el punto central, y no será inferior a 160 Nm ni superior a 220 Nm en los puntos externos. La diferencia entre los momentos máximos de flexión superior e inferior no sobrepasará los 20 Nm.

Las lecturas utilizadas para todos estos valores serán las del impacto inicial con el péndulo, y no las de la fase de detención. Los eventuales sistemas que se utilicen para detener el impactador o péndulo se dispondrán de forma que la fase de detención no coincida en el tiempo con el impacto inicial. El sistema de detención no influirá en los resultados de los transductores de forma que estos excedan el CAC establecido.

- 2.3.2. El valor CFC de la respuesta de los instrumentos, definido en la norma ISO 6487:2002, será de 180 para todos los transductores. Los valores de respuesta CAC, definidos en la norma ISO 6487:2002, serán de 10 kN para los transductores de fuerza y de 1 000 Nm para las mediciones de los momentos de flexión.
- 2.4. Procedimiento de ensayo
- 2.4.1. El impactador estará montado en el sistema de propulsión y guía mediante una junta limitadora de la torsión. La junta limitadora de la torsión se instalará de modo que el eje longitudinal del elemento anterior sea perpendicular al eje del sistema de guía, con un margen de tolerancia de ± 2°. La torsión por fricción de la junta será de 675 Nm ± 25 Nm. El sistema de guía irá equipado con guías de baja fricción que, cuando el impactador entre en contacto con el péndulo, solo le permitan moverse en la dirección de impacto especificada.
- 2.4.2. La masa del impactador se ajustará para que sea de 12 kg ± 0,1 kg incluyendo los elementos de propulsión y guía que formen parte integrante del mismo durante el impacto.
- 2.4.3. El centro de gravedad de las partes del impactador situadas delante de la junta limitadora de la torsión, incluidos las masas adicionales fijadas, estará situado en la línea central longitudinal del impactador, con un margen de tolerancia de ±10 mm.
- 2.4.4. El impactador se certificará con espuma que no se haya utilizado previamente.
- 2.4.5. La espuma del impactador no se manipulará ni deformará excesivamente ni antes de fijarla, ni mientras se fija, ni una vez fijada.

- 2.4.6. El impactador, con el elemento anterior en posición vertical, se impulsará horizontalmente a una velocidad de 7,1 m/s ± 0,1 m/s contra el péndulo estacionario, como muestra la figura 8.
- 2.4.7. El tubo del péndulo tendrá una masa de 3 kg ± 0,03 kg, un grosor de pared de 3 mm ± 0,15 mm y un diámetro exterior de 150 mm +1 mm/-4 mm. Su longitud total será de 275 mm± 25 mm. Este tubo deberá ser de acero acabado en frío sin soldadura (podrá llevar un baño metálico superficial contra la corrosión), con un acabado de la superficie externa superior a 2,0 μm. Se suspenderá mediante dos cables metálicos de 1,5 mm ± 0,2 mm de diámetro y 2,0 m de longitud mínima. La superficie del péndulo estará limpia y seca. El tubo del péndulo se colocará de modo que el eje longitudinal del cilindro sea perpendicular tanto al elemento anterior (o sea, nivelado), con un margen de tolerancia de ±2°, como a la dirección de movimiento del impactador, con un margen de tolerancia de ±2°; el centro del tubo del péndulo estará alineado con el centro del elemento anterior del impactador, con márgenes de tolerancia de ±5 mm tanto lateral como verticalmente.
- 3. Simuladores de cabeza de niño y de adulto
- 3.1. Los impactadores certificados podrán utilizarse en 20 impactos como máximo, tras lo cual deberán volver a certificarse. Los impactadores volverán a certificarse si ha transcurrido más de un año desde su última certificación o si en uno de los impactos el transductor supera el CAC establecido.
- 3.2. Ensayo de caída
- 3.2.1. Cuando los impactadores simuladores de cabeza se dejen caer desde una altura de 376 mm ± 1 mm de conformidad con el punto 3.3, la aceleración máxima resultante registrada en el acelerómetro triaxial (o en los tres acelerómetros uniaxiales) del simulador de cabeza será la siguiente:
 - a) para el impactador simulador de cabeza de niño, no será inferior a 245 g ni superior a 300 g;
 - b) para el impactador simulador de cabeza de adulto, no será inferior a 225 g ni superior a 275 g.

La curva resultante de aceleración y tiempo será unimodal.


- 3.2.2. Los valores de respuesta CFC y CAC de los instrumentos para cada acelerómetro serán de 1 000 Hz y 500 g respectivamente, como define la norma ISO 6487:2002.
- 3.2.3. En el momento del impacto, los impactadores simuladores de cabeza estarán a una temperatura de 20 °C ± 2 °C. Los márgenes de tolerancia de la temperatura se aplicarán con una humedad relativa del 40 % ± 30 % después de un período de estabilización de al menos cuatro horas antes de su utilización en un ensayo.
- 3.3. Procedimiento de ensayo
- 3.3.1. El impactador simulador de cabeza estará suspendido de una instalación para el ensayo de caída como muestra la figura 9.
- 3.3.2. El impactador simulador de cabeza se dejará caer desde la altura especificada utilizando medios que garanticen su liberación inmediata contra una placa de acero plana y horizontal con un soporte rígido de más de 50 mm de grosor y más de 300 mm x 300 mm de superficie limpia y seca con un acabado entre 0,2 µm y 2,0 µm.
- 3.3.3. El impactador simulador de cabeza se dejará caer con la cara posterior del impactador en el ángulo de ensayo, con respecto a la vertical, especificado en el anexo 5, punto 4.7, en el caso del impactador simulador de cabeza de niño, y en el anexo 5, punto 5.7, en el caso del impactador simulador de cabeza de adulto,, como se muestra en la figura 9. El impactador simulador de cabeza estará suspendido de forma que no se produzca rotación durante la caída.

3.3.4. El ensayo de caída se efectuará tres veces; después de cada ensayo, el impactador simulador de cabeza se hará girar 120° alrededor de su eje de simetría.

Figura 1

Impactador simulador de pierna flexible: bandas obligatorias para fémur y la tibia en el ensayo estático de certificación (véase el punto 1.2.2 del presente anexo)

a) Franjas para la flexión del fémur

b) Franjas para la flexión de la tibia

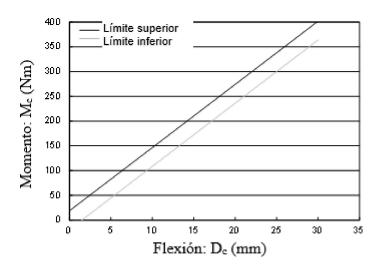


Figura 2

Impactador simulador de pierna flexible: franjas obligatorias para la articulación de la rodilla en el ensayo estático de certificación (véase el punto 1.2.3 del presente anexo)

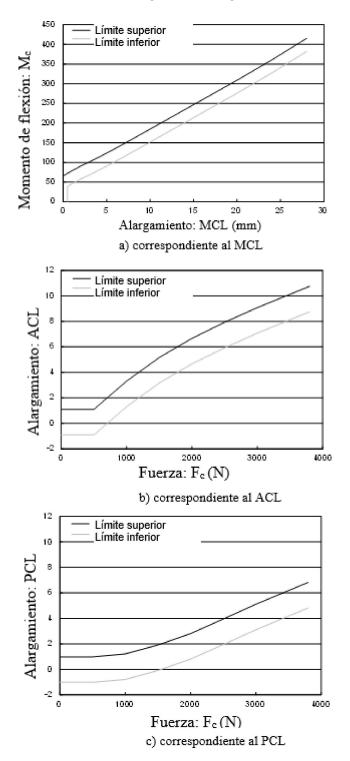
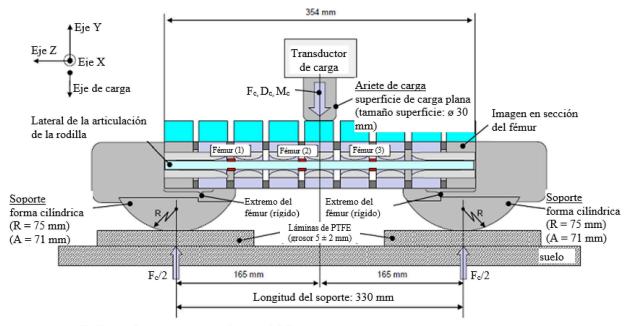
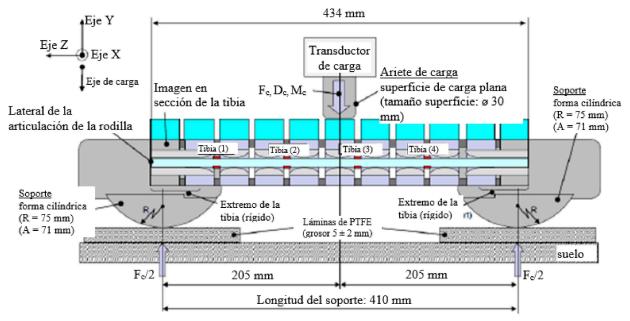



Figura 3

Impactador simulador de pierna flexible: configuración de ensayo para el fémur en el ensayo estático de certificación (véase el punto 1.2.4 del presente anexo)

Fc: Fuerza de carga externa en el centro del fémur

De: Flexión en el centro del fémur


 M_c : Centro del momento (Nm) = $F_c/2$ (N) x 0,165 (m)

R: Radio, A: Anchura a lo largo del eje lateral

Margen de tolerancia para todas las dimensiones anteriores: ± 2 mm

Figura 4

Impactador simulador de pierna flexible: configuración de ensayo para la tibia en el ensayo estático de certificación (véase el punto 1.2.4 del presente anexo)

Fe: Fuerza de carga externa en el centro de la tibia

D_c: Flexión en el centro de la tibia

 M_c : Centro del momento (Nm) = $F_c/2$ (N) x 0,205 (m)

R: Radio, A: Anchura a lo largo del eje lateral

Margen de tolerancia para todas las dimensiones anteriores: ± 2 mm

Figura 5

Impactador simulador de pierna flexible: configuración de ensayo para la articulación de la rodilla en el ensayo estático de certificación (véase el punto 1.2.5 del presente anexo)

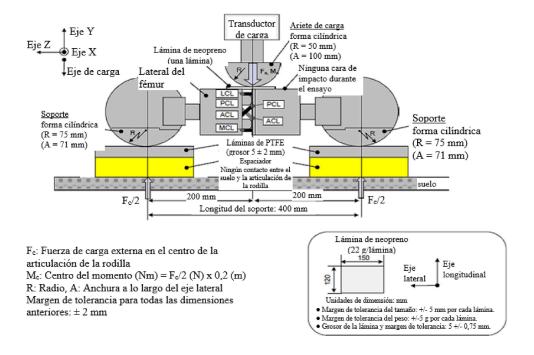


Figura 6

Impactador simulador de pierna flexible: Configuración de ensayo para el ensayo de certificación dinámico del impactador simulador de pierna (ensayo con péndulo; véase el punto 1.3.3.1 del presente anexo)

Figura 7

Impactador simulador de pierna flexible: Configuración de ensayo para el ensayo dinámico de certificación del impactador simulador de pierna (ensayo inverso; véase el punto 1.4.3.1 del presente anexo)

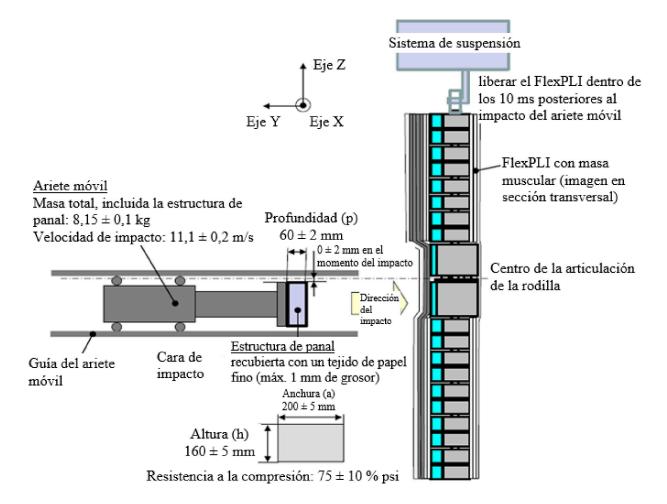


Figura 8

Configuración de ensayo para el ensayo dinámico de certificación del impactador simulador de muslo y cadera

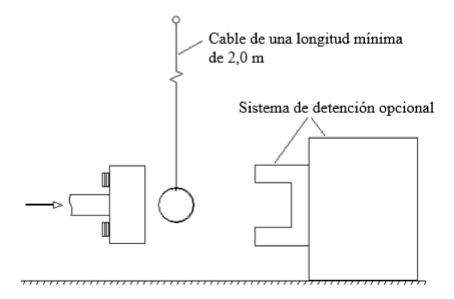
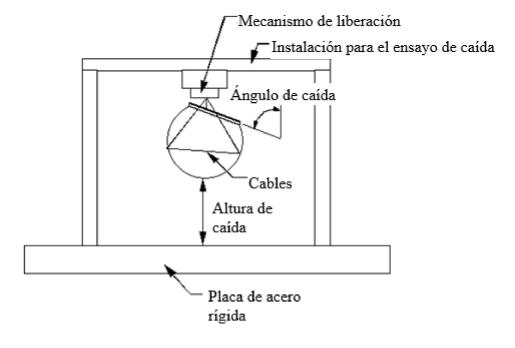



Figura 9

Configuración de ensayo para el ensayo dinámico de biofidelidad del impactador simulador de cabeza

