II

(Actos no legislativos)

REGLAMENTOS

REGLAMENTO (UE) 2016/1718 DE LA COMISIÓN

de 20 de septiembre de 2016

por el que se modifica el Reglamento (UE) n.º 582/2011, con respecto a las emisiones de los vehículos pesados, en lo concerniente a las disposiciones sobre ensayos por medio de sistemas portátiles de medición de emisiones (PEMS) y el procedimiento de ensayo de la durabilidad de los dispositivos anticontaminantes de recambio

(Texto pertinente a efectos del EEE)

LA COMISIÓN EUROPEA.

Visto el Tratado de Funcionamiento de la Unión Europea,

Visto el Reglamento (CE) n.º 595/2009 del Parlamento Europeo y del Consejo, de 18 de junio de 2009, relativo a la homologación de los vehículos de motor y los motores en lo concerniente a las emisiones de los vehículos pesados (Euro VI) y al acceso a la información sobre reparación y mantenimiento de vehículos y por el que se modifican el Reglamento (CE) n.º 715/2007 y la Directiva 2007/46/CE y se derogan las Directivas 80/1269/CEE, 2005/55/CE y 2005/78/CE (¹), y en particular su artículo 4, apartado 3, su artículo 5, apartado 4, y su artículo 12,

Considerando lo siguiente:

- Los ensayos de conformidad en servicio constituyen uno de los pilares del procedimiento de homologación de tipo y permite la verificación del funcionamiento de los sistemas de control de emisiones durante la vida útil de los vehículos. De conformidad con el Reglamento (UE) n.º 582/2011 de la Comisión (2), los ensayos han de efectuarse por medio de sistemas portátiles de medición de emisiones (PEMS) que evalúan las emisiones en las operaciones normales de utilización. El enfoque del PEMS se aplica también para verificar las emisiones fuera de ciclo durante la certificación para la homologación de tipo.
- El Reglamento (UE) n.º 582/2011 dispone que todo requisito adicional en cuanto al procedimiento de ensayo de (2) las emisiones en uso fuera de ciclo debe introducirse tras la evaluación del procedimiento de ensayo especificado en dicho Reglamento.
- Por lo tanto, la Comisión ha realizado un análisis en profundidad del procedimiento de ensayo. En él se han identificado una serie de deficiencias que merman la eficacia de la legislación europea en materia de homologación de tipo, que deben ser corregidas a fin de garantizar un nivel adecuado de protección del medio ambiente.
- Actualmente no se evalúa el nivel de las emisiones de los vehículos en un período de calentamiento en el ensayo (4) de demostración para la homologación de tipo o en el ensayo de conformidad en servicio. Con el fin de abordar la falta de conocimientos existente y preparar un nuevo procedimiento de ensayo para las operaciones de arranque en frío, debe ponerse en marcha una fase de seguimiento durante la cual se deben recoger los datos de los ensayos de homologación de tipo y de conformidad en servicio.
- Con arreglo al Reglamento (UE) n.º 582/2011, los dispositivos anticontaminantes de recambio han de estar (5) homologados conforme a los requisitos de emisiones Euro VI, una vez que en dicho Reglamento se hayan introducido requisitos específicos de ensayo sobre la durabilidad.

⁽¹) DO L 188 de 18.7.2009, p. 1. (²) Reglamento (UE) n.º 582/2011 de la Comisión, de 25 de mayo de 2011, por el que se aplica y se modifica el Reglamento (CE) n.º 595/2009 del Parlamento Europeo y del Consejo, relativo a las emisiones de los vehículos pesados (Euro VI) y por el que se modifican los anexos I y III de la Directiva 2007/46/CE del Parlamento Europeo y del Consejo (DO L 167 de 25.6.2011, p. 1).

- (6) Por tanto, es necesario establecer un procedimiento que evalúe correctamente la durabilidad de dichas piezas de recambio que se introduzcan en el mercado de la Unión y garantizar que respondan a requisitos medioambientales compatibles con los establecidos para sistemas similares fabricados como piezas originales de los vehículos.
- (7) Un procedimiento de ensayo basado en el envejecimiento acelerado de los dispositivos anticontaminantes de recambio debido a efectos térmicos y del consumo de lubricantes cumple el objetivo de abordar la durabilidad de los dispositivos anticontaminantes de recambio de manera precisa y objetiva y no es excesivamente oneroso para la industria.
- (8) El Reglamento (UE) n.º 582/2011 establece requisitos relativos a las medidas que los fabricantes de vehículos han de introducir para evitar la manipulación de los sistemas de control de emisiones. Dichos requisitos deben abordar eficazmente los medios más habituales de manipulación sin imponer una carga excesiva a la industria.
- (9) Las referencias a las normas internacionales en el Reglamento (UE) n.º 582/2011 deben actualizarse.
- (10) Con el fin de garantizar un plazo suficiente para que los fabricantes de vehículos modifiquen sus productos con arreglo al nuevo requisito sobre el umbral de potencia, este ha de surtir efecto a partir del 1 de septiembre de 2018 para los nuevos tipos, y a partir del 1 de septiembre de 2019 para todos los vehículos nuevos.
- (11) Es conveniente que los nuevos requisitos para los ensayos en servicio no se apliquen retroactivamente a los motores y vehículos que no han sido homologados con dichos requisitos. Por consiguiente, las nuevas disposiciones establecidas en el anexo II solo han de aplicarse a los ensayos de conformidad en servicio de nuevos tipos de motores y vehículos que hayan sido homologados de conformidad con la versión modificada del Reglamento (UE) n.º 582/2011.
- (12) Procede, por tanto, modificar el Reglamento (UE) n.º 582/2011 en consecuencia.
- (13) Las medidas previstas en el presente Reglamento se ajustan al dictamen del Comité Técnico sobre Vehículos de Motor.

HA ADOPTADO EL PRESENTE REGLAMENTO:

Artículo 1

El Reglamento (UE) n.º 582/2011 queda modificado como sigue:

- 1) En el artículo 14 se suprime el apartado 3.
- 2) En el artículo 15 se suprime el apartado 5.
- 3) Se inserta el artículo 7 bis siguiente:

«Artículo 7 bis

Disposiciones transitorias para determinados certificados de conformidad y homologaciones de tipo

- 1. Con efectos a partir del 1 de septiembre de 2018, las autoridades nacionales denegarán, por motivos relacionados con las emisiones, la concesión de la homologación de tipo CE o la homologación de tipo nacional a los nuevos tipos de vehículos o de motores sometidos a ensayo con procedimientos que no se ajustan a lo dispuesto en los puntos 4.2.2.2, 4.2.2.2.1, 4.2.2.2.2, 4.3.1.2, 4.3.1.2.1 y 4.3.1.2.2 del apéndice 1 del anexo II.
- 2. Con efectos a partir del 1 de septiembre de 2019, las autoridades nacionales considerarán, en el caso de los vehículos nuevos que no cumplan lo dispuesto en los puntos 4.2.2.2, 4.2.2.2.1, 4.2.2.2.2, 4.3.1.2.1 y 4.3.1.2.2 del apéndice 1 del anexo II, que los certificados de conformidad expedidos para dichos vehículos han dejado de ser válidos a efectos del artículo 26 de la Directiva 2007/46/CE y prohibirán la matriculación, venta y puesta en servicio de dichos vehículos debido a sus emisiones.

Con efectos a partir del 1 de septiembre de 2019, excepto en los casos de motores de recambio para vehículos en servicio, las autoridades nacionales prohibirán la venta o la utilización de motores nuevos que no cumplan lo dispuesto en los puntos 4.2.2.2, 4.2.2.2.1, 4.3.1.2 y 4.3.1.2.1 del apéndice 1 del anexo II.».

- 4) El anexo I queda modificado con arreglo a lo dispuesto en el anexo I del presente Reglamento.
- 5) El anexo II queda modificado con arreglo a lo dispuesto en el anexo II del presente Reglamento.
- 6) El anexo VI queda modificado con arreglo a lo dispuesto en el anexo III del presente Reglamento.
- 7) El anexo XI queda modificado con arreglo a lo dispuesto en el anexo IV del presente Reglamento.
- 8) El anexo XIII se modifica con arreglo a lo dispuesto en el anexo V del presente Reglamento.
- 9) El anexo XIV queda modificado de conformidad con el anexo VI del presente Reglamento.

Artículo 2

El presente Reglamento entrará en vigor a los veinte días de su publicación en el Diario Oficial de la Unión Europea.

Con la excepción del punto 8, letra c), que se aplicará a todos los vehículos a partir de la entrada en vigor del presente Reglamento, el anexo II se aplicará a partir del 1 de enero de 2017 a los nuevos tipos de vehículos.

El presente Reglamento será obligatorio en todos sus elementos y directamente aplicable en cada Estado miembro de conformidad con los Tratados.

Hecho en Bruselas, el 20 de septiembre de 2016.

Por la Comisión El Presidente Jean-Claude JUNCKER

ANEXO I

El anexo I del Reglamento (UE) n.º 582/2011 se modifica como sigue:

- 1) El punto 1.1.2 se sustituye por el texto siguiente:
 - «1.1.2. Si el fabricante autoriza que la familia de motores funcione con combustibles comerciales que no cumplen ni la Directiva 98/70/CE del Parlamento Europeo y del Consejo (*) ni la norma del CEN EN 228:2012 (en el caso de la gasolina sin plomo) ni la norma del CEN EN 590:2013 (en el caso del gasóleo), como los que funcionan con B100 (EN 14214), el fabricante cumplirá, además de los requisitos del punto 1.1.1, los siguientes requisitos:
 - a) declarará con qué combustibles puede funcionar la familia de motores en el punto 3.2.2.2.1 de la ficha de características que figura en la parte 1 del apéndice 4, bien por referencia a una norma oficial o a las especificaciones de producción de un combustible comercial específico de una marca que no cumple ninguna norma oficial como las mencionadas en el punto 1.1.2. Asimismo, el fabricante declarará que la funcionalidad de los sistemas DAB no se ve afectada por el uso del combustible declarado;
 - b) demostrará que el motor de referencia cumple los requisitos especificados en el anexo III y en el apéndice 1 del anexo VI del presente Reglamento relativos a los combustibles declarados; la autoridad de homologación podrá exigir que los requisitos para la demostración puedan ampliarse a los establecidos en los anexos VII y X;
 - c) garantizará el cumplimiento de los requisitos de conformidad en servicio especificados en el anexo II sobre los combustibles declarados, incluida cualquier mezcla entre los combustibles declarados y los combustibles comerciales que figuran en la Directiva 98/70/CE y las normas CEN pertinentes.

A petición del fabricante, los requisitos establecidos en el presente punto se aplicarán a los combustibles usados para fines militares.

A los efectos de la letra a) del párrafo primero, cuando los ensayos de emisiones se realicen para demostrar el cumplimiento de los requisitos del presente Reglamento, se adjuntará al informe de ensayo un informe de análisis del combustible, que incluirá, como mínimo, los parámetros contenidos en las especificaciones oficiales del fabricante de combustible.

- (*) Directiva 98/70/CE del Parlamento Europeo y del Consejo, de 13 de octubre de 1998, relativa a la calidad de la gasolina y el gasóleo y por la que se modifica la Directiva 93/12/CEE del Consejo (DO L 350 de 28.12.1998, p. 58).».
- 2) El punto 1.1.5 se sustituye por el texto siguiente:
 - «1.1.5. En el caso de los motores de gas natural o biometano, la relación "r" de los resultados de las emisiones para cada contaminante se determinará del modo siguiente:

 $r = \frac{\text{resultado de las emisiones para el combustible de referencia 2}}{\text{resultado de las emisiones para el combustible de referencia 1}}$

o

 $r_a = \frac{\text{resultado de las emisiones para el combustible de referencia 2}}{\text{resultado de las emisiones para el combustible de referencia 3}}$

así como

 $r_b = {{\rm resultado\ de\ las\ emisiones\ para\ el\ combustible\ de\ referencia\ 1}\over {{\rm resultado\ de\ las\ emisiones\ para\ el\ combustible\ de\ referencia\ 3}}^{"b}}.$

- 3) El punto 3.1 se sustituye por el texto siguiente:
 - «3.1. En el caso de un motor homologado como una unidad técnica independiente o un vehículo homologado por lo que respecta a las emisiones y al acceso a la información relativa a la reparación y el mantenimiento del vehículo, el motor estará provisto de los siguientes elementos:
 - a) la marca o el nombre comercial del fabricante del motor;
 - b) la descripción comercial del fabricante del motor.».
- 4) Se insertan los puntos 3.2.1.1 a 3.2.1.6 siguientes:
 - «3.2.1.1. En el caso de un motor de gas natural/biometano, detrás de la marca de homologación de tipo CE deberá figurar una de las siguientes marcas:
 - a) H en el caso de que el motor se homologue y se calibre para los gases de la clase H;
 - b) L en el caso de que el motor se homologue y se calibre para los gases de la clase L;
 - c) HL en el caso de que el motor se homologue y se calibre para los gases de la clase H y de la clase L;
 - d) H₁ en el caso de que el motor se homologue y se calibre para una composición específica de gases de la clase H y pueda adaptarse a otro gas específico de la clase H mediante un reglaje de la alimentación del motor:
 - e) L_t en el caso de que el motor se homologue y se calibre para una composición específica de gases de la clase L y pueda adaptarse a otro gas específico de la clase L mediante un reglaje de la alimentación del motor;
 - f) HL, en el caso de que el motor se homologue y se calibre para una composición específica de gases de la clase H o de la clase L y pueda adaptarse a otro gas específico de la clase H o de la clase L mediante un reglaje de la alimentación del motor;
 - g) GNC_{fr} en todos los demás casos en los que el motor esté alimentado con GNC/biometano y diseñado para funcionar con una composición de combustible de gas restringida;
 - h) GNL_{fr} en los casos en los que el motor esté alimentado con GNL y diseñado para funcionar con una composición de combustible de gas restringida;
 - i) GLP_{fr} en los casos en los que el motor esté alimentado con GLP y diseñado para funcionar con una composición de combustible de gas restringida;
 - j) GNL₂₀ en el caso de que el motor se homologue y se calibre para una composición específica de GNL que resulte en un factor de desplazamiento λ que no difiera en más del 3 % del factor de desplazamiento λ del gas G₂₀ especificado en el anexo IX y cuyo contenido de etano no supere el 1,5 %;
 - k) GNL en el caso de que el motor se homologue y se calibre para cualquier otra composición de GNL.
 - 3.2.1.2. En el caso de los motores de combustible dual, la marca de homologación incluirá una serie de dígitos después del símbolo nacional a fin de especificar para qué tipo de motor de combustible dual y con qué tipo de gases se ha concedido la homologación. Esta serie de dígitos estará formada por dos dígitos correspondientes al tipo de motor de combustible dual que define el artículo 2, seguidos por la letra o las letras especificadas en el punto 3.2.1.1, correspondiente(s) a la composición de gas natural/biometano que utiliza el motor. Los dos dígitos que identifican los tipos de motor de combustible dual que define el artículo 2 son los siguientes:
 - a) 1A para los motores de combustible dual de tipo 1A;
 - b) 1B para los motores de combustible dual de tipo 1B;
 - c) 2A para los motores de combustible dual de tipo 2A;

- d) 2B para los motores de combustible dual de tipo 2B;
- e) 3B para los motores de combustible dual de tipo 3B;
- 3.2.1.3. En el caso de los motores de encendido por compresión alimentados con diésel, la marca de homologación incluirá la letra «D» después del símbolo nacional.
- 3.2.1.4. En el caso de los motores de encendido por compresión alimentados con etanol (ED95), la marca de homologación incluirá las letras «ED» después del símbolo nacional.
- 3.2.1.5. En el caso de los motores de encendido por chispa alimentados con etanol (E85), la marca de homologación incluirá «E85» después del símbolo nacional.
- 3.2.1.6. En el caso de los motores de encendido por chispa alimentados con gasolina, la marca de homologación incluirá la letra «P» después del símbolo nacional.».
- 5) En el punto 4.2, la letra b) se sustituye por el texto siguiente:
 - «b) en cuanto a la conformidad del sistema que garantiza el correcto funcionamiento de las medidas de control de NO_x, con arreglo al anexo 11, apéndice 4, del Reglamento n.º 49 de la CEPE, la instalación cumplirá los requisitos de instalación del fabricante según lo especificado en el anexo 1, parte 1, de dicho Reglamento»;
- 6) En el apéndice 4, los párrafos noveno, décimo y undécimo se sustituyen por el texto siguiente:

«En el caso de una solicitud de homologación de tipo CE de un motor o de una familia de motores como unidad técnica independiente, se cumplimentarán la parte general y las partes 1 y 3.

En el caso de la solicitud de la homologación de tipo CE de un vehículo con un motor homologado por lo que respecta a las emisiones y al acceso a la información relativa a la reparación y el mantenimiento del vehículo, se cumplimentarán la parte general y la parte 2.

En el caso de la solicitud de la homologación de tipo CE de un vehículo por lo que respecta a las emisiones y al acceso a la información relativa a la reparación y el mantenimiento del vehículo, se cumplimentarán la parte general y las partes 1, 2 y 3.».

7) El apéndice 9 se sustituye por el texto siguiente:

«Apéndice 9

Sistema de numeración de certificados de homologación de tipo CE

La sección 3 del número de homologación de tipo CE expedido con arreglo al artículo 6, apartado 1, al artículo 8, apartado 1, y al artículo 10, apartado 1, corresponderá al número del acto regulador de aplicación o al último acto regulador de modificación aplicable a la homologación de tipo CE. El número irá seguido por un carácter alfabético que reflejará los requisitos de los sistemas DAB y SCR de conformidad con el cuadro 1.

27.9.2016

Carácter	NO _x OTL (¹)	PM OTL (²)	CO OTL (6)	IUPR (13)	Calidad del reactivo	Monitores adicionales del sistema DAB (12)	Requisitos relativos al umbral de potencia (14)	Fechas de apli- cación: nuevos tipos	Fechas de apli- cación: todos los vehículos	Última fecha de matriculación
A (9) (10) B (10)	Fila "introducción paulatina" de los cuadros 1 o 2	Funcionamiento. Supervisión (³)	N.A.	Introducción paulatina (⁷)	Introducción paulatina (4)	N.A.	20 %	31.12.2012	31.12.2013	31.8.2015 (°) 30.12.2016 (¹º)
B (11)	Fila "introducción paulatina" de los cuadros 1 y 2	N.A.	Fila "introducción paulatina" del cuadro 2	N.A.	Introducción paulatina (4)	N.A.	20 %	1.9.2014	1.9.2015	30.12.2016
С	Fila "requisitos generales" de los cuadros 1 o 2	Fila "requisitos generales" del cuadro 1	Fila "requisitos generales" del cuadro 2	Generales (8)	Generales (5)	Sí	20 %	31.12.2015	31.12.2016	31.12.2018
D	Fila "requisitos generales" de los cuadros 1 o 2	Fila "requisitos generales" del cuadro 1	Fila "requisitos generales" del cuadro 2	Generales (8)	Generales (5)	Sí	10 %	1.9.2018	1.9.2019	

Leyenda:

- (1) "NO_x OTL": requisitos de supervisión que figuran en el cuadro 1 del anexo X para los vehículos y motores de encendido por compresión y los vehículos y motores de combustible dual, y en el cuadro 2 del anexo X para los vehículos y motores de encendido por chispa.
- (2) "PM OTL": requisitos de supervisión que figuran en el cuadro 1 del anexo X para los vehículos y motores de encendido por compresión y los vehículos y motores de combustible dual.
- (3) "Supervisión del funcionamiento": requisitos que figuran en el punto 2.1.1 del anexo X.
- (4) Requisitos de calidad del reactivo en la fase de introducción paulatina, tal como figuran en el punto 7.1 del anexo XIII.
- (5) Requisitos "generales" de calidad y del reactivo, tal como figuran en el punto 7.1.1 del anexo XIII.
- (6) "CO OTL": requisitos de supervisión que figuran en el cuadro 2 del anexo X para los vehículos y motores de encendido por chispa.
- (7) Requisitos «de introducción paulatina» relativos a la IUPR, tal como figuran en la sección 6 del anexo X.
- (8) Requisitos «generales» relativos a la IUPR, tal como figuran en la sección 6 del anexo X.
- (9) Motores de encendido por chispa y vehículos equipados con dichos motores.
- (10) Motores de encendido por compresión y vehículos equipados con dichos motores.
- (11) Solo aplicable a los motores de encendido por chispa y los vehículos equipados con dichos motores.
- (12) Disposiciones adicionales sobre los requisitos de supervisión que figuran en el punto 2.3.1.2 del anexo 9A del Reglamento n.º 49 de la CEPE.
- (13) Las especificaciones relativas a la IUPR figuran en el anexo X. Los motores de encendido por chispa y los vehículos equipados con dichos motores no están sometidos a la IUPR.
- (14) El requisito relativo a la ISC figura en el apéndice 1 del anexo II.
- N.A. no aplicable.».

ANEXO II

El anexo II del Reglamento (UE) n.º 582/2011 queda modificado como sigue:

- 1) El punto 2.1 se sustituye por el texto siguiente:
 - «2.1. La conformidad de los motores o vehículos en servicio de una familia de motores se demostrará sometiendo a ensayo vehículos por carretera, con circunstancias de conducción, condiciones y cargas útiles normales. El ensayo de conformidad en servicio será representativo de los vehículos utilizados en sus rutas habituales, con su carga útil normal y su conductor profesional habitual. Cuando el vehículo no sea conducido por su conductor profesional habitual, el conductor alternativo deberá estar cualificado y formado para conducir vehículos de la categoría sometida a ensayo.».
- 2) El punto 2.3 se sustituye por el texto siguiente:
 - «2.3. El fabricante demostrará a la autoridad de homologación que el vehículo elegido, las circunstancias de conducción y las condiciones son representativos para la familia de motores. Se utilizarán los requisitos especificados en el punto 4.5 para determinar si las circunstancias de conducción son aceptables para el ensayo de conformidad en servicio.».
- 3) El punto 4.1 se sustituye por el texto siguiente:

«4.1. Carga útil del vehículo

Carga útil normal es una carga útil situada entre el 10 % y el 100 % de la carga útil máxima.

La carga útil máxima es la diferencia entre la masa máxima en carga técnicamente admisible del vehículo y la masa del vehículo en orden de marcha, con arreglo a lo especificado en el anexo I de la Directiva 2007/46/CE.

A efectos de los ensayos de la conformidad en servicio, podrá reproducirse la carga útil y utilizarse una carga artificial.

Las autoridades de homologación podrán solicitar someter a ensayo el vehículo con cualquier carga útil situada entre el 10 % y el 100 % de la carga útil máxima del vehículo. En caso de que la masa del equipo PEMS necesario para el funcionamiento supere el 10 % de la carga útil máxima del vehículo, dicha masa podrá considerarse como la carga útil mínima.

Los vehículos de la categoría N₃ se someterán a ensayo, cuando proceda, con un semirremolque.».

- 4) Los puntos 4.4.1 a 4.5.5 se sustituyen por el texto siguiente:
 - «4.4.1. El aceite lubricante para el ensayo será aceite comercial y cumplirá las especificaciones del fabricante del motor.

Se recogerán muestras de aceite.

4.4.2. Combustible

El combustible de ensayo deberá ser un combustible comercial cubierto por la Directiva 98/70/CE y las normas CEN pertinentes o un combustible de referencia que se ajuste a lo especificado en el anexo IX del presente Reglamento. Se recogerán muestras de combustible.

Los fabricantes podrán solicitar que no se tomen muestras de combustible de los motores de gas.

- 4.4.2.1. Si el fabricante ha declarado, con arreglo al anexo I, sección 1, del presente Reglamento, la capacidad de cumplir los requisitos del presente Reglamento relativos a los combustibles comerciales indicados en el punto 3.2.2.2.1 de la ficha de características que figura en el apéndice 4 del anexo I del presente Reglamento, deberá realizarse al menos un ensayo con cada combustible comercial declarado.
- 4.4.3. En el caso de los sistemas de postratamiento del gas de escape que utilicen un reactivo para reducir las emisiones, este será un reactivo comercial y cumplirá las especificaciones del fabricante del motor. Se tomará una muestra del reactivo. El reactivo no deberá estar congelado.

4.5. Requisitos del trayecto

Las cuotas de funcionamiento se expresarán como porcentaje de la duración total del trayecto.

El trayecto consistirá en una conducción en ciudad, seguida de una conducción en carreteras rurales y en autopista con arreglo a las cuotas especificadas en los puntos 4.5.1 a 4.5.4. Si por razones prácticas se justifica una secuencia de ensayos diferente, y previo acuerdo de la autoridad de homologación, podrá utilizarse una secuencia diferente, aunque el ensayo siempre se iniciará con la conducción en ciudad.

A efectos de la presente sección, por "aproximadamente" se entenderá el valor objetivo ± 5 %.

Las partes urbana, rural y en autopista pueden determinarse basándose en los elementos siguientes:

- en coordenadas geográficas (por medio de un mapa), o
- en el método de la primera aceleración.

En caso de que la composición del trayecto se determine basándose en coordenadas geográficas, el vehículo no superará la velocidad siguiente durante un tiempo acumulado superior al 5 % de la duración total de cada parte del trayecto:

- 50 km/h en la parte urbana
- 75 km/h en la parte rural (90 km/h en el caso de los vehículos de las categorías M₁ y N₂)

En el caso de que el viaje se determine mediante el método de la primera aceleración, la primera aceleración superior a 55 km/h (70 km/h para los vehículos de las categorías M_1 y N_1) marcará el inicio de la parte rural y la primera aceleración superior a 75 km/h (90 km/h para los vehículos de las categorías M_1 y N_1) señalarán el inicio de la parte en autopista.

Los criterios de diferenciación entre las partes urbana, rural y en autopista deberán acordarse con el organismo de homologación antes del inicio del ensayo.

La velocidad media en funcionamiento en zona urbana deberá situarse entre 15 y 30 km/h.

La velocidad media en funcionamiento en zona rural deberá situarse entre 45 y 70 km/h (60 y 90 km/h en el caso de los vehículos de las categorías M₁ y N₁).

La velocidad media en funcionamiento en autopista será superior a 70 km/h (90 km/h en el caso de los vehículos de las categorías M₁ y N₁).

- 4.5.1. Para los vehículos M₁ y N₁, el trayecto constará aproximadamente de un 34 % de funcionamiento urbano, un 33 % en carreteras rurales y un 33 % en autopista.
- 4.5.2. Para los vehículos N_2 , M_2 y M_3 , el trayecto constará aproximadamente de un 45 % de funcionamiento urbano, un 25 % en carreteras rurales y un 30 % en autopista. Los vehículos M_2 y M_3 de las clases I, II o A, según se definen en el Reglamento n.º 107 de la CEPE, se someterán a ensayo en aproximadamente un 70 % de funcionamiento urbano y un 30 % en carreteras rurales.
- 4.5.3. Para los vehículos N₃, el trayecto constará aproximadamente de un 20 % de funcionamiento urbano, un 25 % en carreteras rurales y un 55 % en autopista.
- 4.5.4. Para evaluar la composición del trayecto, la duración del porcentaje se calculará desde el momento en el cual la temperatura del líquido refrigerante haya alcanzado por primera vez 343 K (70 °C) o después de que el líquido refrigerante se estabilice en +/- 2K durante 5 minutos, lo que suceda antes, pero a más tardar 15 minutos después del arranque del motor. De conformidad con el punto 4.5, el período transcurrido hasta que el líquido refrigerante haya alcanzado la temperatura de 343 K (70 °C) se realizará en condiciones de conducción urbana.

Queda prohibido el calentamiento artificial de los sistemas de control de emisiones antes del ensayo.

- 4.5.5. La siguiente distribución de los valores característicos del trayecto de la base de datos WHDC podrán servir de orientación adicional para la evaluación del trayecto:
 - a) aceleración: 26,9 % del tiempo;
 - b) desaceleración: 22,6 % del tiempo;
 - c) velocidad de crucero: 38,1 % del tiempo;
 - d) parada (velocidad del vehículo = 0): 12,4 % del tiempo.».
- 5) El punto 4.6.5 se sustituye por el texto siguiente:
 - «4.6.5. La duración del ensayo deberá ser suficientemente larga para permitir concluir entre 4 y 7 veces el trabajo realizado durante el WHTC o producir entre 4 y 7 veces la masa de referencia CO₂ en kg/ciclo del WHTC, según proceda.».
- 6) El punto 4.6.10 se sustituye por el texto siguiente:
 - «4.6.10. Si el sistema de postratamiento de partículas del gas de escape es objeto de un proceso de regeneración no continua durante el trayecto o se produce una anomalía de clase A o B del DAB durante el ensayo, el fabricante podrá solicitar que se invalide el trayecto.».
- 7) El punto 5.1.2.2 se sustituye por el texto siguiente:
 - «5.1.2.2. Se considerará que la conformidad de la señal de par de la ECU es suficiente si el par calculado permanece en la tolerancia del par a plena carga que se especifica en el anexo I, punto 5.2.5.».
- 8) El apéndice 1 queda modificado como sigue:
 - a) El punto 1 se sustituye por el texto siguiente:

«1. INTRODUCCIÓN

El presente apéndice describe el procedimiento para determinar las emisiones de gases a partir de mediciones realizadas sobre vehículos por carretera utilizando sistemas portátiles de medición de emisiones (en lo sucesivo, "PEMS"). Las emisiones de contaminantes que deben medirse en el escape del motor incluyen los siguientes componentes: monóxido de carbono, hidrocarburos totales y óxidos de nitrógeno para los motores de encendido por compresión, y monóxido de carbono, hidrocarburos no metánicos, metano y óxidos de nitrógeno para los motores de encendido por chispa. Además, se medirá el dióxido de carbono para poder realizar los procedimientos de cálculo descritos en las secciones 4 y 5.

Para los motores alimentados con gas natural, el fabricante, el servicio técnico o la autoridad de homologación de tipo podrán optar por medir las emisiones totales de hidrocarburos (THC) solamente en lugar de medir las emisiones de metano e hidrocarburos no metánicos. En ese caso, el límite de emisiones correspondiente a las emisiones totales de hidrocarburos será el mismo que el indicado en el anexo I del Reglamento (CE) n.º 595/2009 para las emisiones de metano. A los efectos del cálculo de los factores de conformidad con arreglo a los puntos 4.2.3 y 4.3.2, el límite aplicable será en ese caso solamente el límite de las emisiones de metano.

Para los motores alimentados con gases distintos del gas natural, el fabricante, el servicio técnico o la autoridad de homologación de tipo podrán optar por medir las emisiones totales de hidrocarburos (THC) en lugar de medir las emisiones de hidrocarburos no metánicos. En ese caso, el límite de emisiones correspondiente a las emisiones totales de hidrocarburos será el mismo que el indicado en el anexo I del Reglamento (CE) n.º 595/2009 para las emisiones de hidrocarburos no metánicos. A los efectos del cálculo de los factores de conformidad con arreglo a los puntos 4.2.3 y 4.3.2, el límite aplicable será en ese caso solamente el de las emisiones no metánicas.».

b) En el punto 2.2, la frase «Se medirán y registrarán los parámetros que figuran en el cuadro 1:» se sustituye por el texto siguiente:

«Los parámetros de ensayo, tal como se especifican en el cuadro 1, se medirán y registrarán con una frecuencia constante de 1,0 Hz o superior. El fabricante conservará los datos brutos originales, que serán puestos a disposición de la autoridad de homologación y de la Comisión a petición de estas.».

c) Se añade el punto 2.2.1 siguiente:

«2.2.1. Formato de notificación de datos

Los valores de las emisiones y cualquier otro parámetro importante se notificarán e intercambiarán en archivos de datos de formato CSV. Los valores de los parámetros estarán separados por una coma, ASCII-Code #h2C. El marcador decimal de los valores numéricos será un punto, ASCII-Code #h2E. Las líneas se terminarán con un retorno de carro, ASCII-Code #h0D. No se utilizarán separadores de las unidades de millar.».

d) Los puntos 2.6.1 y 2.6.2 se sustituyen por el texto siguiente:

«2.6.1. Inicio del ensayo

La toma de muestras de las emisiones, la medida de los parámetros de escape y el registro de datos sobre el motor y las condiciones ambientales empezarán antes del arranque del motor. La temperatura del refrigerante no superará los 303K (30 °C) al comienzo del ensayo. En el caso de que la temperatura ambiente sea mayor que 303K (30 °C) al inicio del ensayo, la temperatura del refrigerante no excederá la temperatura ambiente en más de 2 °C. La evaluación de los datos empezará después de que la temperatura del líquido refrigerante haya alcanzado por primera vez 343 K (70 °C) o después de que el líquido refrigerante se estabilice en +/- 2K durante 5 minutos, lo que suceda antes, pero a más tardar 15 minutos después del arranque del motor.

2.6.2. Desarrollo del ensayo

La toma de muestras de las emisiones, la medida de los parámetros de escape y el registro de datos sobre el motor y las condiciones ambientales continuarán durante el funcionamiento normal del motor. El motor podrá detenerse y volverse a poner en marcha, pero la toma de muestras continuará durante toda la duración del ensayo.

Podrán realizarse comprobaciones periódicas del cero de los analizadores de gas PEMS cada 2 horas y los resultados podrán ser utilizados para realizar una corrección de la desviación del cero. Se señalarán los datos registrados durante los controles y no se utilizarán para calcular las emisiones.

En caso de interrupción de la señal del GPS, los datos de GPS podrán calcularse a partir de la velocidad del vehículo de la ECU y un mapa por un período de tiempo consecutivo inferior a 60 s. Si la pérdida acumulada de señal del GPS supera el 3 % de la duración total del trayecto, este se declarará nulo.».

e) El punto 3.2.1 se sustituye por el texto siguiente:

«3.2.1. Datos de los analizadores y del EFM

Deberá verificarse la coherencia de los datos (el caudal másico del gas de escape medido con el EFM y las concentraciones de gases) utilizando una correlación entre el caudal de combustible medido por la ECU y el caudal de combustible calculado con la fórmula indicada en el anexo 4, punto 8.4.1.7, del Reglamento n.º 49 de la CEPE. Se realizará una regresión lineal de los valores medidos y calculados de caudal de combustible. Se utilizará el método de los mínimos cuadrados, y la mejor ecuación tendrá la forma siguiente:

y = mx + b
donde:
y — es el caudal de combustible calculado [g/s]
m — es la pendiente de la línea de regresión
x — es el caudal de combustible medido [g/s]

— b — es la ordenada en el origen de la línea de regresión.

Se calcularán la pendiente (m) y el coeficiente de determinación (r²) de cada línea de regresión. Se recomienda llevar a cabo este análisis en la gama comprendida entre el 15 % del valor máximo y el valor máximo, a una frecuencia igual o superior a 1 Hz. Para que un ensayo se considere válido, se evaluarán los dos criterios siguientes:

Cuadro 2

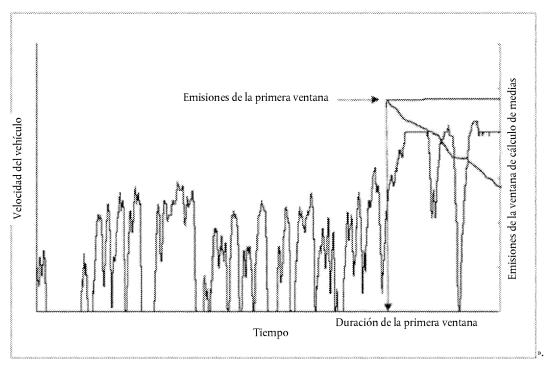
Tolerancias

Pendiente de la línea de regresión, m	0,9 a 1,1 — recomendado
Coeficiente de determinación r ²	mín. 0,90 — obligatorio».

f) El punto 4.1 se sustituye por el texto siguiente:

«4.1. Principio de la ventana de cálculo de medias

Las emisiones se integrarán utilizando el método de la ventana de cálculo de medias móviles, sobre la base de la masa de referencia de CO₂ o del trabajo de referencia. El principio de dicho cálculo es el siguiente: Las emisiones másicas no se calculan para todo el conjunto de datos, sino para subconjuntos del conjunto de datos, determinando la longitud de dichos subconjuntos de forma que coincida con la masa de CO₂ del motor o con el trabajo medido en el ciclo de transición del laboratorio de referencia. Los cálculos de la media móvil se realizan con un incremento de tiempo Δt igual al período de muestreo de los datos. En los siguientes puntos, estos subconjuntos utilizados para calcular la media de los datos de las emisiones se denominan "ventanas de cálculo de medias".


Los datos invalidados no deberán ser considerados para calcular el trabajo o la masa de ${\rm CO}_2$ ni las emisiones de la ventana de cálculo de medias.

Los siguientes datos se considerarán invalidados:

- a) la comprobación de la desviación del cero de los instrumentos;
- b) los datos que se aparten de las condiciones especificadas en el anexo II, puntos 4.2 y 4.3.

Las emisiones másicas (mg/ventana) se determinarán de acuerdo con el anexo 4, punto 8.4.2.3, del Reglamento n.º 49 de la CEPE.

Figura 1 Velocidad del vehículo frente al tiempo, y emisiones medias del vehículo, empezando a partir de la primera ventana de cálculo de medias, frente al tiempo

- g) El punto 4.2.2 se sustituye por el texto siguiente:
 - «4.2.2. Selección de ventanas válidas
 - 4.2.2.1. Antes de las fechas mencionadas en el artículo 17 bis, serán de aplicación los puntos 4.2.2.1.1 a 4.2.2.1.4.
 - 4.2.2.1.1. Las ventanas válidas son las ventanas cuya potencia media rebasa el umbral de potencia en un 20 % de la potencia máxima del motor. El porcentaje de ventanas válidas deberá ser superior o igual al 50 %.
 - 4.2.2.1.2. Si el porcentaje de ventanas válidas es inferior al 50 %, la evaluación de los datos se repetirá utilizando umbrales de potencia inferiores. El umbral de potencia se reducirá gradualmente, de 1 % en 1 %, hasta que el porcentaje de ventanas válidas sea superior o igual al 50 %.
 - 4.2.2.1.3. El umbral inferior nunca será inferior al 15 %.
 - 4.2.2.1.4. El ensayo será nulo si el porcentaje de ventanas válidas es inferior al 50 % con un umbral de potencia del 15 %.
 - 4.2.2.2. A partir de las fechas mencionadas en el artículo 17 bis, serán de aplicación los puntos 4.2.2.2.1 y 4.2.2.2.2.
 - 4.2.2.2.1. Las ventanas válidas son las ventanas cuya potencia media rebasa el umbral de potencia en un 10 % de la potencia máxima del motor.
 - 4.2.2.2.2. El ensayo será nulo si el porcentaje de ventanas válidas es inferior al 50 %, o si no quedan ventanas válidas en funcionamiento exclusivamente urbano después de que se haya aplicado la norma del percentil 90.».
- h) El punto 4.3.1 se sustituye por el texto siguiente:

«4.3.1. Selección de ventanas válidas

4.3.1.1. Antes de las fechas mencionadas en el artículo 17 bis, serán de aplicación los puntos 4.3.1.1.1 a 4.3.1.1.4.

4.3.1.1.1. Las ventanas válidas serán las ventanas cuya duración no exceda de la duración máxima calculada mediante la fórmula siguiente:

$$D_{max} = 3 600 \cdot rac{W_{ref}}{0.2 \cdot P_{max}}$$

donde:

- D_{max} es la duración máxima de la ventana, expresada en s,
- P_{max} es la potencia máxima del motor, expresada en kW.
- 4.3.1.1.2. Si el porcentaje de ventanas válidas es inferior al 50 %, la evaluación de los datos se repetirá utilizando duraciones mayores de ventanas. Ello se conseguirá reduciendo gradualmente de 0,01 en 0,01 el valor de 0,2 en la fórmula del punto 4.3.1, hasta que el porcentaje de ventanas válidas sea superior o igual al 50 %.
- 4.3.1.1.3. En cualquier caso, el valor reducido de la fórmula anterior no será inferior a 0,15.
- 4.3.1.1.4. El ensayo será nulo si el porcentaje de ventanas válidas es inferior al 50 % con una duración máxima de la ventana calculada con arreglo a los puntos 4.3.1.1, 4.3.1.1.2 y 4.3.1.1.3.
- 4.3.1.2. A partir de las fechas mencionadas en el artículo 17 bis, serán de aplicación los puntos 4.3.1.2.1 y 4.3.1.2.2.
- 4.3.1.2.1. Las ventanas válidas serán las ventanas cuya duración no exceda de la duración máxima calculada mediante la fórmula siguiente:

$$D_{max} = 3 600 \cdot \frac{W_{ref}}{0.1 \cdot P_{max}}$$

donde:

- D_{max} es la duración máxima de la ventana, expresada en s,
- P_{max} es la potencia máxima del motor, expresada en kW.».
- 4.3.1.2.2. El ensayo será nulo si el porcentaje de ventanas válidas es inferior al 50 %.
- 9) En el apéndice 2, el punto 3.1 se sustituye por el texto siguiente:
 - «3.1. Conexión del tubo de escape al caudalímetro del gas de escape (EFM)

La instalación del EFM no aumentará la contrapresión en un valor mayor que el recomendado por el fabricante del motor ni aumentará la longitud del tubo de escape en más de 2 m. En lo que respecta a los componentes del equipo PEMS, la instalación del EFM cumplirá la normativa de seguridad vial y los requisitos en materia de seguros aplicables a nivel local.»

ANEXO III

El anexo VI del Reglamento (UE) n.º 582/2011 queda modificado como sigue:

1) El punto 8 se sustituye por el texto siguiente:

«8. DOCUMENTACIÓN

El punto 11 del anexo 10 del Reglamento n.º 49 de la CEPE se entenderá como sigue:

El organismo de homologación exigirá que el fabricante proporcione documentación. En ella se describirá cualquier elemento de diseño y estrategia de control de emisiones del sistema de motor y los medios mediante los que el sistema controla sus variables de salida, independientemente de que este control sea directo o indirecto.

La información incluirá una descripción completa de la estrategia de control de emisiones. Además, también contendrá datos sobre el funcionamiento de todas las AES y BES, incluida una descripción de los parámetros modificados por cualquier AES y las condiciones límite en que funciona la AES, e indicar qué AES y BES probablemente se activarán en las condiciones de los procedimientos de ensayo del presente anexo.

Esta documentación se suministrará de conformidad con las disposiciones del anexo I, sección 8, del presente Reglamento.».

- 2) El apéndice 1 queda modificado como sigue:
 - a) se inserta el siguiente punto 2.3:
 - «2.3. Los fabricantes se asegurarán de que un tercero independiente pueda someter a ensayo los vehículos con PEMS en vías públicas poniendo a disposición adaptadores adecuados para los tubos de escape, dando acceso a las señales de la ECU o adoptando las disposiciones administrativas necesarias. El fabricante podrá cobrar unas tasas razonables, según lo establecido en el artículo 7, apartado 1, del Reglamento (CE) n.º 715/2007.»;
 - b) el punto 3.1 se sustituye por el texto siguiente:

«3.1. Carga útil del vehículo

A efectos del ensayo de demostración del PEMS, podrá reproducirse la carga útil y utilizarse una carga artificial.

La carga útil del vehículo se situará entre el 50 y el 60 % de la carga útil máxima del vehículo. Serán de aplicación los requisitos adicionales establecidos en el anexo II.».

ANEXO IV

El anexo XI del Reglamento (UE) n.º 582/2011 queda modificado como sigue:

- 1) El punto 4.3.2.4 se sustituye por el texto siguiente:
 - «4.3.2.4. Durabilidad del rendimiento en materia de emisiones

El sistema de postratamiento de los gases de escape sometido a ensayo con arreglo al punto 4.3.2.2 que incorpora el dispositivo anticontaminante de recambio estará sujeto a los procedimientos de durabilidad descritos en el apéndice 3.».

2) Se añade el punto 4.3.5 siguiente:

«4.3.5. Combustibles

En el caso descrito en el punto 1.1.2, del anexo I, el procedimiento de ensayo establecido en los puntos 4.3.1 a 4.3.2.7 del presente anexo se realizará con los combustibles declarados por el fabricante del sistema de motor original. No obstante, de común acuerdo con la autoridad de homologación de tipo, el procedimiento de durabilidad establecido en el apéndice 3 y mencionado en el punto 4.3.2.4 podrá aplicarse solo con el combustible que represente el peor caso posible en términos de envejecimiento.».

- 3) Se añaden los puntos 4.6 a 4.6.5 siguientes:
 - «4.6. Requisitos relativos a la compatibilidad con las medidas de control de NO_x (aplicables únicamente a los dispositivos anticontaminantes de recambio que vayan a instalarse en vehículos equipados con sensores que miden directamente la concentración de NO_x en el gas de escape)
 - 4.6.1. La demostración de la compatibilidad de las medidas de control de NO_x se exige únicamente si el dispositivo anticontaminante original era un elemento supervisado en la configuración original.
 - 4.6.2. En el caso de los dispositivos anticontaminantes de recambio destinados a instalarse en motores o vehículos homologados de conformidad con el Reglamento (CE) n.º 595/2009 y con el presente Reglamento, la compatibilidad del dispositivo anticontaminante de recambio con las medidas de control de NO_x se demostrará utilizando los procedimientos descritos en el anexo XIII del presente Reglamento.
 - 4.6.3. No se aplicarán las disposiciones del Reglamento n.º 49 de la CEPE aplicables a los componentes distintos de los dispositivos anticontaminantes.
 - 4.6.4. El fabricante del dispositivo anticontaminante de recambio podrá utilizar el mismo procedimiento de preacondicionamiento y ensayo seguido en la homologación de tipo original. En este caso, la autoridad de homologación que concedió la homologación de tipo original de un motor de un vehículo proporcionará, previa petición y sin ningún tipo de discriminación, una ficha de características presentada como apéndice de la ficha de características prevista en el apéndice 4 del anexo I, que contiene el número y el tipo de ciclos de preacondicionamiento y el tipo de ciclo de ensayo utilizados por el fabricante del equipo original para el ensayo de las medidas de control de NO_x del dispositivo anticontaminante.
 - 4.6.5. El punto 4.5.5 será aplicable a las medidas de control de NO, supervisadas por el sistema DAB.».
- 4) El apéndice 3 se sustituye por el texto siguiente:

«Apéndice 3

Procedimiento de durabilidad para la evaluación del rendimiento en materia de emisiones de un dispositivo anticontaminante de recambio

 En el presente apéndice se expone el procedimiento de durabilidad mencionado en el punto 4.3.2.4 del anexo XI a fin de evaluar el rendimiento en materia de emisiones de un dispositivo anticontaminante de recambio.

2. DESCRIPCIÓN DEL PROCEDIMIENTO DE DURABILIDAD

2.1. El procedimiento de durabilidad constará de una fase de recogida de datos y de un programa de rodaje.

2.2. Fase de recogida de datos

- 2.2.1. El motor seleccionado, equipado con el sistema completo de postratamiento del gas de escape que incorpora el dispositivo anticontaminante de recambio, se enfriará hasta alcanzar la temperatura ambiente y se someterá a un ciclo de ensayo WHTC de arranque en frío, de acuerdo con los puntos 7.6.1 y 7.6.2 del anexo 4 del Reglamento n.º 49 de la CEPE.
- 2.2.2. Inmediatamente después del ciclo de ensayo WHTC de arranque en frío, se hará funcionar el motor durante 9 ciclos sucesivos de ensayo WHTC de arranque en caliente, de acuerdo con el punto 7.6.4 del anexo 4 del Reglamento n.º 49 de la CEPE.
- 2.2.3. La secuencia de ensayo establecida en los puntos 2.2.1 y 2.2.2 se llevará a cabo de conformidad con las instrucciones que figuran en el punto 7.6.5 del anexo 4 del Reglamento n.º 49 de la CEPE.
- 2.2.4. Como alternativa, los datos pertinentes pueden recogerse conduciendo un vehículo completamente cargado equipado con el sistema elegido de postratamiento del gas de escape que incorpora el dispositivo anticontaminante de recambio. El ensayo podrá efectuarse en la carretera aplicando los requisitos sobre el trayecto establecidos en los puntos 4.5 a 4.5.5 del anexo II del presente Reglamento y llevando un registro completo de los datos relativos a la conducción o bien en un banco dinamométrico adecuado. Si se opta por un ensayo en carretera, se conducirá el vehículo durante un ciclo de ensayo en frío, tal como se establece en el apéndice 5 del presente anexo, seguido de 9 ciclos de ensayo en caliente idénticos al efectuado en frío, de forma que el trabajo efectuado por el motor sea el mismo que el conseguido con arreglo a los puntos 2.2.1 y 2.2.2. Si se opta por un banco dinamométrico, se adaptará la pendiente de carretera simulada del ciclo de ensayo del apéndice 5 para que se corresponda con el trabajo realizado por el motor durante el WHTC.
- 2.2.5. La autoridad de homologación de tipo rechazará los datos de temperatura obtenidos en el punto 2.2.4 si considera que no son realistas y exigirá la repetición del ensayo o la realización de un ensayo conforme a lo dispuesto en los puntos 2.2.1, 2.2.2 y 2.2.3.
- 2.2.6. Se registrarán las temperaturas en el dispositivo anticontaminante de recambio durante toda la secuencia de ensayo en el lugar con la temperatura más elevada.
- 2.2.7. En los casos en que dicho lugar varíe con el tiempo o sea difícil de determinar, se registrarán varias temperaturas del lecho en lugares apropiados.
- 2.2.8. El fabricante seleccionará el número y los lugares para las mediciones de la temperatura de común acuerdo con la autoridad de homologación de tipo y basándose en las mejores prácticas técnicas.
- 2.2.9. De común acuerdo con la autoridad de homologación, podrá utilizarse una sola temperatura del lecho del catalizador o la temperatura a la entrada del catalizador si resulta imposible o excesivamente difícil medir varias temperaturas del lecho.

Figura 1

Ejemplo de ubicación de sensores de temperatura en un dispositivo genérico de postratamiento

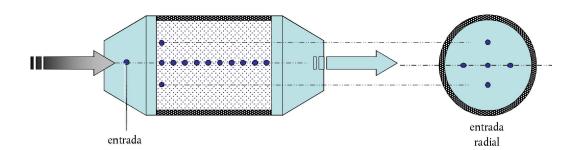
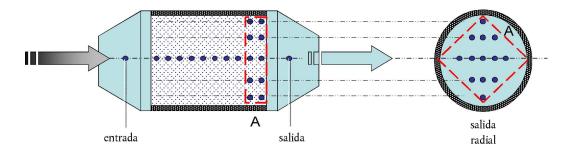



Figura 2

Ejemplo de ubicación de sensores de temperatura en el caso de un filtro de partículas diésel

- 2.2.10. Las temperaturas se medirán y registrarán con una frecuencia mínima de una vez por segundo (1 Hz) durante la secuencia de ensayo.
- 2.2.11. Las temperaturas medidas se tabularán en un histograma con clases de temperatura cuya anchura no sea superior a 10 °C. En el caso mencionado en el punto 2.2.7, en el histograma se registrará solo la temperatura más elevada por cada segundo. Cada barra del histograma representará la frecuencia acumulada en segundos de las temperaturas medidas incluidas en la clase de que se trate.
- 2.2.12. Se determinará el tiempo, expresado en horas, correspondiente a cada clase de temperatura, que luego se extrapolará a la vida útil del dispositivo anticontaminante de recambio, conforme a los valores indicados en el cuadro 1. La extrapolación se basará en la hipótesis de que un ciclo WHTC se corresponde con 20 km de conducción.

Cuadro 1

Vida útil del dispositivo anticontaminante de recambio para cada categoría de vehículo y número equivalente de ciclos de ensayo WHTC y de horas de funcionamiento

Categoría de vehículo	Kilometraje (km)	Número equivalente de ciclos de ensayo WHTC	Número equivalente de horas
Sistemas de motor instalados en vehículos de las categorías M_1 , N_1 y N_2	114 286	5 714	2 857
Sistemas de motor instalados en vehículos de las categorías N ₂ y N ₃ con una masa máxima técnicamente admisible no superior a 16 toneladas, y de la categoría M ₃ , clases I, II, A y B, con una masa máxima técnicamente admisible superior a 7,5 toneladas	214 286	10 714	5 357
Sistemas de motor instalados en vehículos de las categorías N ₃ con una masa máxima técnicamente admisible no superior a 16 toneladas, y de la categoría M ₃ , clases III y B, con una masa máxima técnicamente admisible superior a 7,5 toneladas	500 000	25 000	12 500

- 2.2.13. Se admite realizar simultáneamente la fase de recogida de datos de distintos dispositivos.
- 2.2.14. En el caso de los sistemas que funcionan en presencia de una regeneración activa, se registrarán el número, la duración y las temperaturas de las regeneraciones producidas durante la secuencia de ensayo definida en los puntos 2.2.1 y 2.2.2. Si no se ha producido ninguna regeneración activa, se ampliará la secuencia en caliente definida en el punto 2.2.2 para incluir al menos dos regeneraciones activas.

- 2.2.15. Se registrará el total de lubricante consumido durante el período de recogida de datos, en g/h, siguiendo cualquier método adecuado, como por ejemplo el procedimiento de purga y pesaje descrito en el apéndice 6. Con este fin, se hará funcionar el motor durante 24 horas realizando ciclos de ensayo WHTC consecutivos. En los casos en que no pueda obtenerse una medición exacta del consumo de aceite, el fabricante, de común acuerdo con la autoridad de homologación de tipo, podrá recurrir a las siguientes opciones para determinar el consumo de lubricante:
 - a) un valor por defecto de 30 g/h;
 - b) un valor solicitado por el fabricante, basado en datos e información rigurosos, y establecido de común acuerdo con la autoridad de homologación de tipo.
- 2.3. Cálculo del tiempo de envejecimiento equivalente correspondiente a una temperatura de referencia
- 2.3.1. Las temperaturas registradas con arreglo a lo dispuesto en los puntos 2.2 a 2.2.15 se reducirán a una temperatura de referencia *T*, solicitada por el fabricante de común acuerdo con la autoridad de homologación de tipo, situada dentro del rango de las temperaturas registradas durante la fase de recogida de datos.
- 2.3.2. En el caso especificado en el punto 2.2.13, puede variar el valor de T, para cada uno de los dispositivos.
- 2.3.3. El tiempo de envejecimiento equivalente correspondiente a la temperatura de referencia se calculará, para cada clase de temperatura contemplada en el punto 2.2.11, de acuerdo con la siguiente ecuación:

Ecuación 1:

$$t_{\varepsilon}^{i}=t_{bin}^{i} imes e^{\left(\left(rac{R}{T_{r}}
ight)-\left(rac{R}{T_{bin}^{i}}
ight)
ight)}$$

Donde:

R = reactividad térmica del dispositivo anticontaminante de recambio.

Se utilizarán los valores siguientes:

- catalizador de oxidación diésel (DOC): 18 050.
- DPF catalizado: 18 050
- SCR o catalizador de oxidación de amoníaco (AMOX) basado en hierro-zeolita (Fe-Z): 5 175
- SCR cobre-zeolita (Cu-Z): 11 550
- SCR vanadio (V): 5 175
- LNT (filtro de NO_x en régimen pobre): 18 050

 T_r = temperatura de referencia, en K.

 $T_{\rm bin}^i$ = temperatura en el punto medio, en K, de la clase de temperaturas i a las que el dispositivo anticontaminante de recambio es expuesto durante la fase de recogida de datos, registrada en el histograma de temperaturas.

 $t_{\rm bin}^i$ = tiempo, en horas, correspondiente a la temperatura $T_{\rm bin}^i$, ajustada basándose en una vida útil total, por ejemplo, si el histograma representase 5 horas y la vida útil fuese de 4 000 horas con arreglo al cuadro 1, todas las entradas de tiempo del histograma se multiplicarían por $\frac{4\,000}{5}=800$.

 t_e^i = tiempo de envejecimiento equivalente, en horas, necesario para conseguir, exponiendo el dispositivo anticontaminante de recambio a la temperatura T_{r} , el mismo grado de envejecimiento que se lograría mediante la exposición del mismo a la temperatura T_{bin}^i durante el tiempo t_{bin}^i .

i = número de la clase, donde 1 corresponde a la clase de la temperatura más baja y n es el valor de la clase con la temperatura más elevada.

2.3.4. El tiempo de envejecimiento equivalente total se calculará con arreglo a la ecuación siguiente:

Ecuación 2:

$$AT = \sum_{i=1}^{n} t_{e}^{i}$$

Donde:

AT = tiempo de envejecimiento equivalente total, en horas, necesario para conseguir, exponiendo el dispositivo anticontaminante de recambio a la temperatura T_{r} , el mismo grado de envejecimiento que se lograría exponiéndolo durante su vida útil a la temperatura T_{bin}^{i} durante el tiempo t_{bin}^{i} de cada una de las clases i registradas en el histograma.

 t_e^i = tiempo de envejecimiento equivalente, en horas, necesario para conseguir, exponiendo el dispositivo anticontaminante de recambio a la temperatura T_{r} , el mismo grado de envejecimiento que se lograría mediante la exposición del mismo a la temperatura T_{bin}^i durante el tiempo t_{bin}^i .

i = número de la clase, donde 1 corresponde a la clase de la temperatura más baja y n es el valor de la clase con la temperatura más elevada.

n = número total de clases de temperatura.

2.3.5. En el caso contemplado en el apartado 2.2.13, se calculará el AT correspondiente a cada dispositivo.

2.4. Programa de rodaje

- 2.4.1. Requisitos generales
- 2.4.1.1. El programa de rodaje deberá permitir la aceleración del envejecimiento del dispositivo anticontaminante de recambio utilizando la información recabada durante la fase de recogida de datos establecida en el punto 2.2.
- 2.4.1.2. El programa de rodaje consistirá en un programa de rodaje térmico y un programa de rodaje de consumo de lubricante de conformidad con el apartado 2.4.4.6. El fabricante, de común acuerdo con la autoridad de homologación de tipo, no estará obligado a llevar a cabo un programa de rodaje de consumo de lubricante en caso de que los dispositivos anticontaminantes de recambio estén situados después de un componente de filtrado de postratamiento (por ejemplo, un filtro de partículas diésel). Tanto el programa de rodaje térmico como el de consumo de lubricante consistirán respectivamente en una repetición de una serie de secuencias térmicas y de consumo de lubricante.
- 2.4.1.3. En el caso de los dispositivos anticontaminantes de recambio que funcionan en presencia de una regeneración activa, la secuencia térmica deberá complementarse con un modo de regeneración activa.
- 2.4.1.4. En el caso de los programas de rodaje formados por programas de rodaje térmico y de consumo de lubrificantes, se alternarán sus secuencias respectivas, de tal modo que, por cada secuencia térmica que deba efectuarse, la secuencia siguiente corresponda al consumo de lubricante.
- 2.4.1.5. Se permite realizar simultáneamente el programa de rodaje cuando se trate de dispositivos distintos. En ese caso, se establecerá un único programa de rodaje para todos los dispositivos.
- 2.4.2. Programa de rodaje térmico
- 2.4.2.1. El programa de rodaje térmico simulará el efecto del envejecimiento térmico sobre el rendimiento de un dispositivo anticontaminante de recambio hasta el final de su vida útil.
- 2.4.2.2. El motor utilizado para la ejecución del programa de rodaje, equipado con el sistema de postratamiento del gas de escape que incorpora el dispositivo anticontaminante de recambio, funcionará durante un mínimo de tres secuencias térmicas sucesivas, tal como se establece en el apéndice 4.

- 2.4.2.3. Las temperaturas se registrarán durante un mínimo de dos secuencias térmicas. La primera secuencia, realizada con fines de calentamiento, no se tendrá en cuenta a efectos de la recogida de datos sobre la temperatura.
- 2.4.2.4. Las temperaturas se registrarán en lugares adecuados, elegidos de conformidad con los puntos 2.2.6 a 2.2.9, con una frecuencia mínima de una vez por segundo (1 Hz).
- 2.4.2.5. El tiempo de envejecimiento efectivo correspondiente a las secuencias térmicas mencionadas en el punto 2.4.2.3 se calculará de acuerdo con las ecuaciones siguientes:

Ecuación 3:

$$t_{e}^{i} = \frac{\sum\limits_{n_{c}=1}^{C} e^{\left(\left(\frac{R}{T_{r}}\right) - \left(\frac{R}{T_{i}}\right)\right)}}{C}$$

Ecuación 4:

$$AE = \sum_{i=1}^{p} t_{e}^{i}$$

Donde:

 t_e^i = tiempo de envejecimiento efectivo, en horas, necesario para conseguir, exponiendo el dispositivo anticontaminante de recambio a la temperatura T_p , el mismo grado de envejecimiento que se lograría exponiéndolo a la temperatura T_i durante el segundo i.

 T_i = la temperatura, en K, medida en el segundo i, en cada una de las secuencias térmicas.

R = reactividad térmica del dispositivo anticontaminante de recambio. El fabricante establecerá, de común acuerdo con la autoridad de homologación de tipo, el valor R utilizado. Como alternativa, también será posible utilizar los siguientes valores por defecto:

- catalizador de oxidación diésel (DOC): 18 050.
- DPF catalizado: 18 050
- SCR o catalizador de oxidación de amoníaco (AMOX) basado en hierro-zeolita (Fe-Z): 5 175
- SCR cobre-zeolita (Cu-Z): 11 550
- SCR vanadio (V): 1 575
- LNT (filtro de NO_x en régimen pobre): 18 050

 T_r = temperatura de referencia, en K, siendo el mismo valor que en la ecuación 1.

AE = tiempo de envejecimiento efectivo, en horas, necesario para conseguir, exponiendo el dispositivo anticontaminante de recambio a la temperatura T_{ν} el mismo grado de envejecimiento que se lograría con la exposición del mismo durante la totalidad de la secuencia térmica.

AT = tiempo de envejecimiento equivalente total, en horas, necesario para conseguir, exponiendo el dispositivo anticontaminante de recambio a la temperatura T_r , el mismo grado de envejecimiento que se lograría exponiéndolo durante su vida útil a la temperatura T^i_{bin} durante el tiempo t^i_{bin} de cada una de las clases i registradas en el histograma.

i = número de la medición de la temperatura.

p = número total de mediciones de temperatura.

 n_c = número de la secuencia térmica de entre las realizadas con el propósito de recoger datos sobre la temperatura, de conformidad con el punto 2.4.2.3.

C = número total de secuencias térmicas realizadas con el propósito de recoger datos sobre la temperatura.

2.4.2.6. El número total de secuencias térmicas que deben incluirse en el programa de rodaje se determinará aplicando la ecuación siguiente:

Ecuación 5:

$$N_{TS} = AT/AE$$

Donde:

 N_{TS} = número total de secuencias térmicas que se llevarán a cabo durante el programa de rodaje

AT = tiempo de envejecimiento equivalente total, en horas, necesario para conseguir, exponiendo el dispositivo anticontaminante de recambio a la temperatura T_i , el mismo grado de envejecimiento que se lograría exponiéndolo durante su vida útil a la temperatura T_{bin}^i durante el tiempo t_{bin}^i de cada una de las clases i registradas en el histograma.

AE = tiempo de envejecimiento efectivo, en horas, necesario para conseguir, exponiendo el dispositivo anticontaminante de recambio a la temperatura *T*_r, el mismo grado de envejecimiento que se lograría con la exposición del mismo durante la totalidad de la secuencia térmica.

- 2.4.2.7. Está permitido reducir el N_{TS} y, por consiguiente, el programa de rodaje, aumentando las temperaturas a las que cada dispositivo está expuesto en cada modo del ciclo de envejecimiento mediante la aplicación de una o varias de las siguientes medidas:
 - a) aislar el tubo de escape;
 - b) acercar el dispositivo anticontaminante de recambio al colector de escape;
 - c) aumentar artificialmente la temperatura del gas de escape;
 - d) optimizar los parámetros del motor sin modificar sustancialmente el comportamiento de este en cuanto a las emisiones.
- 2.4.2.8. Al aplicar las medidas contempladas en los puntos 2.4.4.6 y 2.4.4.7, el tiempo de envejecimiento total calculado a partir de $N_{\rm TS}$ no será inferior al 10 % de la vida útil que figura en el cuadro 1: por ejemplo, la categoría de vehículos $N_{\rm I}$ no tendrá un $N_{\rm TS}$ inferior a 286 secuencias térmicas, suponiendo que cada secuencia dura 1 hora.
- 2.4.2.9. Está permitido aumentar el N_{TS} y, por consiguiente, la duración del programa de rodaje, reduciendo las temperaturas en cada modo del ciclo de envejecimiento mediante la aplicación de una o varias de las siguientes medidas:
 - a) alejar el dispositivo anticontaminante de recambio del colector de escape;
 - b) disminuir artificialmente la temperatura del gas de escape;
 - c) optimizar los parámetros del motor.
- 2.4.2.10. En el caso contemplado en el punto 2.4.1.5, será de aplicación lo siguiente:
- 2.4.2.10.1. El N_{TS} será el mismo para cada dispositivo, de modo que pueda establecerse un único programa de rodaje.
- 2.4.2.10.2. Para conseguir el mismo N_{TS} para cada dispositivo, se calculará un primer valor N_{TS} para cada dispositivo, con sus propios valores AT y AE.
- 2.4.2.10.3. Si los valores N_{TS} calculados son distintos, se podrán aplicar una o varias de las medidas establecidas en los puntos 2.4.2.7 a 2.4.2.10 a los dispositivos que requieran la modificación de N_{TS} durante las secuencias térmicas contempladas en el punto 2.4.2.3, a fin de influir en la T_i medida y, por tanto, acelerar o retardar convenientemente el envejecimiento artificial de los dispositivos en cuestión.
- 2.4.2.10.4. Se calcularán los nuevos valores N_{TS} correspondientes a las nuevas temperaturas T_i obtenidas en el punto 2.4.2.10.3.

- 2.4.2.10.5. Se repetirán las etapas establecidas en los puntos 2.4.2.10.3 y 2.4.2.10.4 hasta que concuerden los valores N_{TS} obtenidos para cada dispositivo del sistema.
- 2.4.2.10.6. Los valores T_r utilizados para obtener los distintos N_{TS} en los puntos 2.4.2.10.4 y 2.4.2.10.5 serán los mismos que se utilizan en los puntos 2.3.2 y 2.3.5 para calcular el AT para cada dispositivo.
- 2.4.2.11. En el caso de un conjunto de dispositivos anticontaminantes de recambio que constituyen un sistema en el sentido del artículo 3, apartado 25, de la Directiva 2007/46/CE, podrá tenerse en cuenta una de las dos opciones siguientes para el envejecimiento térmico de los dispositivos:
- 2.4.2.11.1. Los dispositivos del conjunto podrán ser envejecidos juntos o por separado, de conformidad con el punto 2.4.2.10.
- 2.4.2.11.2. Si el conjunto está fabricado de tal modo que no es posible disociar los dispositivos (por ejemplo, DOC + SCR en una carcasa), el envejecimiento térmico del conjunto se realizará con el N_{TS} más elevado.
- 2.4.3. Programa de rodaje térmico modificado para dispositivos que funcionan en presencia de una regeneración activa
- 2.4.3.1. El programa de rodaje térmico modificado para dispositivos que funcionan en presencia de una regeneración activa simulará el efecto del envejecimiento debido tanto a la carga térmica como a la regeneración activa en un dispositivo anticontaminante de recambio al final de su vida útil.
- 2.4.3.2. El motor utilizado para el programa de rodaje, equipado con el sistema de postratamiento del gas de escape que incorpora el dispositivo anticontaminante de recambio, funcionará durante un mínimo de tres secuencias térmicas modificadas, constituidas cada una de ellas por una secuencia térmica con arreglo al apéndice 4, seguida de una regeneración activa completa, durante la cual la temperatura máxima alcanzada en el sistema de postratamiento no deberá ser inferior a la temperatura máxima registrada en la fase de recogida de datos.
- 2.4.3.3. Las temperaturas se registrarán durante un mínimo de dos secuencias térmicas modificadas. La primera secuencia, realizada con fines de calentamiento, no se tendrá en cuenta a efectos de la recogida de datos sobre la temperatura.
- 2.4.3.4. Con el fin de minimizar el tiempo transcurrido entre la secuencia térmica establecida en el apéndice 4 y la regeneración activa posterior, el fabricante podrá provocar artificialmente la regeneración activa haciendo funcionar el motor, después de cada secuencia térmica conforme al apéndice 4, en un modo estacionario que le permita conseguir una gran producción de hollín. En ese caso, el modo estacionario se considerará también parte de la secuencia térmica modificada establecida en el punto 2.4.3.2.
- 2.4.3.5. El tiempo de envejecimiento efectivo correspondiente a cada secuencia térmica modificada se calculará mediante las ecuaciones 3 y 4.
- 2.4.3.6. El número total de secuencias térmicas modificadas que se realizarán durante el programa de rodaje se calculará aplicando la ecuación 5.
- 2.4.3.7. Está permitido reducir el N_{TS} y, por consiguiente, la duración del programa de rodaje, aumentando las temperaturas en cada modo de la secuencia térmica modificada mediante la aplicación de una o varias de las medidas que figuran en el punto 2.4.2.7.
- 2.4.3.8. Además de las medidas enumeradas en el punto 2.4.3.7, N_{TS} también podrá reducirse aumentando la temperatura máxima de la regeneración activa dentro de la secuencia térmica modificada, sin superar una temperatura de lecho de 800 °C bajo ninguna circunstancia.
- 2.4.3.9. N_{TS} nunca será inferior a un 50 % del número de regeneraciones activas al que el dispositivo anticontaminante de recambio es sometido durante su vida útil, calculado de acuerdo con la ecuación siguiente:

Ecuación 5:

$$N_{AR} = \frac{t_{WHTC}}{t_{AR} + t_{BAR}}$$

Donde:

 N_{AR} = número de secuencias de regeneración activa a lo largo de la vida útil del dispositivo anticontaminante de recambio.

 $t_{W\!HTC}$ = número equivalente de horas correspondiente a la categoría de vehículos para la que está concebido el dispositivo anticontaminante de recambio, obtenidas del cuadro 1.

 t_{AR} = duración, en horas, de una regeneración activa.

 t_{BAR} = tiempo, en horas, entre dos regeneraciones activas consecutivas.

- 2.4.3.10. Si, como consecuencia de la aplicación del número mínimo de secuencias térmicas modificadas establecido en el punto 2.4.3.9, el valor $AE \times N_{TS}$ calculado mediante la ecuación 4 es superior al valor AT calculado mediante la ecuación 2, podrá reducirse en la misma proporción el tiempo de cada fase de la secuencia térmica definida en el apéndice 4 e integrada en la secuencia térmica modificada según lo establecido en el punto 2.4.3.2, a fin de obtener $AE \times N_{TS} = AT$.
- 2.4.3.11. Está permitido aumentar el N_{TS} y, por consiguiente, la duración del programa de rodaje, reduciendo las temperaturas en cada modo de la secuencia térmica y de regeneración activa mediante la aplicación de una o varias de las medidas que figuran en el punto 2.4.2.9.
- 2.4.3.12. En el caso contemplado en el punto 2.4.1.5, serán de aplicación los puntos 2.4.2.10 y 2.4.2.11.
- 2.4.4. Programa de rodaje de consumo de lubricante
- 2.4.4.1. El programa de rodaje de consumo de lubricante simulará el efecto del envejecimiento debido a la contaminación química o la formación de depósitos como consecuencia del consumo de lubricante sobre el rendimiento de un dispositivo anticontaminante de recambio al final de su vida útil.
- 2.4.4.2. El lubricante consumido, en g/h, se determinará durante un mínimo de 24 secuencias térmicas o el número correspondiente de secuencias térmicas modificadas, siguiendo cualquier método adecuado, como por ejemplo el procedimiento de purga y pesaje descrito en el apéndice 6. Se utilizará lubricante nuevo.
- 2.4.4.3. El motor estará equipado con un cárter de aceite con un volumen constante para evitar la necesidad de rellenarlo, ya que nivel de aceite influye en la tasa de consumo de este. Podrá utilizarse cualquier método adecuado, como por ejemplo el descrito en la norma ASTM D7156-09.
- 2.4.4.4. Mediante la ecuación que figura a continuación se calculará el tiempo teórico, en horas, durante el que debería llevarse a cabo el programa de rodaje térmico o de rodaje térmico modificado, según proceda, con el fin de obtener el mismo consumo de lubricante que el correspondiente a la vida útil del dispositivo anticontaminante de recambio:

Ecuación 6:

$$t_{TAS} = \frac{LCR_{WHTC} \times t_{WHTC}}{LCR_{TAS}}$$

Donde:

 t_{TAS} = duración teórica, en horas, del programa de rodaje necesaria para obtener el mismo consumo de lubricante que el correspondiente a la vida útil del dispositivo anticontaminante de recambio, siempre que el programa de rodaje solo esté compuesto por una serie de secuencias térmicas consecutivas o de secuencias térmicas modificadas consecutivas.

 LCR_{WHTC} = tasa de consumo de lubricante, en g/h, determinada con arreglo a lo establecido en el punto 2.2.15.

 $t_{W\!HT\!C}$ = número equivalente de horas correspondiente a la categoría de vehículos para la que está concebido el dispositivo anticontaminante de recambio, obtenidas del cuadro 1.

 LCR_{TAS} = tasa de consumo de lubricante, en g/h, determinada con arreglo a lo establecido en el punto 2.4.4.2.

2.4.4.5. El número de secuencias térmicas o de secuencias térmicas modificadas correspondientes a t_{TAS} se calculará aplicando la siguiente ecuación:

Ecuación 7:

$$N = \frac{t_{TAS}}{T_{TS}}$$

Donde:

N = número de secuencias térmicas o de secuencias térmicas modificadas correspondientes a t_{TAS} .

 t_{TAS} = duración teórica, en horas, del programa de rodaje necesaria para obtener el mismo consumo de lubricante que el correspondiente a la vida útil del dispositivo anticontaminante de recambio, siempre que el programa de rodaje solo esté compuesto por una serie de secuencias térmicas consecutivas o de secuencias térmicas modificadas consecutivas.

 $t_{\rm rs}$ = duración, en horas, de una sola secuencia térmica o secuencia térmica modificada.

- 2.4.4.6. El valor de N se comparará con el valor de N_{TS} calculado con arreglo al punto 2.4.2.6 o, en el caso de los dispositivos que funcionan en presencia de una regeneración activa, de acuerdo con lo dispuesto en el punto 2.4.3.5. Si $N \le N_{TS}$, no será necesario añadir un programa de rodaje de consumo de lubricante al programa de rodaje térmico. Si $N > N_{TS}$, se añadirá un programa de rodaje de consumo de lubricante al programa de rodaje térmico.
- 2.4.4.7. No será necesario añadir un programa de rodaje de consumo de lubricante si, al incrementar el consumo de este como se describe en el punto 2.4.4.8.4, ya se ha alcanzado el consumo de lubricante necesario con la realización del programa de rodaje térmico correspondiente, consistente en la ejecución de N_{TS} secuencias térmicas o secuencias térmicas modificadas.
- 2.4.4.8. Desarrollo del programa de rodaje de consumo de lubricante
- 2.4.4.8.1. El programa de rodaje de consumo de lubricante se compondrá de una serie de secuencias de consumo de lubricante repetidas varias veces, alternándose cada secuencia de consumo de lubricante con una secuencia térmica o una secuencia térmica modificada.
- 2.4.4.8.2. Cada secuencia de consumo de lubricante constará de un modo estacionario a una carga y un régimen constantes, seleccionados estos de manera que el consumo de lubricante se maximice y se minimice el envejecimiento térmico efectivo. El fabricante seleccionará el modo de común acuerdo con la autoridad de homologación de tipo y basándose en buenas prácticas técnicas.
- 2.4.4.8.3. La duración de cada secuencia de consumo de lubricante se determinará como sigue:
- 2.4.4.8.3.1. El motor se hará funcionar durante un período de tiempo adecuado a la carga y el régimen fijado por el fabricante de conformidad con el punto 2.4.4.8.2, y se determinará el lubricante consumido, en g/h, utilizando cualquier método adecuado, como por ejemplo el procedimiento de purga y pesaje descrito en el apéndice 6. Los cambios de lubricante se realizarán a los intervalos recomendados.
- 2.4.4.8.3.2. La duración de cada secuencia de consumo de lubricante se determinará aplicando la ecuación siguiente:

Ecuación 8:

$$t_{LS} = \frac{LCR_{WHTC} \times t_{WHTC} - LCR_{TAS} \times N_{TS} \times t_{TS}}{LCR_{LAS} \times N_{TS}}$$

Donde:

t₁₅ = duración, en horas, de una sola secuencia de consumo de lubricante

 LCR_{WHTC} = tasa de consumo de lubricante, en g/h, determinada con arreglo a lo establecido en el punto 2.2.15.

 t_{WHTC} = número equivalente de horas correspondiente a la categoría de vehículos para la que está concebido el dispositivo anticontaminante de recambio, obtenidas del cuadro 1.

 LCR_{TAS} = tasa de consumo de lubricante, en g/h, determinada con arreglo a lo establecido en el punto 2.4.4.2.

 LCR_{LAS} = tasa de consumo de lubricante, en g/h, determinada con arreglo a lo establecido en el punto 2.4.4.8.3.1.

 t_{TS} = duración, en horas, de una sola secuencia térmica, tal y como figura en el apéndice 4, o de una secuencia térmica modificada, según lo establecido en el punto 2.4.3.2.

 N_{TS} = número total de secuencias térmicas o secuencias térmicas modificadas que se llevarán a cabo durante el programa de rodaje

- 2.4.4.8.4. La tasa de consumo de lubricante siempre permanecerá por debajo del 0,5 % de la tasa de consumo de combustible del motor con el fin de evitar una excesiva acumulación de cenizas en la cara anterior del dispositivo anticontaminante de recambio.
- 2.4.4.8.5. Está permitido añadir al AE calculado en la ecuación 4 el envejecimiento térmico debido a la conducción de la secuencia de consumo de lubricante.
- 2.4.5. Desarrollo del programa completo de rodaje
- 2.4.5.1. El programa de rodaje deberá elaborarse alternando una secuencia térmica o secuencia térmica modificada, según proceda, con una secuencia de consumo de lubricante. Esta pauta se repetirá N_{TS} veces, calculándose el valor de N_{TS} de conformidad con la sección 2.4.2 o la sección 2.4.3, según proceda. En el apéndice 7 figura un ejemplo de programa completo de rodaje. El apéndice 8 contiene un diagrama de flujo que describe el desarrollo de un programa completo de rodaje.
- 2.4.6. Ejecución del programa completo de rodaje
- 2.4.6.1. El motor, equipado con el sistema de postratamiento del gas de escape que incorpora el dispositivo anticontaminante de recambio, ejecutará el programa de rodaje establecido en el punto 2.4.5.1.
- 2.4.6.2. El motor utilizado para la ejecución del programa de rodaje podrá ser distinto del utilizado en la fase de recogida de datos, siendo este último el motor para el cual se ha diseñado el dispositivo anticontaminante de recambio cuya homologación de tipo se desea y el que va a ser sometido a ensayo con respecto a las emisiones con arreglo al punto 2.4.3.2.
- 2.4.6.3. Si la cilindrada del motor utilizado para la ejecución del programa de rodaje es como mínimo un 20 % mayor que la del motor utilizado en la fase de recogida de datos, el sistema de escape del primer motor estará equipado con una derivación para reproducir lo más fielmente posible el caudal de escape del segundo motor en las condiciones de envejecimiento seleccionadas.
- 2.4.6.4. En el caso previsto en el punto 2.4.6.2, el motor utilizado para la ejecución del programa de rodaje deberá contar con una homologación de tipo con arreglo al Reglamento (CE) n.º 595/2009. Además, si los dispositivos sometidos a ensayo están destinados a instalarse en un sistema de motor con recirculación del gas de escape (EGR), el sistema de motor utilizado para el programa de rodaje también deberá estar equipado con EGR. Si los dispositivos sometidos a ensayo no están destinados a instalarse en un sistema de motor con EGR, el sistema de motor utilizado para el programa de rodaje tampoco deberá estar equipado con EGR.
- 2.4.6.5. El lubricante y el carburante utilizados en el programa de rodaje deberán parecerse lo más posible a los utilizados durante la fase de recogida de datos establecida en el punto 2.2. El lubricante deberá estar en consonancia con la recomendación del fabricante del motor para el cual está diseñado el dispositivo anticontaminante. Los combustibles utilizados serán combustibles comerciales que cumplen los requisitos correspondientes de la Directiva 98/70/CE. A petición del fabricante, también podrán utilizarse combustibles de referencia con arreglo al presente Reglamento.

- 2.4.6.6. El lubricante se cambiará a efectos de mantenimiento con la periodicidad prevista por el fabricante del motor utilizado en la fase de recogida de datos.
- 2.4.6.7. En el caso de un SCR, la inyección de urea se llevará a cabo de conformidad con la estrategia definida por el fabricante del dispositivo anticontaminante de recambio.».
- 5) Se añaden los apéndices 4 a 8 siguientes:

«Apéndice 4 Secuencia para el envejecimiento térmico

Modo	Régimen (% del ralentí alto)	Carga (% para un régimen determinado)	Tiempo (s)
1	2,92	0,58	626
2	45,72	1,58	418
3	38,87	3,37	300
4	20,23	11,36	102
5	11,37	14,90	62
6	32,78	18,52	370
7	53,12	20,19	410
8	59,53	34,73	780
9	78,24	54,38	132
10	39,07	62,85	212
11	47,82	62,94	188
Modo de regeneración (si procede)	Por definir (véase el punto 2.4.3.4).	Por definir (véase el punto 2.4.3.4).	Por definir (véase el punto 2.4.3.4).
Modo de consumo de lubricante (si procede)	Por definir conforme al punto 2.4.4.8.2	Por definir conforme al punto 2.4.4.8.2	Por definir conforme al punto 2.4.4.8.3

Nota: La secuencia de los modos 1 a 11 se ha ordenado por carga ascendente para maximizar la temperatura del gas de escape en los modos de carga elevada. De común acuerdo con la autoridad de homologación de tipo, se puede modificar dicho orden para optimizar la temperatura del gas de escape si ello puede contribuir a reducir el tiempo efectivo de envejecimiento.

Apéndice 5

Ciclo de ensayo para recogida de datos en banco dinamométrico o en carretera

Tiem- po	Velo- cidad												
S	km/h												
1	0	261	22,38	521	35,46	781	18,33	1 041	39,88	1 301	66,39	1 561	86,88
2	0	262	24,75	522	36,81	782	18,31	1 042	41,25	1 302	66,74	1 562	86,7
3	0	263	25,55	523	37,98	783	18,05	1 043	42,07	1 303	67,43	1 563	86,81
4	0	264	25,18	524	38,84	784	17,39	1 044	43,03	1 304	68,44	1 564	86,81
5	0	265	23,94	525	39,43	785	16,35	1 045	44,4	1 305	69,52	1 565	86,81
6	0	266	22,35	526	39,73	786	14,71	1 046	45,14	1 306	70,53	1 566	86,81
7	2,35	267	21,28	527	39,8	787	11,71	1 047	45,44	1 307	71,47	1 567	86,99
8	5,57	268	20,86	528	39,69	788	7,81	1 048	46,13	1 308	72,32	1 568	87,03
9	8,18	269	20,65	529	39,29	789	5,25	1 049	46,79	1 309	72,89	1 569	86,92
10	9,37	270	20,18	530	38,59	790	4,62	1 050	47,45	1 310	73,07	1 570	87,1
11	9,86	271	19,33	531	37,63	791	5,62	1 051	48,68	1 311	73,03	1 571	86,85
12	10,18	272	18,23	532	36,22	792	8,24	1 052	50,13	1 312	72,94	1 572	87,14
13	10,38	273	16,99	533	34,11	793	10,98	1 053	51,16	1 313	73,01	1 573	86,96
14	10,57	274	15,56	534	31,16	794	13,15	1 054	51,37	1 314	73,44	1 574	86,85
15	10,95	275	13,76	535	27,49	795	15,47	1 055	51,3	1 315	74,19	1 575	86,77
16	11,56	276	11,5	536	23,63	796	18,19	1 056	51,15	1 316	74,81	1 576	86,81
17	12,22	277	8,68	537	20,16	797	20,79	1 057	50,88	1 317	75,01	1 577	86,85
18	12,97	278	5,2	538	17,27	798	22,5	1 058	50,63	1 318	74,99	1 578	86,74
19	14,33	279	1,99	539	14,81	799	23,19	1 059	50,2	1 319	74,79	1 579	86,81
20	16,38	280	0	540	12,59	800	23,54	1 060	49,12	1 320	74,41	1 580	86,7
21	18,4	281	0	541	10,47	801	24,2	1 061	48,02	1 321	74,07	1 581	86,52
22	19,86	282	0	542	8,85	802	25,17	1 062	47,7	1 322	73,77	1 582	86,7
23	20,85	283	0,5	543	8,16	803	26,28	1 063	47,93	1 323	73,38	1 583	86,74
24	21,52	284	0,57	544	8,95	804	27,69	1 064	48,57	1 324	72,79	1 584	86,81
25	21,89	285	0,6	545	11,3	805	29,72	1 065	48,88	1 325	71,95	1 585	86,85
26	21,98	286	0,58	546	14,11	806	32,17	1 066	49,03	1 326	71,06	1 586	86,92

Tiem- po	Velo- cidad												
S	km/h												
27	21,91	287	0	547	15,91	807	34,22	1 067	48,94	1 327	70,45	1 587	86,88
28	21,68	288	0	548	16,57	808	35,31	1 068	48,32	1 328	70,23	1 588	86,85
29	21,21	289	0	549	16,73	809	35,74	1 069	47,97	1 329	70,24	1 589	87,1
30	20,44	290	0	550	17,24	810	36,23	1 070	47,92	1 330	70,32	1 590	86,81
31	19,24	291	0	551	18,45	811	37,34	1 071	47,54	1 331	70,3	1 591	86,99
32	17,57	292	0	552	20,09	812	39,05	1 072	46,79	1 332	70,05	1 592	86,81
33	15,53	293	0	553	21,63	813	40,76	1 073	46,13	1 333	69,66	1 593	87,14
34	13,77	294	0	554	22,78	814	41,82	1 074	45,73	1 334	69,26	1 594	86,81
35	12,95	295	0	555	23,59	815	42,12	1 075	45,17	1 335	68,73	1 595	86,85
36	12,95	296	0	556	24,23	816	42,08	1 076	44,43	1 336	67,88	1 596	87,03
37	13,35	297	0	557	24,9	817	42,27	1 077	43,59	1 337	66,68	1 597	86,92
38	13,75	298	0	558	25,72	818	43,03	1 078	42,68	1 338	65,29	1 598	87,14
39	13,82	299	0	559	26,77	819	44,14	1 079	41,89	1 339	63,95	1 599	86,92
40	13,41	300	0	560	28,01	820	45,13	1 080	41,09	1 340	62,84	1 600	87,03
41	12,26	301	0	561	29,23	821	45,84	1 081	40,38	1 341	62,21	1 601	86,99
42	9,82	302	0	562	30,06	822	46,4	1 082	39,99	1 342	62,04	1 602	86,96
43	5,96	303	0	563	30,31	823	46,89	1 083	39,84	1 343	62,26	1 603	87,03
44	2,2	304	0	564	30,29	824	47,34	1 084	39,46	1 344	62,87	1 604	86,85
45	0	305	0	565	30,05	825	47,66	1 085	39,15	1 345	63,55	1 605	87,1
46	0	306	0	566	29,44	826	47,77	1 086	38,9	1 346	64,12	1 606	86,81
47	0	307	0	567	28,6	827	47,78	1 087	38,67	1 347	64,73	1 607	87,03
48	0	308	0	568	27,63	828	47,64	1 088	39,03	1 348	65,45	1 608	86,77
49	0	309	0	569	26,66	829	47,23	1 089	40,37	1 349	66,18	1 609	86,99
50	1,87	310	0	570	26,03	830	46,66	1 090	41,03	1 350	66,97	1 610	86,96
51	4,97	311	0	571	25,85	831	46,08	1 091	40,76	1 351	67,85	1 611	86,96
52	8,4	312	0	572	26,14	832	45,45	1 092	40,02	1 352	68,74	1 612	87,07
53	9,9	313	0	573	27,08	833	44,69	1 093	39,6	1 353	69,45	1 613	86,96
54	11,42	314	0	574	28,42	834	43,73	1 094	39,37	1 354	69,92	1 614	86,92

Tiem-	Velo-	Tiem-	Velo-	Tiem-	Velo-	Tiem-	Velo-	Tiem-	Velo-	Tiem-	Velo-	Tiem-	Velo-
po s	cidad km/h	po s	cidad km/h	po s	cidad km/h	po s	cidad km/h	po s	cidad km/h	po s	cidad km/h	po s	cidad km/h
55	15,11	315	0	575	29,61	835	42,55	1 095	38,84	1 355	70,24	1 615	87,07
56	18,46	316	0	576	30,46	836	41,14	1 096	37,93	1 356	70,49	1 616	86,92
57	20,21		0		30,99		39,56	1 090	37,19				
	·	317		577		837				1 357	70,63	1 617	87,14
58	22,13	318	0	578	31,33	838	37,93	1 098	36,21	1 358	70,68	1 618	86,96
<u>59</u>	24,17	319	0	579	31,65	839	36,69	1 099	35,32	1 359	70,65	1 619	87,03
60	25,56	320	0	580	32,02	840	36,27	1 100	35,56	1 360	70,49	1 620	86,85
61	26,97	321	0	581	32,39	841	36,42	1 101	36,96	1 361	70,09	1 621	86,77
62	28,83	322	0	582	32,68	842	37,14	1 102	38,12	1 362	69,35	1 622	87,1
63	31,05	323	0	583	32,84	843	38,13	1 103	38,71	1 363	68,27	1 623	86,92
64	33,72	324	3,01	584	32,93	844	38,55	1 104	39,26	1 364	67,09	1 624	87,07
65	36	325	8,14	585	33,22	845	38,42	1 105	40,64	1 365	65,96	1 625	86,85
66	37,91	326	13,88	586	33,89	846	37,89	1 106	43,09	1 366	64,87	1 626	86,81
67	39,65	327	18,08	587	34,96	847	36,89	1 107	44,83	1 367	63,79	1 627	87,14
68	41,23	328	20,01	588	36,28	848	35,53	1 108	45,33	1 368	62,82	1 628	86,77
69	42,85	329	20,3	589	37,58	849	34,01	1 109	45,24	1 369	63,03	1 629	87,03
70	44,1	330	19,53	590	38,58	850	32,88	1 110	45,14	1 370	63,62	1 630	86,96
71	44,37	331	17,92	591	39,1	851	32,52	1 111	45,06	1 371	64,8	1 631	87,1
72	44,3	332	16,17	592	39,22	852	32,7	1 112	44,82	1 372	65,5	1 632	86,99
73	44,17	333	14,55	593	39,11	853	33,48	1 113	44,53	1 373	65,33	1 633	86,92
74	44,13	334	12,92	594	38,8	854	34,97	1 114	44,77	1 374	63,83	1 634	87,1
75	44,17	335	11,07	595	38,31	855	36,78	1 115	45,6	1 375	62,44	1 635	86,85
76	44,51	336	8,54	596	37,73	856	38,64	1 116	46,28	1 376	61,2	1 636	86,92
77	45,16	337	5,15	597	37,24	857	40,48	1 117	47,18	1 377	59,58	1 637	86,77
78	45,64	338	1,96	598	37,06	858	42,34	1 118	48,49	1 378	57,68	1 638	86,88
79	46,16	339	0	599	37,1	859	44,16	1 119	49,42	1 379	56,4	1 639	86,63
80	46,99	340	0	600	37,42	860	45,9	1 120	49,56	1 380	54,82	1 640	86,85
81	48,19	341	0	601	38,17	861	47,55	1 121	49,47	1 381	52,77	1 641	86,63
82	49,32	342	0	602	39,19	862	49,09	1 122	49,28	1 382	52,22	1 642	86,77
	1		l]	l	<u>l</u>	<u>l</u>	<u>l</u>	l	L

Tiem- po	Velo- cidad												
s	km/h												
83	49,7	343	0	603	40,31	863	50,42	1 123	48,58	1 383	52,48	1 643	86,77
84	49,5	344	0	604	41,46	864	51,49	1 124	48,03	1 384	52,74	1 644	86,55
85	48,98	345	0	605	42,44	865	52,23	1 125	48,2	1 385	53,14	1 645	86,59
86	48,65	346	0	606	42,95	866	52,58	1 126	48,72	1 386	53,03	1 646	86,55
87	48,65	347	0	607	42,9	867	52,63	1 127	48,91	1 387	52,55	1 647	86,7
88	48,87	348	0	608	42,43	868	52,49	1 128	48,93	1 388	52,19	1 648	86,44
89	48,97	349	0	609	41,74	869	52,19	1 129	49,05	1 389	51,09	1 649	86,7
90	48,96	350	0	610	41,04	870	51,82	1 130	49,23	1 390	49,88	1 650	86,55
91	49,15	351	0	611	40,49	871	51,43	1 131	49,28	1 391	49,37	1 651	86,33
92	49,51	352	0	612	40,8	872	51,02	1 132	48,84	1 392	49,26	1 652	86,48
93	49,74	353	0	613	41,66	873	50,61	1 133	48,12	1 393	49,37	1 653	86,19
94	50,31	354	0,9	614	42,48	874	50,26	1 134	47,8	1 394	49,88	1 654	86,37
95	50,78	355	2	615	42,78	875	50,06	1 135	47,42	1 395	50,25	1 655	86,59
96	50,75	356	4,08	616	42,39	876	49,97	1 136	45,98	1 396	50,17	1 656	86,55
97	50,78	357	7,07	617	40,78	877	49,67	1 137	42,96	1 397	50,5	1 657	86,7
98	51,21	358	10,25	618	37,72	878	48,86	1 138	39,38	1 398	50,83	1 658	86,63
99	51,6	359	12,77	619	33,29	879	47,53	1 139	35,82	1 399	51,23	1 659	86,55
100	51,89	360	14,44	620	27,66	880	45,82	1 140	31,85	1 400	51,67	1 660	86,59
101	52,04	361	15,73	621	21,43	881	43,66	1 141	26,87	1 401	51,53	1 661	86,55
102	51,99	362	17,23	622	15,62	882	40,91	1 142	21,41	1 402	50,17	1 662	86,7
103	51,99	363	19,04	623	11,51	883	37,78	1 143	16,41	1 403	49,99	1 663	86,55
104	52,36	364	20,96	624	9,69	884	34,89	1 144	12,56	1 404	50,32	1 664	86,7
105	52,58	365	22,94	625	9,46	885	32,69	1 145	10,41	1 405	51,05	1 665	86,52
106	52,47	366	25,05	626	10,21	886	30,99	1 146	9,07	1 406	51,45	1 666	86,85
107	52,03	367	27,31	627	11,78	887	29,31	1 147	7,69	1 407	52	1 667	86,55
108	51,46	368	29,54	628	13,6	888	27,29	1 148	6,28	1 408	52,3	1 668	86,81
109	51,31	369	31,52	629	15,33	889	24,79	1 149	5,08	1 409	52,22	1 669	86,74
110	51,45	370	33,19	630	17,12	890	21,78	1 150	4,32	1 410	52,66	1 670	86,63

Pro	Tiem-	Velo-												
111 51,48 371 34,67 631 18,98 891 18,51 1151 3,32 1411 53,18 1671 86,77 112 51,29 372 36,13 632 20,73 892 15,1 1152 1,92 1412 53,8 1672 87,03 113 51,12 373 37,63 633 22,17 893 11,06 1153 1,07 1413 54,53 1673 87,07 114 50,96 374 39,07 634 23,29 894 6,28 1154 0,66 1414 55,37 1674 86,92 115 50,81 375 40,08 635 24,19 895 2,24 1155 0 1415 56,29 1675 87,07 116 50,86 376 40,44 636 24,97 896 0 1156 0 1416 57,31 1676 87,18 117 51,34 377 40,26 637 25,6 897 0 1157 0 1417 57,94 1677 87,32 118 51,68 378 39,29 638 25,96 898 0 1158 0 1418 57,86 1678 87,36 119 51,36 380 34,14 640 24,69 900 0 1160 0 1420 58,67 1680 87,58 121 51,39 381 30,18 641 21,85 901 0 1161 0 1421 59,4 1681 87,61 122 50,98 382 25,71 642 17,45 902 2,56 1162 0 1422 59,69 1682 87,76 123 48,63 383 21,58 643 12,34 903 4,81 1163 0 1423 60,02 1683 87,65 124 44,83 384 18,5 644 7,59 904 6,38 1164 0 1424 60,21 1684 87,61 125 40,3 385 16,56 645 4 905 8,62 1165 0 1425 60,83 1685 87,65 126 35,65 386 15,39 646 1,76 906 10,37 1166 0 1426 61,16 1686 87,65 127 30,23 387 14,77 647 0 907 11,17 1167 0 1427 61,6 1687 87,60 128 24,08 388 14,58 648 0 908 13,32 1168 0 1428 62,15 1688 87,65 129 18,96 389 14,72 649 0 909 15,94 1169 0 1429 62,7 1689 87,8 130 14,19 390 15,44 650 0 910 16,89 1170 0 1431 64,27 1691 87,69 131 8,72 391 16,92 655 0 915 23,65 1175 0 1435 65,22 1695 87,43 133 0,64 393 20,26 653 0 915 23,65 1175 0 1435 65,22 1695 87,43 134 0 396 24,1		cidad						cidad		cidad				cidad
112 51,29 372 36,13 632 20,73 892 15,1 1152 1,92 1 412 53,8 1 672 87,03 113 51,12 373 37,63 633 22,17 893 11,06 1 153 1,07 1 413 54,53 1 673 87,07 114 50,96 374 39,07 634 23,29 894 6,28 1 154 0,66 1 414 55,37 1 674 86,92 115 50,81 375 40,08 635 24,19 895 2,24 1 155 0 1 415 56,29 1 675 87,07 116 50,86 376 40,44 636 24,97 896 0 1 158 0 1 417 57,94 1 677 87,32 118 51,58 379 37,23 639 25,86 899 0 1 159 0 1 419 57,75 1 679 87,29 120 51,36 380	S	km/h												
113 51,12 373 37,63 633 22,17 893 11,06 1 153 1,07 1 413 54,53 1 673 87,07 114 50,96 374 39,07 634 23,29 894 6,28 1 154 0,66 1 414 55,37 1 674 80,92 115 50,81 375 40,08 635 24,19 895 2,24 1 155 0 1 416 57,31 1 676 87,07 116 50,86 376 40,44 636 24,97 896 0 1 156 0 1 416 57,31 1 677 87,18 117 51,34 377 40,26 637 25,6 899 0 1 158 0 1 418 57,86 1 678 87,36 118 51,58 379 37,23 639 25,86 899 0 1 159 0 1 419 57,75 1 679 87,32 120 51,36 380	111	51,48	371	34,67	631	18,98	891	18,51	1 151	3,32	1 411	53,18	1 671	86,77
114 50,96 374 39,07 634 23,29 894 6,28 1 154 0,66 1 414 55,37 1 674 86,92 115 50,81 375 40,08 635 24,19 895 2,24 1 155 0 1 415 56,29 1 675 87,07 116 50,86 376 40,44 636 24,97 896 0 1 156 0 1 416 57,31 1 676 87,18 117 51,34 377 40,26 637 25,6 897 0 1 157 0 1 417 57,94 1 677 87,32 118 51,68 378 39,29 638 25,96 898 0 1 159 0 1 419 57,75 1 679 87,29 120 51,36 380 34,14 640 24,69 900 0 1 160 0 1 420 58,67 1 681 87,61 122 50,98 382	112	51,29	372	36,13	632	20,73	892	15,1	1 152	1,92	1 412	53,8	1 672	87,03
115 50,81 375 40,08 635 24,19 895 2,24 1 155 0 1 415 56,29 1 675 87,07 116 50,86 376 40,44 636 24,97 896 0 1 156 0 1 416 57,31 1 676 87,18 117 51,34 377 40,26 637 25,6 897 0 1 157 0 1 417 57,94 1 677 87,32 118 51,68 378 39,29 638 25,96 898 0 1 158 0 1 418 57,86 1 678 87,36 119 51,58 379 37,23 639 25,86 899 0 1 159 0 1 419 57,75 1 679 87,29 120 51,36 380 34,14 640 24,69 900 0 1 160 0 1 420 58,67 1 680 87,58 121 51,39 381 30,18 641 21,85 901 0 1 161 0 1 421 59,4 1 681 87,61 122 50,98 382 25,71 642 17,45 902 2,56 1 162 0 1 422 59,69 1 682 87,76 123 48,63 383 21,58 643 12,34 903 4,81 1 163 0 1 423 60,02 1 683 87,65 124 44,83 384 18,5 644 7,59 904 6,38 1 164 0 1 424 60,21 1 684 87,61 125 40,3 385 16,56 645 4 905 8,62 1 165 0 1 425 60,83 1 685 87,65 126 35,65 386 15,39 646 1,76 906 10,37 1 166 0 1 427 61,6 1 687 87,76 128 24,08 388 14,77 647 0 907 11,17 1 167 0 1 427 61,6 1 687 87,76 129 18,96 389 14,72 649 0 909 15,94 1 169 0 1 429 62,7 1 689 87,8 130 14,19 390 15,44 650 0 910 16,89 1 170 0 1 430 63,65 1 690 87,72 131 8,72 391 16,92 651 0 911 17,13 1171 0 1 431 64,27 1 691 87,69 132 3,41 392 18,69 652 0 912 18,04 1 172 0 1 433 64,13 1 693 87,76 133 0,64 393 20,26 653 0 913 19,96 1 173 0 1 433 64,13 1 693 87,76 134 0 394 21,63 654 0 914 22,05 1 174 0 1 436 66,25 1 696 87,47 135 0 395 22,91 655 0 915 23,65 1 175 0 1 436 66,25 1 696 87,47 136 0 397 25,18 657 0 915 23,65 1 175 0 1 436 66,25 1 696 87,47	113	51,12	373	37,63	633	22,17	893	11,06	1 153	1,07	1 413	54,53	1 673	87,07
116 50,86 376 40,44 636 24,97 896 0 1 156 0 1 416 57,31 1 676 87,18 117 51,34 377 40,26 637 25,6 897 0 1 157 0 1 417 57,94 1 677 87,32 118 51,68 378 39,29 638 25,96 898 0 1 158 0 1 418 57,86 1 678 87,36 119 51,58 379 37,23 639 25,86 899 0 1 159 0 1 419 57,75 1 679 87,29 120 51,36 380 34,14 640 24,69 900 0 1 160 0 1 420 58,67 1 680 87,58 121 51,39 381 30,18 641 21,85 901 0 1 161 0 1 421 59,69 1 682 87,76 122 50,98 382 25,71 <td>114</td> <td>50,96</td> <td>374</td> <td>39,07</td> <td>634</td> <td>23,29</td> <td>894</td> <td>6,28</td> <td>1 154</td> <td>0,66</td> <td>1 414</td> <td>55,37</td> <td>1 674</td> <td>86,92</td>	114	50,96	374	39,07	634	23,29	894	6,28	1 154	0,66	1 414	55,37	1 674	86,92
117 51,34 377 40,26 637 25,6 897 0 1 157 0 1 417 57,94 1 677 87,32 118 51,68 378 39,29 638 25,96 898 0 1 158 0 1 418 57,86 1 678 87,36 119 51,58 379 37,23 639 25,86 899 0 1 159 0 1 419 57,75 1 679 87,29 120 51,36 380 34,14 640 24,69 900 0 1 161 0 1 421 59,4 1 681 87,58 121 51,39 381 30,18 641 21,85 901 0 1 161 0 1 421 59,4 1 681 87,61 122 50,98 382 25,71 642 17,45 902 2,56 1 162 0 1 422 59,69 1 682 87,76 123 48,63 383 21,58 <td>115</td> <td>50,81</td> <td>375</td> <td>40,08</td> <td>635</td> <td>24,19</td> <td>895</td> <td>2,24</td> <td>1 155</td> <td>0</td> <td>1 415</td> <td>56,29</td> <td>1 675</td> <td>87,07</td>	115	50,81	375	40,08	635	24,19	895	2,24	1 155	0	1 415	56,29	1 675	87,07
118 51,68 378 39,29 638 25,96 898 0 1 158 0 1 418 57,86 1 678 87,36 119 51,58 379 37,23 639 25,86 899 0 1 159 0 1 419 57,75 1 679 87,29 120 51,36 380 34,14 640 24,69 900 0 1 160 0 1 420 58,67 1 680 87,58 121 51,39 381 30,18 641 21,85 901 0 1 161 0 1 421 59,4 1 681 87,61 122 50,98 382 25,71 642 17,45 902 2,56 1 162 0 1 422 59,69 1 682 87,76 123 48,63 383 21,58 643 12,34 903 4,81 1 163 0 1 423 60,22 1 683 87,65 124 44,83 384 18,	116	50,86	376	40,44	636	24,97	896	0	1 156	0	1 416	57,31	1 676	87,18
119 51,58 379 37,23 639 25,86 899 0 1 159 0 1 419 57,75 1 679 87,29 120 51,36 380 34,14 640 24,69 900 0 1 160 0 1 420 58,67 1 680 87,58 121 51,39 381 30,18 641 21,85 901 0 1 161 0 1 421 59,4 1 681 87,61 122 50,98 382 25,71 642 17,45 902 2,56 1 162 0 1 422 59,69 1 682 87,76 123 48,63 383 21,58 643 12,34 903 4,81 1 163 0 1 424 60,21 1 684 87,61 124 44,83 384 18,5 644 7,59 904 6,38 1 164 0 1 424 60,21 1 684 87,61 125 40,3 385 16,	117	51,34	377	40,26	637	25,6	897	0	1 157	0	1 417	57,94	1 677	87,32
120 51,36 380 34,14 640 24,69 900 0 1 160 0 1 420 58,67 1 680 87,58 121 51,39 381 30,18 641 21,85 901 0 1 161 0 1 421 59,4 1 681 87,61 122 50,98 382 25,71 642 17,45 902 2,56 1 162 0 1 422 59,69 1 682 87,76 123 48,63 383 21,58 643 12,34 903 4,81 1 163 0 1 423 60,02 1 683 87,65 124 44,83 384 18,5 644 7,59 904 6,38 1 164 0 1 424 60,21 1 684 87,61 125 40,3 385 16,56 645 4 905 8,62 1 165 0 1 425 60,83 1 685 87,65 126 35,65 386 15,3	118	51,68	378	39,29	638	25,96	898	0	1 158	0	1 418	57,86	1 678	87,36
121 51,39 381 30,18 641 21,85 901 0 1 161 0 1 421 59,4 1 681 87,61 122 50,98 382 25,71 642 17,45 902 2,56 1 162 0 1 422 59,69 1 682 87,76 123 48,63 383 21,58 643 12,34 903 4,81 1 163 0 1 423 60,02 1 683 87,65 124 44,83 384 18,5 644 7,59 904 6,38 1 164 0 1 424 60,21 1 684 87,61 125 40,3 385 16,56 645 4 905 8,62 1 165 0 1 425 60,83 1 685 87,65 126 35,65 386 15,39 646 1,76 906 10,37 1 166 0 1 426 61,6 1 686 87,65 127 30,23 388 14	119	51,58	379	37,23	639	25,86	899	0	1 159	0	1 419	57,75	1 679	87,29
122 50,98 382 25,71 642 17,45 902 2,56 1 162 0 1 422 59,69 1 682 87,76 123 48,63 383 21,58 643 12,34 903 4,81 1 163 0 1 423 60,02 1 683 87,65 124 44,83 384 18,5 644 7,59 904 6,38 1 164 0 1 424 60,21 1 684 87,61 125 40,3 385 16,56 645 4 905 8,62 1 165 0 1 425 60,83 1 685 87,65 126 35,65 386 15,39 646 1,76 906 10,37 1 166 0 1 426 61,16 1 687 87,65 127 30,23 387 14,77 647 0 907 11,17 1 167 0 1 427 61,6 1 687 87,76 128 24,08 388 1	120	51,36	380	34,14	640	24,69	900	0	1 160	0	1 420	58,67	1 680	87,58
123 48,63 383 21,58 643 12,34 903 4,81 1 163 0 1 423 60,02 1 683 87,65 124 44,83 384 18,5 644 7,59 904 6,38 1 164 0 1 424 60,21 1 684 87,61 125 40,3 385 16,56 645 4 905 8,62 1 165 0 1 425 60,83 1 685 87,65 126 35,65 386 15,39 646 1,76 906 10,37 1 166 0 1 426 61,16 1 686 87,65 127 30,23 387 14,77 647 0 907 11,17 1 167 0 1 428 62,15 1 688 87,76 128 24,08 388 14,58 648 0 908 13,32 1 168 0 1 429 62,7 1 689 87,8 130 14,19 390 15,44	121	51,39	381	30,18	641	21,85	901	0	1 161	0	1 421	59,4	1 681	87,61
124 44,83 384 18,5 644 7,59 904 6,38 1 164 0 1 424 60,21 1 684 87,61 125 40,3 385 16,56 645 4 905 8,62 1 165 0 1 425 60,83 1 685 87,65 126 35,65 386 15,39 646 1,76 906 10,37 1 166 0 1 426 61,6 1 686 87,65 127 30,23 387 14,77 647 0 907 11,17 1 167 0 1 427 61,6 1 687 87,76 128 24,08 388 14,58 648 0 908 13,32 1 168 0 1 428 62,15 1 688 87,76 129 18,96 389 14,72 649 0 909 15,94 1 169 0 1 429 62,7 1 688 87,8 130 14,19 390 15,44	122	50,98	382	25,71	642	17,45	902	2,56	1 162	0	1 422	59,69	1 682	87,76
125 40,3 385 16,56 645 4 905 8,62 1 165 0 1 425 60,83 1 685 87,65 126 35,65 386 15,39 646 1,76 906 10,37 1 166 0 1 426 61,16 1 686 87,65 127 30,23 387 14,77 647 0 907 11,17 1 167 0 1 427 61,6 1 687 87,76 128 24,08 388 14,58 648 0 908 13,32 1 168 0 1 428 62,15 1 688 87,76 129 18,96 389 14,72 649 0 909 15,94 1 169 0 1 429 62,7 1 689 87,8 130 14,19 390 15,44 650 0 910 16,89 1 170 0 1 430 63,65 1 690 87,72 131 8,72 391 16,92	123	48,63	383	21,58	643	12,34	903	4,81	1 163	0	1 423	60,02	1 683	87,65
126 35,65 386 15,39 646 1,76 906 10,37 1 166 0 1 426 61,16 1 686 87,65 127 30,23 387 14,77 647 0 907 11,17 1 167 0 1 427 61,6 1 687 87,76 128 24,08 388 14,58 648 0 908 13,32 1 168 0 1 428 62,15 1 688 87,76 129 18,96 389 14,72 649 0 909 15,94 1 169 0 1 429 62,7 1 689 87,8 130 14,19 390 15,44 650 0 910 16,89 1 170 0 1 430 63,65 1 690 87,72 131 8,72 391 16,92 651 0 911 17,13 1 171 0 1 431 64,27 1 691 87,69 132 3,41 392 18,69	124	44,83	384	18,5	644	7,59	904	6,38	1 164	0	1 424	60,21	1 684	87,61
127 30,23 387 14,77 647 0 907 11,17 1 167 0 1 427 61,6 1 687 87,76 128 24,08 388 14,58 648 0 908 13,32 1 168 0 1 428 62,15 1 688 87,76 129 18,96 389 14,72 649 0 909 15,94 1 169 0 1 429 62,7 1 689 87,8 130 14,19 390 15,44 650 0 910 16,89 1 170 0 1 430 63,65 1 690 87,72 131 8,72 391 16,92 651 0 911 17,13 1 171 0 1 431 64,27 1 691 87,69 132 3,41 392 18,69 652 0 912 18,04 1 172 0 1 432 64,31 1 692 87,54 133 0,64 393 20,26	125	40,3	385	16,56	645	4	905	8,62	1 165	0	1 425	60,83	1 685	87,65
128 24,08 388 14,58 648 0 908 13,32 1 168 0 1 428 62,15 1 688 87,76 129 18,96 389 14,72 649 0 909 15,94 1 169 0 1 429 62,7 1 689 87,8 130 14,19 390 15,44 650 0 910 16,89 1 170 0 1 430 63,65 1 690 87,72 131 8,72 391 16,92 651 0 911 17,13 1 171 0 1 431 64,27 1 691 87,69 132 3,41 392 18,69 652 0 912 18,04 1 172 0 1 432 64,31 1 692 87,54 133 0,64 393 20,26 653 0 913 19,96 1 173 0 1 433 64,13 1 693 87,76 134 0 394 21,63	126	35,65	386	15,39	646	1,76	906	10,37	1 166	0	1 426	61,16	1 686	87,65
129 18,96 389 14,72 649 0 909 15,94 1 169 0 1 429 62,7 1 689 87,8 130 14,19 390 15,44 650 0 910 16,89 1 170 0 1 430 63,65 1 690 87,72 131 8,72 391 16,92 651 0 911 17,13 1 171 0 1 431 64,27 1 691 87,69 132 3,41 392 18,69 652 0 912 18,04 1 172 0 1 432 64,31 1 692 87,54 133 0,64 393 20,26 653 0 913 19,96 1 173 0 1 433 64,13 1 693 87,76 134 0 394 21,63 654 0 914 22,05 1 174 0 1 434 64,27 1 694 87,5 135 0 395 22,91 655 0 915 23,65 1 175 0 1 436 66,25 1 696	127	30,23	387	14,77	647	0	907	11,17	1 167	0	1 427	61,6	1 687	87,76
130 14,19 390 15,44 650 0 910 16,89 1 170 0 1 430 63,65 1 690 87,72 131 8,72 391 16,92 651 0 911 17,13 1 171 0 1 431 64,27 1 691 87,69 132 3,41 392 18,69 652 0 912 18,04 1 172 0 1 432 64,31 1 692 87,54 133 0,64 393 20,26 653 0 913 19,96 1 173 0 1 433 64,13 1 693 87,76 134 0 394 21,63 654 0 914 22,05 1 174 0 1 434 64,27 1 694 87,5 135 0 395 22,91 655 0 915 23,65 1 175 0 1 435 65,22 1 695 87,43 136 0 396 24,13 656 0 916 25,72 1 176 0 1 437 67,09 1 697	128	24,08	388	14,58	648	0	908	13,32	1 168	0	1 428	62,15	1 688	87,76
131 8,72 391 16,92 651 0 911 17,13 1 171 0 1 431 64,27 1 691 87,69 132 3,41 392 18,69 652 0 912 18,04 1 172 0 1 432 64,31 1 692 87,54 133 0,64 393 20,26 653 0 913 19,96 1 173 0 1 433 64,13 1 693 87,76 134 0 394 21,63 654 0 914 22,05 1 174 0 1 434 64,27 1 694 87,5 135 0 395 22,91 655 0 915 23,65 1 175 0 1 435 65,22 1 695 87,43 136 0 396 24,13 656 0 916 25,72 1 176 0 1 436 66,25 1 696 87,47 137 0 397 25,18 657 0 917 28,62 1 177 0 1 437 67,09 1 697 87,5	129	18,96	389	14,72	649	0	909	15,94	1 169	0	1 429	62,7	1 689	87,8
132 3,41 392 18,69 652 0 912 18,04 1 172 0 1 432 64,31 1 692 87,54 133 0,64 393 20,26 653 0 913 19,96 1 173 0 1 433 64,13 1 693 87,76 134 0 394 21,63 654 0 914 22,05 1 174 0 1 434 64,27 1 694 87,5 135 0 395 22,91 655 0 915 23,65 1 175 0 1 435 65,22 1 695 87,43 136 0 396 24,13 656 0 916 25,72 1 176 0 1 436 66,25 1 696 87,47 137 0 397 25,18 657 0 917 28,62 1 177 0 1 437 67,09 1 697 87,5	130	14,19	390	15,44	650	0	910	16,89	1 170	0	1 430	63,65	1 690	87,72
133 0,64 393 20,26 653 0 913 19,96 1 173 0 1 433 64,13 1 693 87,76 134 0 394 21,63 654 0 914 22,05 1 174 0 1 434 64,27 1 694 87,5 135 0 395 22,91 655 0 915 23,65 1 175 0 1 435 65,22 1 695 87,43 136 0 396 24,13 656 0 916 25,72 1 176 0 1 436 66,25 1 696 87,47 137 0 397 25,18 657 0 917 28,62 1 177 0 1 437 67,09 1 697 87,5	131	8,72	391	16,92	651	0	911	17,13	1 171	0	1 431	64,27	1 691	87,69
134 0 394 21,63 654 0 914 22,05 1 174 0 1 434 64,27 1 694 87,5 135 0 395 22,91 655 0 915 23,65 1 175 0 1 435 65,22 1 695 87,43 136 0 396 24,13 656 0 916 25,72 1 176 0 1 436 66,25 1 696 87,47 137 0 397 25,18 657 0 917 28,62 1 177 0 1 437 67,09 1 697 87,5	132	3,41	392	18,69	652	0	912	18,04	1 172	0	1 432	64,31	1 692	87,54
135 0 395 22,91 655 0 915 23,65 1 175 0 1 435 65,22 1 695 87,43 136 0 396 24,13 656 0 916 25,72 1 176 0 1 436 66,25 1 696 87,47 137 0 397 25,18 657 0 917 28,62 1 177 0 1 437 67,09 1 697 87,5	133	0,64	393	20,26	653	0	913	19,96	1 173	0	1 433	64,13	1 693	87,76
136 0 396 24,13 656 0 916 25,72 1 176 0 1 436 66,25 1 696 87,47 137 0 397 25,18 657 0 917 28,62 1 177 0 1 437 67,09 1 697 87,5	134	0	394	21,63	654	0	914	22,05	1 174	0	1 434	64,27	1 694	87,5
137 0 397 25,18 657 0 917 28,62 1 177 0 1 437 67,09 1 697 87,5	135	0	395	22,91	655	0	915	23,65	1 175	0	1 435	65,22	1 695	87,43
	136	0	396	24,13	656	0	916	25,72	1 176	0	1 436	66,25	1 696	87,47
138 0 398 26,16 658 2,96 918 31,99 1 178 0 1 438 68,37 1 698 87,5	137	0	397	25,18	657	0	917	28,62	1 177	0	1 437	67,09	1 697	87,5
	138	0	398	26,16	658	2,96	918	31,99	1 178	0	1 438	68,37	1 698	87,5

Tiem- po	Velo- cidad	Tiem-	Velo- cidad	Tiem- po	Velo- cidad	Tiem-	Velo- cidad	Tiem- po	Velo- cidad	Tiem-	Velo- cidad	Tiem- po	Velo- cidad
s	km/h	s	km/h	s	km/h	s	km/h	S	km/h	s	km/h	s	km/h
139	0	399	27,41	659	7,9	919	35,07	1 179	0	1 439	69,36	1 699	87,18
140	0	400	29,18	660	13,49	920	37,42	1 180	0	1 440	70,57	1 700	87,36
141	0	401	31,36	661	18,36	921	39,65	1 181	0	1 441	71,89	1 701	87,29
142	0,63	402	33,51	662	22,59	922	41,78	1 182	0	1 442	73,35	1 702	87,18
143	1,56	403	35,33	663	26,26	923	43,04	1 183	0	1 443	74,64	1 703	86,92
144	2,99	404	36,94	664	29,4	924	43,55	1 184	0	1 444	75,81	1 704	87,36
145	4,5	405	38,6	665	32,23	925	42,97	1 185	0	1 445	77,24	1 705	87,03
146	5,39	406	40,44	666	34,91	926	41,08	1 186	0	1 446	78,63	1 706	87,07
147	5,59	407	42,29	667	37,39	927	40,38	1 187	0	1 447	79,32	1 707	87,29
148	5,45	408	43,73	668	39,61	928	40,43	1 188	0	1 448	80,2	1 708	86,99
149	5,2	409	44,47	669	41,61	929	40,4	1 189	0	1 449	81,67	1 709	87,25
150	4,98	410	44,62	670	43,51	930	40,25	1 190	0	1 450	82,11	1 710	87,14
151	4,61	411	44,41	671	45,36	931	40,32	1 191	0	1 451	82,91	1 711	86,96
152	3,89	412	43,96	672	47,17	932	40,8	1 192	0	1 452	83,43	1 712	87,14
153	3,21	413	43,41	673	48,95	933	41,71	1 193	0	1 453	83,79	1 713	87,07
154	2,98	414	42,83	674	50,73	934	43,16	1 194	0	1 454	83,5	1 714	86,92
155	3,31	415	42,15	675	52,36	935	44,84	1 195	0	1 455	84,01	1 715	86,88
156	4,18	416	41,28	676	53,74	936	46,42	1 196	1,54	1 456	83,43	1 716	86,85
157	5,07	417	40,17	677	55,02	937	47,91	1 197	4,85	1 457	82,99	1 717	86,92
158	5,52	418	38,9	678	56,24	938	49,08	1 198	9,06	1 458	82,77	1 718	86,81
159	5,73	419	37,59	679	57,29	939	49,66	1 199	11,8	1 459	82,33	1 719	86,88
160	6,06	420	36,39	680	58,18	940	50,15	1 200	12,42	1 460	81,78	1 720	86,66
161	6,76	421	35,33	681	58,95	941	50,94	1 201	12,07	1 461	81,81	1 721	86,92
162	7,7	422	34,3	682	59,49	942	51,69	1 202	11,64	1 462	81,05	1 722	86,48
163	8,34	423	33,07	683	59,86	943	53,5	1 203	11,69	1 463	80,72	1 723	86,66
164	8,51	424	31,41	684	60,3	944	55,9	1 204	12,91	1 464	80,61	1 724	86,74
165	8,22	425	29,18	685	61,01	945	57,11	1 205	15,58	1 465	80,46	1 725	86,37
166	7,22	426	26,41	686	61,96	946	57,88	1 206	18,69	1 466	80,42	1 726	86,48

Tiem- po	Velo- cidad												
S	km/h												
167	5,82	427	23,4	687	63,05	947	58,63	1 207	21,04	1 467	80,42	1 727	86,33
168	4,75	428	20,9	688	64,16	948	58,75	1 208	22,62	1 468	80,24	1 728	86,3
169	4,24	429	19,59	689	65,14	949	58,26	1 209	24,34	1 469	80,13	1 729	86,44
170	4,05	430	19,36	690	65,85	950	58,03	1 210	26,74	1 470	80,39	1 730	86,33
171	3,98	431	19,79	691	66,22	951	58,28	1 211	29,62	1 471	80,72	1 731	86
172	3,91	432	20,43	692	66,12	952	58,67	1 212	32,65	1 472	81,01	1 732	86,33
173	3,86	433	20,71	693	65,01	953	58,76	1 213	35,57	1 473	81,52	1 733	86,22
174	4,17	434	20,56	694	62,22	954	58,82	1 214	38,07	1 474	82,4	1 734	86,08
175	5,32	435	19,96	695	57,44	955	59,09	1 215	39,71	1 475	83,21	1 735	86,22
176	7,53	436	20,22	696	51,47	956	59,38	1 216	40,36	1 476	84,05	1 736	86,33
177	10,89	437	21,48	697	45,98	957	59,72	1 217	40,6	1 477	84,85	1 737	86,33
178	14,81	438	23,67	698	41,72	958	60,04	1 218	41,15	1 478	85,42	1 738	86,26
179	17,56	439	26,09	699	38,22	959	60,13	1 219	42,23	1 479	86,18	1 739	86,48
180	18,38	440	28,16	700	34,65	960	59,33	1 220	43,61	1 480	86,45	1 740	86,48
181	17,49	441	29,75	701	30,65	961	58,52	1 221	45,08	1 481	86,64	1 741	86,55
182	15,18	442	30,97	702	26,46	962	57,82	1 222	46,58	1 482	86,57	1 742	86,66
183	13,08	443	31,99	703	22,32	963	56,68	1 223	48,13	1 483	86,43	1 743	86,66
184	12,23	444	32,84	704	18,15	964	55,36	1 224	49,7	1 484	86,58	1 744	86,59
185	12,03	445	33,33	705	13,79	965	54,63	1 225	51,27	1 485	86,8	1 745	86,55
186	11,72	446	33,45	706	9,29	966	54,04	1 226	52,8	1 486	86,65	1 746	86,74
187	10,69	447	33,27	707	4,98	967	53,15	1 227	54,3	1 487	86,14	1 747	86,21
188	8,68	448	32,66	708	1,71	968	52,02	1 228	55,8	1 488	86,36	1 748	85,96
189	6,2	449	31,73	709	0	969	51,37	1 229	57,29	1 489	86,32	1 749	85,5
190	4,07	450	30,58	710	0	970	51,41	1 230	58,73	1 490	86,25	1 750	84,77
191	2,65	451	29,2	711	0	971	52,2	1 231	60,12	1 491	85,92	1 751	84,65
192	1,92	452	27,56	712	0	972	53,52	1 232	61,5	1 492	86,14	1 752	84,1
193	1,69	453	25,71	713	0	973	54,34	1 233	62,94	1 493	86,36	1 753	83,46
194	1,68	454	23,76	714	0	974	54,59	1 234	64,39	1 494	86,25	1 754	82,77

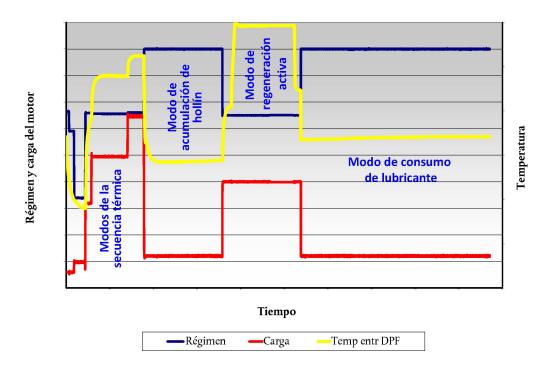
	1 ,	l	1 ,	l	1 ,	1		l	1 ,	l	1 ,	l	
Tiem- po	Velo- cidad												
S	km/h												
195	1,66	455	21,87	715	0	975	54,92	1 235	65,52	1 495	86,5	1 755	81,78
196	1,53	456	20,15	716	0	976	55,69	1 236	66,07	1 496	86,14	1 756	81,16
197	1,3	457	18,38	717	0	977	56,51	1 237	66,19	1 497	86,29	1 757	80,42
198	1	458	15,93	718	0	978	56,73	1 238	66,19	1 498	86,4	1 758	79,21
199	0,77	459	12,33	719	0	979	56,33	1 239	66,43	1 499	86,36	1 759	78,48
200	0,63	460	7,99	720	0	980	55,38	1 240	67,07	1 500	85,63	1 760	77,49
201	0,59	461	4,19	721	0	981	54,99	1 241	68,04	1 501	86,03	1 761	76,69
202	0,59	462	1,77	722	0	982	54,75	1 242	69,12	1 502	85,92	1 762	75,92
203	0,57	463	0,69	723	0	983	54,11	1 243	70,08	1 503	86,14	1 763	75,08
204	0,53	464	1,13	724	0	984	53,32	1 244	70,91	1 504	86,32	1 764	73,87
205	0,5	465	2,2	725	0	985	52,41	1 245	71,73	1 505	85,92	1 765	72,15
206	0	466	3,59	726	0	986	51,45	1 246	72,66	1 506	86,11	1 766	69,69
207	0	467	4,88	727	0	987	50,86	1 247	73,67	1 507	85,91	1 767	67,17
208	0	468	5,85	728	0	988	50,48	1 248	74,55	1 508	85,83	1 768	64,75
209	0	469	6,72	729	0	989	49,6	1 249	75,18	1 509	85,86	1 769	62,55
210	0	470	8,02	730	0	990	48,55	1 250	75,59	1 510	85,5	1 770	60,32
211	0	471	10,02	731	0	991	47,87	1 251	75,82	1 511	84,97	1 771	58,45
212	0	472	12,59	732	0	992	47,42	1 252	75,9	1 512	84,8	1 772	56,43
213	0	473	15,43	733	0	993	46,86	1 253	75,92	1 513	84,2	1 773	54,35
214	0	474	18,32	734	0	994	46,08	1 254	75,87	1 514	83,26	1 774	52,22
215	0	475	21,19	735	0	995	45,07	1 255	75,68	1 515	82,77	1 775	50,25
216	0	476	24	736	0	996	43,58	1 256	75,37	1 516	81,78	1 776	48,23
217	0	477	26,75	737	0	997	41,04	1 257	75,01	1 517	81,16	1 777	46,51
218	0	478	29,53	738	0	998	38,39	1 258	74,55	1 518	80,42	1 778	44,35
219	0	479	32,31	739	0	999	35,69	1 259	73,8	1 519	79,21	1 779	41,97
220	0	480	34,8	740	0	1 000	32,68	1 260	72,71	1 520	78,83	1 780	39,33
221	0	481	36,73	741	0	1 001	29,82	1 261	71,39	1 521	78,52	1 781	36,48
222	0	482	38,08	742	0	1 002	26,97	1 262	70,02	1 522	78,52	1 782	33,8

Tiem- po	Velo- cidad	Tiem-	Velo- cidad	Tiem-	Velo- cidad	Tiem-	Velo- cidad	Tiem- po	Velo- cidad	Tiem-	Velo- cidad	Tiem-	Velo- cidad
s	km/h	S	km/h	S	km/h	s	km/h	S	km/h	S	km/h	S	km/h
223	0	483	39,11	743	0	1 003	24,03	1 263	68,71	1 523	78,81	1 783	31,09
224	0	484	40,16	744	0	1 004	21,67	1 264	67,52	1 524	79,26	1 784	28,24
225	0	485	41,18	745	0	1 005	20,34	1 265	66,44	1 525	79,61	1 785	26,81
226	0,73	486	41,75	746	0	1 006	18,9	1 266	65,45	1 526	80,15	1 786	23,33
227	0,73	487	41,87	747	0	1 007	16,21	1 267	64,49	1 527	80,39	1 787	19,01
228	0	488	41,43	748	0	1 008	13,84	1 268	63,54	1 528	80,72	1 788	15,05
229	0	489	39,99	749	0	1 009	12,25	1 269	62,6	1 529	81,01	1 789	12,09
230	0	490	37,71	750	0	1 010	10,4	1 270	61,67	1 530	81,52	1 790	9,49
231	0	491	34,93	751	0	1 011	7,94	1 271	60,69	1 531	82,4	1 791	6,81
232	0	492	31,79	752	0	1 012	6,05	1 272	59,64	1 532	83,21	1 792	4,28
233	0	493	28,65	753	0	1 013	5,67	1 273	58,6	1 533	84,05	1 793	2,09
234	0	494	25,92	754	0	1 014	6,03	1 274	57,64	1 534	85,15	1 794	0,88
235	0	495	23,91	755	0	1 015	7,68	1 275	56,79	1 535	85,92	1 795	0,88
236	0	496	22,81	756	0	1 016	10,97	1 276	55,95	1 536	86,98	1 796	0
237	0	497	22,53	757	0	1 017	14,72	1 277	55,09	1 537	87,45	1 797	0
238	0	498	22,62	758	0	1 018	17,32	1 278	54,2	1 538	87,54	1 798	0
239	0	499	22,95	759	0	1 019	18,59	1 279	53,33	1 539	87,25	1 799	0
240	0	500	23,51	760	0	1 020	19,35	1 280	52,52	1 540	87,04	1 800	0
241	0	501	24,04	761	0	1 021	20,54	1 281	51,75	1 541	86,98		
242	0	502	24,45	762	0	1 022	21,33	1 282	50,92	1 542	87,05		
243	0	503	24,81	763	0	1 023	22,06	1 283	49,9	1 543	87,1		
244	0	504	25,29	764	0	1 024	23,39	1 284	48,68	1 544	87,25		
245	0	505	25,99	765	0	1 025	25,52	1 285	47,41	1 545	87,25		
246	0	506	26,83	766	0	1 026	28,28	1 286	46,5	1 546	87,07		
247	0	507	27,6	767	0	1 027	30,38	1 287	46,22	1 547	87,29		
248	0	508	28,17	768	0	1 028	31,22	1 288	46,44	1 548	87,14		
249	0	509	28,63	769	0	1 029	32,22	1 289	47,35	1 549	87,03		
250	0	510	29,04	770	0	1 030	33,78	1 290	49,01	1 550	87,25		

Tiem- po	Velo- cidad												
S	km/h												
251	0	511	29,43	771	0	1 031	35,08	1 291	50,93	1 551	87,03		
252	0	512	29,78	772	1,6	1 032	35,91	1 292	52,79	1 552	87,03		
253	1,51	513	30,13	773	5,03	1 033	36,06	1 293	54,66	1 553	87,07		
254	4,12	514	30,57	774	9,49	1 034	35,5	1 294	56,6	1 554	86,81		
255	7,02	515	31,1	775	13	1 035	34,76	1 295	58,55	1 555	86,92		
256	9,45	516	31,65	776	14,65	1 036	34,7	1 296	60,47	1 556	86,66		
257	11,86	517	32,14	777	15,15	1 037	35,41	1 297	62,28	1 557	86,92		
258	14,52	518	32,62	778	15,67	1 038	36,65	1 298	63,9	1 558	86,59		
259	17,01	519	33,25	779	16,76	1 039	37,57	1 299	65,2	1 559	86,92		
260	19,48	520	34,2	780	17,88	1 040	38,51	1 300	66,02	1 560	86,59		

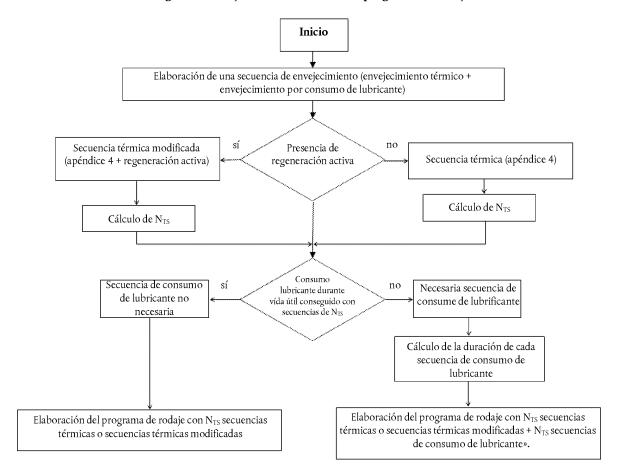
Apéndice 6

Procedimiento de purga y pesaje


- 1. El motor deberá llenarse con aceite nuevo. Si se utiliza un sistema de cárter de aceite con un volumen constante (como se describe en la norma ASTM D7156-09), se pondrá en marcha la bomba de aceite mientras se llena el motor. Se añadirá una cantidad suficiente de aceite para llenar tanto el motor como el cárter externo.
- 2. Se arrancará el motor y se le hará funcionar durante el ciclo de ensayo deseado (véanse los puntos 2.2.15 y 2.4.4.8.3.1) durante un mínimo de 1 hora.
- 3. Una vez haya concluido el ciclo, se dejará que la temperatura del aceite se estabilice haciendo funcionar el motor en una condición de estado estacionario antes de apagarlo.
- 4. Se pesará una cubeta para la purga de aceite, que estará vacía y limpia.
- 5. Se pesarán todos los materiales limpios que vayan a utilizarse durante la purga de aceite (p.ej., los trapos).
- 6. Se purgará el aceite durante 10 minutos con la bomba de aceite externa (en caso de contar con ella) en marcha, seguidos de otros 10 minutos con la bomba apagada. Si no se utiliza un sistema de cárter de aceite con un volumen constante, el aceite se purgará del motor durante un total de 20 minutos.
- 7. Se pesará el aceite purgado.
- El peso determinado conforme a la etapa 7 se restará del peso obtenido de conformidad con la etapa 4. La diferencia se corresponde con el peso total del aceite extraído del motor y recogido en la cubeta para la purga de aceite.
- 9. Se volverá a poner cuidadosamente el aceite en el motor.
- 10. Se pesará la cubeta para la purga de aceite vacía.
- 11. El peso determinado conforme a la etapa 10 se restará del peso obtenido de conformidad con la etapa 4. El resultado se corresponderá con el peso del aceite residual de la cubeta para la purga que no se devolvió al motor.

- 12. Se pesarán todos los materiales sucios que se habían pesado anteriormente de conformidad con la etapa 5.
- 13. El peso determinado conforme a la etapa 12 se restará del peso obtenido de conformidad con la etapa 5. El resultado se corresponderá con el peso del aceite residual que se quedó en los materiales sucios y que no se devolvió al motor.
- 14. Los pesos del aceite residual calculados según las etapas 11 y 13 se restarán del peso total hallado con arreglo a la etapa 8. La diferencia entre dichos pesos se corresponderá con el peso total del aceite devuelto al motor.
- 15. Se hará funcionar el motor según los ciclos de ensayo deseados (véanse los puntos 2.2.15 y 2.4.4.8.3.1).
- 16. Se repetirán las etapas 3 a 8.
- 17. El peso del aceite purgado conforme a la etapa 16 se restará del peso obtenido con arreglo a la etapa 14. La diferencia entre dichos pesos se corresponde con el peso total del aceite consumido.
- 18. El peso total del aceite consumido calculado según la etapa 14 se dividirá por la duración, en horas, de los ciclos de ensayo realizados de conformidad con la etapa 15. El resultado es la tasa de consumo de lubricante.

Apéndice 7


Ejemplo de programa de rodaje que incluye secuencias térmicas, de consumo de lubricante y de regeneración

Ejemplo de ciclo de rodaje

Apéndice 8

Diagrama de flujo del desarrollo de un programa de rodaje

ANEXO V

El anexo XIII del Reglamento (UE) n.º 582/2011 queda modificado como sigue:

- 1) Los puntos 2.1.2.2.1 y 2.1.2.2.2 se sustituyen por el texto siguiente:
 - «2.1.2.2.1. Por lo que se refiere a la supervisión de la calidad del reactivo, serán de aplicación las disposiciones establecidas en los puntos 7 a 7.1.3 del presente anexo, en vez de las establecidas en los puntos 4.1 y 4.2 del anexo XVI del Reglamento (CE) n.º 692/2008.
 - 2.1.2.2.2. Por lo que se refiere a la supervisión del consumo de reactivo y la actividad de dosificación, serán de aplicación las disposiciones establecidas en los puntos 8, 8.1 y 8.1.1 del presente anexo, en lugar de las establecidas en los puntos 5 a 5.5 del anexo XVI del Reglamento (CE) n.º 692/2008.».
- 2) Los puntos 8 y 8.1 se sustituyen por el texto siguiente:

«8. CONSUMO DE REACTIVO Y ACTIVIDAD DE DOSIFICACIÓN

8.1. Con respecto al consumo de reactivo y la actividad de dosificación, serán de aplicación las medidas establecidas en el punto 8 del anexo 11 del Reglamento nº 49 de la CEPE.».

ANEXO VI

El anexo XIV del Reglamento (UE) n.º 582/2011 queda modificado como sigue:

- 1) El punto 2.2.1 se sustituye por el texto siguiente:
 - «2.2.1. Respecto a los motores de encendido por chispa alimentados con gasolina o con E85, el punto 5.2.3.1 del Reglamento n.º 85 de la CEPE se entenderá como sigue:

"Se utilizará el combustible disponible en el mercado. En caso de litigio, el combustible será el combustible de referencia adecuado especificado en el anexo IX del Reglamento (UE) n.º 582/2011.".»

- 2) El punto 2.2.4 se sustituye por el texto siguiente:
 - «2.2.4. En el caso de los motores de encendido por compresión, el punto 5.2.3.4 del Reglamento n.º 85 de la CEPE se entenderá como sigue:

"Se utilizará el combustible disponible en el mercado. En caso de litigio, el combustible será el combustible de referencia adecuado especificado en el anexo IX del Reglamento (UE) n.º 582/2011.".»