I

(Actos cuya publicación es una condición para su aplicabilidad)

REGLAMENTO (CEE) Nº 2568/91 DE LA COMISIÓN

de 11 de julio de 1991

relativo a las características de los aceites de oliva y de los aceites de orujo de oliva y sobre sus métodos de análisis

LA COMISIÓN DE LAS COMUNIDADES EUROPEAS,

Visto el Tratado constitutivo de la Comunidad Econômica Europea,

Visto el Reglamento n° 136/66/CEE del Consejo, de 22 de septiembre de 1966, por el que se establece la organización común de mercados en el sector de las materias grasas (¹), cuya última modificación la constituye el Reglamento (CEE) n° 3577/90 (²), y, en particular, su artículo 35 bis,

Considerando que en el Anexo del Reglamento nº 136/66/CEE se establecen las denominaciones y definiciones de los aceites de oliva y de los aceites de orujo de oliva comercializados dentro de cada Estado miembro, así como en los intercambios intracomunitarios y con terceros países;

Considerando que, para poder distinguir los diferentes tipos de aceite, procede definir las características fisicoquímicas de cada uno de ellos, así como las características organolépticas de los aceites virgenes, a fin de garantizar así la pureza y calidad de estos productos, sin perjuicio de otras disposiciones existentes en la materia:

Considerando que conviene determinar de manera uniforme en toda la Comunidad la presencia de las características de los diferentes tipos de aceite; que, para ello, procede establecer los métodos comunitarios de análisis químico y de valoración organoléptica; que conviene, sin embargo, permitir que durante un período transitorio se utilicen otros métodos de análisis que sean aplicados en los Estados miembros, estableciendo al mismo tiempo que en caso de presentarse resultados divergentes prevalezcan los obtenidos a través del método común;

Considerando que la definición de las características fisicoquímicas de los aceites de oliva y de sus métodos de análisis comporta la adaptación de las aotas complementarias del capítulo 15 de la nomenclatura combinada;

Considerando que el método de valoración de las características organolépticas de los aceites virgenes requiere la creación de unos paneles de catadores seleccionados y especialmente adiestrados; que conviene, por lo tanto, prever el plazo necesario para instaurar una estructura de este tipo; que, dadas las dificultades a las que se enfrentarán determinados Estados miembros para crear dichos paneles, procede autorizar que se recurra a paneles existentes en otros Estados miembros;

Considerando que, para garantizar el correcto funcionamiento del sistema de las exacciones reguladoras aplicables a la importación de orujo de oliva, es conveniente prever un método único para la determinación del contenido en aceite de estos productos;

Considerando que, para no perjudicar el comercio, resulta oportuno prever un periodo limitado para la salida al mercado del aceite que haya sido envasado antes de la entrada en vigor del presente Reglamento;

Considerando que procede derogar el Reglamento (CEE) nº 1058/77 de la Comisión (²), cuya última modificación la constituye el Reglamento (CEE) nº 1858/88 (*);

Considerando que el Comité de gestión de las materias grasas no ha emitido dictamen alguno en el plazo establecido por su presidente,

HA ADOPTADO EL PRESENTE REGLAMENTO:

Articulo 1

- 1. Se considerarán aceites de oliva virgenes, a que se refieren las letras a), b), y c) del punto l del Anexo del Reglamento nº 136/66/CEE, los aceites cuyas características se ajusten a las indicadas, respectivamente, en los puntos 1, 2 y 3 del Anexo I del presente Reglamento.
- 2. Se considerará aceite de oliva virgen lampante, a que se refiere la letra d) del punto I del Anexo del Reglamento nº 136/66/CEE, el aceite cuyas características se ajusten a las indicadas en el punto 4 del Anexo I del presente Reglamento.
- 3. Se considerará aceste de oliva refinado, a que se refiere el punto 2 del Anexo del Reglamento nº 136/66/CEE, el aceste cuyas características se ajusten a las indicadas en el punto 5 del Anexo I del presente Reglamento.

⁽¹⁾ DO nº 172 de 30, 9, 1966, p. 3025/66.

⁽²⁾ DO nº E 353 de 17, 12, 1990, p. 23.

⁷⁷ DO 12 LIN & M. S. 1977, p. 6.

^{*} DO = 1 166 & 1 7 1988 p 10

- 4. Se considerará aceite de oliva, a que se refiere el punto 3 del Anexo del Reglamento n° 136/66/CEE, el aceite cuyas características se ajusten a las indicadas en el punto 6 del Anexo I del presente Reglamento.
- 5. Se considerará aceite de orujo de oliva crudo, a que se refiere el punto 4 del Anexo del Reglamento nº 136/66/CEE, el aceite cuyas características se ajusten a las indicadas en el punto 7 del Anexo I del presente Reglamento.
- 6. Se considerará aceite de orujo de oliva refinado, a que se refiere el punto 5 del Anexo del Reglamento nº 136/66/CEE, el aceite cuyas características se ajusten a las indicadas en el punto 8 del Anexo I del presente Reglamento.
- 7. Se considerará aceite de orujo de oliva, a que se refiere el punto 6 del Anexo del Reglamento nº 136/66/CEE, el aceite cuyas características se ajusten a las indicadas en el punto 9 del Anexo I del presente Reglamento.

Artículo 2

- 1. Las características de los aceites, previstas en el Anexo I, se determinarán empleando los métodos de análisis siguientes:
- para determinar los ácidos grasos libres, expresados en porcentaje de ácido oleico, el método recogido en el Anexo II,
- para determinar el índice de peróxidos, el método recogido en el Anexo III,
- para determinar los alcoholes alifáticos, el método recogido en el Anexo IV,
- para determinar el contenido de esteroles, el método recogido en el Anexo V,
- para determinar el eritrodiol + uvaol, el método recogido en el Anexo VI,
- para determinar los ácidos grasos saturados en la posición 2 del triglicérido, el método recogido en el Anexo VII.
- para determinar el contenido de trilinoleina, el método recogido en el Anexo VIII,
- para el análisis espectrofotométrico, el método recogido en el Anexo IX,
- para determinar la composición de ácidos grasos, el método recogido en los Anexos X «A» y X «B»,
- para determinar los solventes halogenados volátiles, el método recogido en el Arexo XI,
- para la valoración de las características organolépticas de los aceites de oliva virgenes, el método recogido en el Anexo XII, que se aplicará de conformidad con el apartado 2,
- para la prueba de la refinación, el método recogido en el Anexo XIII.
- 2. El analista, asistido en su caso por expertos, llevará a cabo la valoración de las características organolépticas con arregio al procedimiento descrito en la ficha de degustación contemplada en el Anexo XII. En caso de que el análisis determine características organolépticas distintas de las resultantes de la denominación del producto, el análista someterá la muestra al examen de un panel de catadores, con arregio a las disposiciones del Anexo XII.

El análisis contradictorio será realizado por el panel de catadores de conformidad con las disposiciones citadas anteriormente.

Para la valoración de las características organolépticas con ocasión de operaciones relacionadas con el régimen de intervención, el panel de catadores procederá a aquella con arreglo a las disposiciones del Anexo XII.

Artículo 3

Hasta el 31 de octubre de 1992, la introducción de los métodos de análisis previstos en el artículo 2 no será óbice para que los Estados miembros empleen otros métodos comprobados y científicamente válidos, siempre que con ello no se obstaculice la libre circulación de los productos reconocidos conformes a la normativa en aplicación de los métodos comunitarios. Los Estados miembros interesados comunicarán a la Comisión dichos otros métodos antes de utilizarlos.

En caso de que alguno de estos otros métodos dé un resultado diferente del alcanzado por el método común, se considerará válido el resultado obtenido en aplicación del método común.

Artículo 4

- 1. A fin de apreciar las características organolépticas, los Estados miembros constituirán paneles de catadores seleccionados y entrenados de acuerdo con las normas previstas en el método descrito en el Anexo XII.
- 2. En caso de que un Estado miembro tenga dificultades para constituir un panel en su territorio podrá recurrir a un panel que se halle establecido en otro Estado miembro.

Articulo 5

Las notas complementarias números 2, 3 y 4 del capítulo 15 de la nomenclatura combinada se sustituirán por las que figuran en el Anexo XIV del presente Reglamento.

Articulo 6

- El contenido en aceite de orujo de aceituna y demás residuos de la extracción del aceite de oliva (códigos NC 2306 90 11 y 2306 90 19) se determinará con arreglo al método recogido en el Anexo XV.
- 2. El contenido de aceite mencionado en el apartado 1 se expresará como porcentaje del extracto seco en peso.

Articulo 7

Serán aplicables las disposiciones comunitarias sobre la presencia de sustancias extrañas distintas de las mencionadas en el Anexo XI.

Articulo 8

 Cada Estado miembro comunicará a la Comisión las medidas adoptadas en aplicación del presente Reglamento. Cada Estado miembro comunicará a la Comisión, al inicio de cada semestre una recapitulación de los datos analíticos de las determinaciones efectuadas durante el semestre precedente.

Estos resultados serán examinados por el Comité de gestión de las materias grasas con arreglo al procedimiento previsto en el artículo 39 del Reglamento nº 136/66/CEE.

Artículo 9

Queda derogado el Reglamento (CEE) nº 1058/77.

Articulo 10

1. El presente Reglamento entrará en vigor el tercer día siguiente al de su publicación en el Diario Oficial de las Comunidades Europeas.

No obstante, el método que figura en el Anexo XII se aplicará a partir del 1 de enero de 1992, excepto en lo que se refiere a las operaciones relacionadas con la intervención.

El presente Reglamento no se aplicará a los aceites de oliva y de orujo de oliva envasados antes de la fecha de entrada en vigor del presente Reglamento y comercializados hasta el 31 de octubre de 1992.

El presente Reglamento será obligatorio en todos sus elementos y directamente aplicable en cada Estado miembro.

Hecho en Bruselas, el 11 de julio de 1991.

Por la Comisión RAY MAC SHARRY Miembro de la Comisión

ANEXOS Índice

			1 agains
Anexo	1:	Características de los aceites de oliva	4
Anexo	11:	Determinación del grado de acidez	6
Anexo	Ш:	Determinación del indice de peróxidos	8
Anexo	IV:	Determinación del contenido de alcoholes alifáticos mediante cromatografía de gases con columna capilar	10
Anexo	V:	Determinación de la composición y del contenido de esteroles mediante cromatografia de gases con columna capilar	15
Anexo	VI:	Determinación del eritrodiol y uvaol	23
Anexo	VII:	Determinación de los ácidos grasos saturados en la posición 2 de los trigiciendos de aceites y grasas	25
Anexo	VIII:	Determinación del porcentaje de tribnoleina	29
Anexo	EX:	Prueba espectrofometrica en el ultravioleta	33
Anexo	X*A*:	Análisis de los esteres merilicos de los ácidos grasos mediante cromatografia de gases	36
Anexo	X-8-:	Preparación de los esteres metilicos de los ácidos grasos	44
Anexo	XI	Determinación del contemido en solventes halogenados volátiles en el aceste de obva	48
Anexo	XIE	Valoración organoléptica del aceste de oliva vergen	49
Anexo	XIII:	Prueba de la refinación	75
Aaexo	XIV:	Notas complementarias 2, 3 y 4 del capitulo 15 de la nomenclarara combinada	77
Anexo	XV:	Contemido de acrite de los orujos de acritura	80
Anexo	XVE	Desenninación del indice de vodo	52

ANEXO !

CARACTERÍSTICAS DE LOS ACEITES DE OLIVA

Esteroles totales mg/kg m 1 000 m 1000 m 1 000 m 1800 m 1 000 m 1 000 m 1 000 m 2500 m 1800 Δ-Estig-mastenol % M 0,5 m 93,0 m 93,0 m 93,0 m 93,0 m 93,0 Betasi-tosterol % (2) m 93,0 m 93,0 m 93,0 m 93,0 < Camp. 400 Cam-pesterol % M 4,0 M 4,0 0,4 M M 4.0 M 4,0 M 4,0 M 4,0 M 4,0 Brassi-casterol M 0,2 Colesterol % M 0,5 Trilinoleina M 0,5 M 0,5 M 0,5 S'0 W X O.S M 0,5 N 0,5 X 0,S M 0,5 Eritrodiol + uvaol % M 4,5 M 4,5 8.4 M M 4.5 M 4,5 V 4.5 M 4,5 m 12 т 12 grasos saturados en posición 2 de los triglicéridos X.: X ... Σ. Σ X :.. 2, I M M 2,0 Acidos M ... 8. .. 8. M 2,0 Alcoholes alifáricos mg/kg M 300 M 300 M 300 M 400 M 350 M 350 A SAME Solventes halogenados mg/kg (*) M 0,200 M 0,200 M 0,200 M 0,200 > 0,200 007'0 W M 0,200 M 0,200 Indice de peròxidos meq/O₁/kg 30 M 20 0% M 0\$ \$ **∑** 2 W X ~ Σ 0,2 M 8.0 M ~ ∑ ~ ^ S'O X Z ... 0,2 m Acente de orupo de Acres de orujo de Acette de orujo de viegen lampante VIEWE COTTABLE Acette the cilius Aceite de oliva Arene de oliva Aceise de oliva Acent de oliva Acette de oliva Camponia oliva refinado oliva crudo . * *

(1) Contentado total de compuestos detectados mediante captura de electrones. Para cada uno de los componentes el límite máximo es de 0,10 mg/kg. - maximus, m. - minimus

Nota: Para descalificar un acene bustarà con que una sola de las características no se ajuste a los limites fijados.

	occus into est an Addition seath Million de College College College College College College College College Co	no o control de constituir especie a mondicipi de principi de propositi de la constituir de	Contenido de ácidos	de Acidos					K después		
Catagoria	Miringo %	Linolénico %	Araquídico %	lcosanoico %	Behénico %	Lignocérico	K	K,110	de pasar por alúmina	ΔK	Panel test
1. Acaim de oliva Virgen extra	1,0 M	6°0 W	Kazzono decakrennen menen mene	\$10 M	K, O M,	S'O M	M 2,40	M 0,20	M 0,10	M 0.010	3 4 5
2. Acrite de oliva virgen	Š	6,0 M	M 0,7	M 0,5	M 0,3	M 0.5	M 2.50	M 0.25	, S	oroto M) () () () () () () () () () (
Aceire de oliva	т. М 0,1	%0 W	M 0,7	M 0,5	M 0,3	M 0.5	M 2.50	M 0 25	01 0 M	010,0 M	
Aceire de oliva	Š	W 0,9	M 0.7	M 0.5	W 0.3) ()	7 1 3 3 0	30 O /		010'0 141	
5. Aceite de oliva	M 0,1	. O.	M 0.7	M 0.5	. O	3 0 W	04 c M	(1)	110 14		c, 5 >
6. Aceste de oliva		6.0 M	M 0.7	5 O M	Z O W	30 M	04 C M	07,1 14	and in case	M 0,160	Piterson
7. Acette de orujo de		9 0 7					Octo M	2. 1 E		M 0,130	Manual
f. Aceite de orujo de	; E	S	¥0.*	S'0 E	ς. Ο ₩	S,0 M	antice.	No.	Table 1	********	T moles
oliva refinado	M 0,1	6'0 W	M 0,7	M 0,5	M 0,3	M 0,5	M 5,50	M 2,50	I	M 0,250	d of the second
9. Aceise de crujo de Mo,1 M0,9	M 0,1	6,0 M	M 0,7	M 0,5	M 0,3	M 0,5	M 5,30	M 2.00	dancas	M 0.200	de l'est

ANEXO II

DETERMINACIÓN DEL GRADO DE ACIDEZ

1. OBJETO

Determinar los ácidos libres en los aceites de oliva. El contenido en ácidos grasos libres se expresa mediante la acidez calculada según el método convencional.

1.1. Principio

Disolución de la muestra en una mezcla de disolventes y valoración de los acidos grasos libres mediante una solución etanólica de hidróxido potásico.

1.2. Reactivos

Todos los reactivos deben ser de calidad analítica reconocida y el agua utilizada debe ser agua destilada o de una pureza equivalente.

1.2.1. Mezcla de éter dietilico y etanol de 95 % (V/V), en proporcion de volumen 1:1.

Nota: El éter dietilico es muy inflamable y puede formar peroxidos explosivos. Debe utilizarse tomando especiales precauciones.

Debe neutralizarse exactamente en el momento de su utilización con la solución de hidróxido potásico (1.2.2) en presencia de 0,3 ml de la solución de fenolitaleina (1.2.3) por cada 100 ml de mezcla.

Nota: Si no es posible unlizar eter dietilico, puede sustituirse por una mezcla de disolventes formada por etanol y tolueno. Si fuera necesario, el etanol podria sustituirse, a su vez, por 2-propanol.

1.2.2. Solución etanólica valorada de hidróxido potásico, = 0,1 M o, en caso necesario, = 0,5 M, Nota 1.

Debe conocerse, y comprobarse inmediatamente antes de su utilización, la concentración exacta de la solución etanólica de hidróxido potásico. Debe utilizarse una solución que haya sido preparada por lo menos cinco días antes y decantada en un frasco de vidrio marrón cerrado con tapón de goma. La solución debe ser incolora o de color amarillo paja.

Nota: Se puede preparar una solución incolora y estable de hidroxido potasico de la manera siguiente: Llevar a ebullición, y inantener esta a reflujo durante una hora, 1 000 ml de eranol con 8 g de hidroxido potasico y 0,5 g de virutas de alumínio. Destilar inmediatamente. Disolver en el destilado la cantidad requerida de hidroxido potásico. Desar reposar durante varios dias y decamar el líquido claro sobrenadante, separandolo del precipitado de carbonato potásico.

La solución también puede prepararse de la manera siguiente sin efectuar la destilación: añadir 4 ml de butilato de alumnico a 1 000 ml de etanol y dejar reposar la mezcla durante algunos dias. Decantar el liquido sobrenadante y disolver en el la cantidad necesaria de hidróxido porassco. La solución esta lista para ser utilizada.

1.2.3. Solución de 10 g/4 de fenolftaleina en etanol de 95-96 % (V/V) o solución de 20 g/4 de azul alcalino (en caso de aceites de oliva muy coloreados) en etanol de 95-96 % (V/V).

Material

Material habitual de laboratorio, y en particular:

- 1.3.1. Balanza analitica
- 1.3.2. Matraz erlenmeyer de 250 mi de capacidad
- 1.3.3. Barera de 10 ml de capacidad, con gradeación de 0,05 mi

i.4. Procedimente

1.4.1. Preparación de la muestra para la prueba

La determinación se efectuará en una muestra filtrada. Si el contenido global de humedad e impureras es inferior al 1%, se utilizará la muestra tal cual.

1.4.2. Muestra para la prueba

Tomar la muestra, según el grado de acides previsso, de acuerdo con el cuadro siguiente:

Grado de acidez previsto	Peso de la muestra (en g)	Precisión de la pesada de la muestra en g:
< 1	20	0,05
1 a 4	10	0,02
4 a 15	2,5	0,01
15 a 75	0,5	0,001
> 75	0.1	0,0002

Pesar la muestra en el matraz erlenmeyer (1.3.2)

1.4.3 Determinación

Disolver la muestra (1.4.2) en 50 a 150 ml de la mezcla de éter dietilico y etanol (1.2.1), previamente neutralizada.

Valorar, agitando, con la solución de hidróxido porásico de 0,1 M (1.2.2) (véase nota 2) hasta el viraje del indicador (la coloración rosa de la fenolftaleina debe permanecer al menos durante 10 segundos).

- Nota 1: La solución eranólica valorada de hidróxido potásico (1,2,2) puede sustituirse por una solución acuosa de hidróxido potásico o sódico siempre que el volumen de agua añadido no provoque una separación de las fases.
- Nota 2: Si la cantidad necesaria de la solución de hidróxido potásico de 0,1 M supera los 10 ml, debe utilizarse una solución de 0,5 M.
- Nota 3: Si la solución se enturbia durante la valoración, añadir una cantidad suficiente de la mezcla de disolventes (1.2.1) para que la solución se aclare.

1.5 Expresión de la acidez en porcentaje de ácido oleico

La acidez, expresada en porcentaje de ácido oleico es igual a:

$$V \times c \times \frac{M}{1000} \times \frac{100}{P} = \frac{V \times c \times M}{10 \times P}$$

siendo:

V: volumen en ml de la solución valorada de hidróxido potásico utilizada.

c : concentración exacta, en moles por litro, de la solución de hidróxido potásico utilizada.

M: peso molecular del ácido en que se expresa el resultado (ácido oleico = 282).

P: peso en gramos de la muestra unilizada.

Se tomará como resultado la media aritmética de dos determinaciones.

ANEXO III

DETERMINACIÓN DEL ÍNDICE DE PERÓXIDOS

1. OBJETO

La presente norma describe un método para la determinación del índice de peroxidos de los aceites y grasas.

ÁMBITO DE APLICACIÓN

La presente norma es aplicable a los aceites y grasas animales y vegetales.

3. DEFINICIÓN

El índice de peróxidos es la cantidad (expresada en miliequivalentes de oxígeno activo por kg de grasa) de peróxidos en la muestra que ocasionan la oxidación del yoduro potásico en las condiciones de trabajo descritas.

4. PRINCIPIO

La muestra problema, disuelta en ácido acetico y cloroformo, se trata con solución de yoduro potásico. El yodo liberado se valora con solución valorada de tiosulfato sódico.

APARATOS

Todo el material utilizado estará exento de sustancias reductoras u oxidantes.

Nota: No engrasar las superficies esmenladas.

- 5.1. Navecilla de vidrio de 3 ml
- 5.2. Matraces con cuello y tapón esmerilados, de 250 ml de capacidad aproximadamente, previamente secados y llenos de gas inerte puro y seco (nitrógeno o, preferiblemente, dióxido de carbono).
- 5.3. Bureta de 25 o 50 mi, graduada en 0,1 mi.

REACTIVOS

- Cloroformo para análisis, exento de oxigeno por borboteo de una corriente de gas inerte puro y seco.
- Acido acérico glacial para análisis, exento de oxigeno por borboteo de una corriente de gas inerte puro y seco.
- Solución acuosa saturada de yoduro potásico, recién preparada, exenta de yodo y vodatos.
- 6.4. Solución acuosa de riosulfato sódico 0,01 N o 0,002 N valorada exactamente; la valoración se efectuará inmediatamente antes del uso.
- 6.5. Solución de almidón, en solución acuosa de 10 g/l, recién preparada con almidón soluble.

MUESTRA

La muestra se tomará y almacenará al abrigo de la liaz, y se mantendrá refrigerada dentro de envases de vidrio totalmente llenos y herméticamente cerrados con tapones de vidrio esmeniado o de corcho.

8. PROCEDIMIENTO

El ensayo se realizará con luz natural difusa o con luz armitocal. Pesar con precisión de 0,001 g en una navecilla de vidino (5.1) o, en su defecto, en un matrar (5.2) una camidad de muestra en función del indice de peróxidos que se presuponga, con arregio al cuadro squaeste:

Índice de peròxidos que se supone (meq de O2/kg)	Peso de la muestra problema en g³
de 0 a 12	de 5,0 a 2,0
de 12 a 20	de 2,0 a 1,2
de 20 a 30	de 1.2 a 0.8
de 30 a 50	de 0,8 a 0,5
de 50 a 90	de 0,5 a 0,3

Abrir un matraz (5.2) e introducir la navecilla de vidrio que contenga la muestra problen 2. Añadir 10 ml de cloroformo (6.1). Disolver rápidamente la muestra problema mediante agitación. Añadir 15 ml de ácido acético (6.2) y, a continuación, 1 ml de solución de yoduro potásico (6.3). Cerrar rápidamente el matraz, agitar durante 1 minuto y mantenerlo en la oscuridad durante 5 minutos exactamente, a una temperatura comprendida entre 15 y 25 °C.

Añadir 75 ml aproximadamente de agua destilada. Valorar (agitando al mismo tiempo vigorosamente) el yodo liberado con la solución de tiosulfato sódico (6.4) (solución 0,002 N si se presuponen valores inferiores a 12 y solución 0,01 N si se presuponen valores superiores a 12), utilizando la solución de almidón (6.5) como indicador.

Efectuar dos determinaciones por muestra.

Realizar simultáneamente un ensayo en blanco. Si el resultado del ensayo en blanco sobrepasa 0,05 ml de la solución de tiosulfato sódico 0,01 N (6.4), sustituir los reactivos.

EXPRESIÓN DE LOS RESULTADOS

El índice de peróxidos (I.P.), expresado en miliequivalentes de oxígeno activo por kg de grasa se calcula mediante la fórmula siguiente:

$$IP = \frac{V \times N \times 1000}{p}$$

siendo:

V: ml de solución valorada de tiosulfato sódico (6.4) empleados en el ensayo, convenientemente corregidos para tener en cuenta el ensayo en blanco.

N: normalidad exacta de la solución de tiosulfato sódico (6.4) empleada.

p: peso, en gramos de la muestra problema.

El resultado será la media artimética de las dos determinaciones efectuadas.

ANEXO IV

DETERMINACIÓN DEL CONTENIDO DE ALCOHOLES ALIFÁTICOS MEDIANTE CROMATOGRAFÍA DE GASES CON COLUMNA CAPILAR

OBJETO

El presente método describe un procedimiento para la determinación del contenido de alcoholes alifáticos en las materias grasas, expresado como contenido de cada uno de los alcoholes alifáticos analizados y como contenido total.

2. PRINCIPIO

Saponificación de la materia grasa, a la que se habrá añadido 1-eicosanol como patrón interno, con una solución etanólica de hidróxido potásico; a continuación, extracción del insaponificable con éter etilico.

Separación de la fracción de alcoholes del insaponificable extraido mediante cromatografía en placa de gel de sílice básica; los alcoholes recuperados del gel de sílice se transforman en trimetilsililéteres y se analizan mediante cromatografía de gases con columna capilar.

MATERIAL

- 3.1. Matraz de 250 ml, provisto de refrigerante de reflujo con juntas esmeriladas.
- 3.2. Embudos de decantación de 500 ml.
- 3.3. Matraces de 250 ml.
- 3.4. Equipo completo de cromatografía en capa fina, utilizando placas de vidrio de 20 x 20 cm.
- 3.5. L'ampara ultravioleta de una longitud de onda de 366 o 254 nm.
- 3.6. Microjeringas de 100 ul y 500 ul.
- 3.7. Embudo cilíndrico filtrante con filtro poroso G3 (porosidad 15-40 µm), de 2 cm de diámetro y 5 cm de altura, aproximadamente, con un dispositivo adecuado para la filtración en vacio y una junta esmerilada macho 12/21.
- Matraz cónico para vacio de 50 ml, con junta esmerilada hembra 12/21 acoplable al embudo filtrante (3.7).
- 3.9. Probeta de 10 ml de fondo cónico con tapón hermético.
- 3.10. Equipo de cromatografía de gases que pueda funcionar con columna capilar, provisto de un siscona de división de flujo formado por:
- 3.10.1. Horno para la columna, que pueda mantener la temperatura deseada con precisión de ± 1 °C.
- 3.10.2. Inyector con elemento vaporizador de vidrio tratado con persilano.
- 3.10.3. Detector de ionización de llama y convertidor-amplificador.
- 3.10.4. Registrador-integrador que pueda funcionar con el convertidor-amplificador (3.10.3), con un tiempo de respuesta no superior a 1 segundo y con velocidad de papel variable.
- 3.11. Columna capilar de vidrio o silice fundida, de 20 a 30 m de longitud y de 0,25 a 0,32 mm de diámetro interno, recubierta interiormente de liquido SE-52, SE-54 o equivalente, con un espesor uniforme que oscile entre 0,10 y 0,30 mm.
- 3.12. Microjeringa de 10 ul para cromatografia de gases, con aguja endurecida.

4. REACTIVOS

- 4.1. Hidróxido potásico en solución etanólica aproximadamente 2N: disolver, enfriando al mismo tiempo, 130 g de hiróxido potásico (valoración minima del 85 %) en 200 ml de agua destilada y completar hasta un litro con etanol. Conservar la solución en botellas de vidrio oscuro bien cerradas.
- 4.2. Éter etilico de calidad para análisis.
- 4.3. Sulfato sódico anbidro de calidad para antiless.

- 4.4. Placas de vidrio recubiertas con gel de silice, sin indicador de fluorescencia, de 0,25 mm de espesor (disponibles en el comercio va preparadas para el uso).
- 4.5. Hidróxido potásico en solución etanólica 2N: disolver 13 g de hidróxido potásico en 20 ml de agua destilada y completar hasta un litro con etanol.
- 4.6. Benceno para cromatografía.
- 4.7. Acetona para cromatografía.
- 4.8. Hexano para cromatografia.
- 4.9. Éter etilico para cromatografía.
- 4.10. Cloroformo de calidad para análisis.
- 4.11. Solución patrón para cromatografía en capa fina: mezcla de alcoholes de C₂₀ a C₂₆, disolución al 5 % en cloroformo.
- 4.12. Solución de 2,7-diclorofluoresceina al 0,2% en etanol. Para hacerla ligeramente básica se añaden algunas gotas de solución alcohólica 2N de hidróxido potásico.
- 4.13. Piridina anhidra para cromatografia.
- 4.14. Hexametildisilazano.
- 4.15. Trimetilclorosilano.
- 4.16. Solución problema de trimetilsililéteres de los alcoholes alifáticos de C₂₀ a C₂₈: preparar en el momento del uso a partir de mezclas de alcoholes puros.
- 4.17. 1-eicosanol, disolución al 0,1% (m/v) en cloroformo (patrón interno).
- 4.18. Gas portador: hidrógeno o helio de calidad para cromatografía de gases.
- 4.19. Gases auxiliares:
 - hidrógeno de calidad para cromatografía de gases,
 - aire de calidad para cromatografia de gases.

PROCEDIMIENTO

- 5.1. Preparación del insaponificable.
- 5.1.1. Con la microjeringa de 500 µl introducir en el matraz de 250 ml un volumen de disolucion de 1-eicosanol (se puede utilizar igualmente 1 eneicosanol) al 0,1 % en cloroformo (4.17) que contenga uma cantidad de 1-eicosanol correspondiente al 10 % aproximadamente del contenido de alcoholes alifáticos en la alicuota de la muestra para la determinación. Por ejemplo, para 5 g de muestra añadir 250 µl de la solución de 1-eicosanol al 0,1 %, si se trata de aceite de oliva, y 1 500 µl, si se trata de aceite de origio de oliva.
 - Evaporar en corriente de nitrógeno hasta sequedad y, a continuación, pesar con precisión, en el mismo matraz, 5 g de muestra seca y filtrada.
- 5.1.2. Añadir 50 ml de solución etanólica de hidróxido potásico 2N, adaptar el refrigerante de reflujo y calentar al baño Maria con ligera ebullición, agitando enérgica e ininterrumpidamente hasta que se produzca la saponificación (la solución se vuelve limpida). Calentar durante 20 minutos más y, a continuación, añadir 50 ml de agua destilada por la parte superior del refrigerante; separar el refrigerante y enfriar el matraz a 30 °C aproximadamente.
- 5.1.3. Transvasar cuantitativamente el contenido del matraz a un embudo de separación de 500 ml, mediante varios lavados con un total de 50 ml de agua destilada. Agregar 80 ml aproximadamente de éter etilico, agitar enérgicamente diarante unos 30 segundos y dejar reposar hasta la completa separación de las fases (nota 1).

Separar la fase acuosa inferior pasándola a un segundo embudo de separación. Efectuar otras dos extracciones de la fase acuosa por el mismo procedimiento, utilizando cada vez de 60 a 70 ml de éter etilico.

- Nota I:- Las punibles emalsiones podrán eliminarse adadiendo pequeñas cantidades de alcohol enlico o meránco con un pulveriandos.
- 5.1.4. Reunir las fracciones exércas en un mismo embude de separación y lavarias con agua destilada (50 m) cada vez) hanta que el agua de lavado presente reacción neutra.

Una vez eliminada el agua de lavado, secar con sulfato sódico anhadro y filtrar sobre sulfato sódico anhádro a un matraz de 250 ml previamente pesado, lavando el embado y el filtro con pequeñas camidades de éner cultico.

- 5.1.5. Destilar el éter hasta que queden unos pocos ml; a continuación, secar en un vació ligero o en una corriente de nitrogeno, completando el secado en una estuta a 100 °C durante 15 minutos aproximadamente; dejar enfriar en un desecador y pesar.
- 5.2. Separación de la fracción de alcoholes
- 5.2.1. Preparación de las placas básicas: sumergir completamente las placas con gel de silice (4.4) en la solución etanolica 0.2N de hidroxido potasico (4.5) durante 10 segundos; dejar secar las placas en campana durante dos horas y, por ultimo, mantenerlas en una estura regulada a 100 °C durante una hora.

Sacarlas de la estufa y conservarlas en un desecador de cloruro de calcio hasta el momento del uso (las placas sometidas a este tratamiento deberán utilizarse en un plazo de quince dias como máximo).

- Nota 2: Si se utilizan placas básicas de gei de silice para la separación de la fracción de alcoboles, ya no es necesario tratar el insaponificable con altimina. De este modo, todos los compuestos de naturaleza acida (acidos grasos y otros) quedan retenidos en la linea de aplicación, y la banda de los esteroles aparece perfectamente diferenciada de la banda de los alcoboles alifaticos y terpenicos.
- 5.2.2. Introducir en la cubeta de desarrollo de las placas una mezcla de benceno y acetona 95:5 (V/V) hasta una altura de I cm aproximadamente. Puede utilizarse como alternativa una mezcla de hexano y éter etilico 65:35 (V/V). Cerrar la cubeta con su correspondiente tapa y dejar transcurrir media hora como minimo, de forma que se alcance el equilibrio liquido-vapor. En las caras interiores de la cubeta pueden colocarse tiras de papel de filtro que se sumerjan en el eluyente: de esta manera el tiempo de desarrollo se reduce casi un tercio y se obtiene una elución más uniforme y regular de los componentes.
 - Nota 3: Para que las combiciones de elución sean pe fectamente reproducibles, la mezcla de desarrollo debera cambiarse en cada prueba.
- 5.2.3. Preparar una solución de insaponificable (5.1.5) en cloroformo al 5% aproximadamente y, con la microjeringa de 100 µl, depositar 0,3 ml de dicha solu non en una placa cromatográfica (5.2.1) a unos 2 cm de uno de los bordes, formando una linea lo más fina y uniforme posible. A la altura de la linea de aplicación se depositan, en un extremo de la placa, de 2 a 3 µl de la solución de referencia de alcoholes (4.11) para poder identificar la banda de alcoholes alifaticos una vez efectuado el desarrollo.
- 5.2.4. Introducir la placa en la cubeta de desarrollo, preparada como se indica en el panto 5.2.2. Deberá mantenerse una temperatura de entre 15 y 20 °C. Tapar inmediatamente la cubeta y dejar que se produzca la elución hasta que el frente del disolvente se situe a 1 cm aproximadamente del borde superior de la placa. Sacar la placa de la cubeta y evaporar el disolvente en una corriente de aire caliente o dejando la placa bajo una campana unos minutos.
- 5.2.5. Pulverarar la placa ligera y uniformemente con la solución de 2,7-diclorofluoresceina. Al examinar la placa a la luz ultravioleta puede identificarse la banda de los aicoholes alifancos mediante comparación con la mancha obtenida con la solución de referencia; marcar con lápia negro el conjunto de la banda de alcoholes alifáticos y de la banda immediatamente superior correspondiente a los alcoholes triterpénicos.
 - Nonz 4: La presumpción de considerar junto con la banda de alcoholes traterpenscos la de alcoholes aldáticos responde al hecho de que la primera, en las condiciones del presente ensayo, incluye canadades ognificativas de alcoholes altánicos.
- 5.2.6. Rascar con una espátula metalica el gel de salice contenido en el área delimitada, Introducar el material obtenido, finamente triturado, en el embudo filerante (3.7); añadar 10 ml de cloroformo caliente, mezelar cuidadosamente con la espátula metalica y filtrar en vacio, recopendo el filtrado en el matraz cónico (3.8) acoplado al embudo filerante.

Lavar el residuo en el embudo tres veces con éter etilico (empleando cada ver unos 10 ml), recopiendo cada vez el filtrado en el mismo matraz consco acoplado al embudo. Evaporar el filtrado hasta obtener una volumen de 4 a 3 ml, transvasar la volución residual al tubo de ensayo de 10 ml (3.9) previamente pesado, evaporar hasta sequedad mediante calentamiento sarve en corriente ligera de natrogeno, recoger con algunas gotas de acetona, evaporar de nuevo basta sequedad, introducir en una estula a 105 °C durante unos 10 minutos, desar enfrair en el desecudor y pesar.

El residuo que queda en el cubo de ensario esta hormado por la fracción de alcoholes.

- 5.3. Preparación de los tranecticulaleteres.
- 5.3.1. Agregar al tubo que contiene la fraccion de alcoholes el reactivo de viantización formatica por una mercia de pendina, hecamenidadaramo y comenidacionosiano 9.3.1 (V/V/V/mora 5), a razon de 3) al por miligramo de alcoholes evicando roda absorción de homedad (nota 6).
 - Votte § Existen militarines connerciales hatin para el mo. Admin. continen connen occas reactivos de vialentación, como el ha-tramendalificationnalis. § § de transchibitoconiques, que el divise en el tramo volumes de produto artificia.

- 5.3.2. Tapar el tubo, agitar cuidadosamente sin invertir hasta la total disolución de los alcoholes. Dejar reposar un cuarto de hora, como minimo, a temperatura ambiente y centrifugar durante algunos minutos; la solución limpida queda lista para el analisis mediante cromatografia de gases.
 - Nota é. La formación de una ligera opalescencia es normal y no ocasiona unguna intenterencia. La formación de una floculación blanca o la aparición de una coloración rosa son indicios de presencia de humeriad o de deternoro del reactivo. En este caso debera repetirse la prueba.
- 5.4. Cromatografia de gases.
- 5.4.1. Operaciones preliminares: acondicionamiento de la columna.
- 5.4.1.1. Colocar la columna en el cromatógrafo uniendo uno de los extremos de la columna al unyector y el otro al detector.

Efectuar los controles generales del equipo para cromatografia de gases, estanquidad de los circuitos de gases, eficacia del detector, eficacia del sistema de fraccionamiento y del sistema de registro, etc.

5.4.1.2. Si la columna se utiliza por vez primera, es conveniente acondicionarla previamente. Hacer pasar un ligero flujo de gas a traves de la columna, encender el equipo de cromatografia de gases e iniciar un calentamiento gradual hasta alcanzar una temperatura al menos 20 °C superior a la temperatura de trabajo (nota 7). Mantener dicha temperatura durante 2 horas como minimo; a continuación, poner el equipo completo en condiciones de funcionamiento (regulación del flujo de gases y de la relación de «split», ignición de la llama, conexión con el registrador electrónico, regulación de la temperatura del horno, del detector y del inyector, etc.) y registrar la señal con una sensibilidad al menos dos veces superior a la prevista para el análisis. El trazado de la linea de base debe ses lineal, estar exento de picos de cualquier tipo y no debe presentar deriva.

Una deriva reculinea negativa indica que las conexiones de la columna no son totalmente estancas; una deriva positiva indica que el acondicionamiento de la columna es insuficiente.

Nota 7: La temperatura de acondicionamiento deberá ser siempre, como minimo, 20 ℃ incerior a la temperatura máxima prevista para la fase estacionaria utilizada.

- 5.4.2. Elección de las condiciones de trabajo.
- 5.4.2.1. Las condiciones de trabajo exigidas son las siguientes:
 - temperatura de la columna: inicialmente isoterma durante 8 minutos a 180 °C; a continuación, programar un incremento de 5 °C/minuto hasta alcanzar los 260 °C; después, mantener durante 15 minutos a 260 °C.
 - temperatura del invector: 280°C,
 - temperatura del detector: 290 °C.
 - velocidad lineal del gas portador: helio 20 a 35 cm/s, hidrogeno 30 a 50 cm/s.
 - relación le «split» de 1/50 a 1/100.
 - sensibilidad del instrumento: de 4 a 16 veces la atenuación minima,
 - sensibilidad de registro: 1 a 2 mV f.e.,
 - velocidad del papel: 30 a 60 cm/hora,
 - canndad de sustancia invectada: 0,5 a 1 al de solucion de TMSE.

Estas condiciones purden modificarse en función de las características de la columna y del cromatógrafo, de modo que se obtengan cromatogramas que camplan los siguientes requisites:

- el tiempo de retención del alcohol C₂₄ debe ser de 18 ± 5 minutos.
- el pico del alcohol C₂₂ debe ser: para el aceire de oliva, 80 ± 20 % del fondo de escala, y para el aceire de semillas, 40 ± 20 % del fondo de escala.
- 5.4.2.2. Para comprobar los requisitos citados, efectuar varias asyecciones de merclas problema de TMSE de alcoholes y ajustar las condiciones de trabajo para obtener los asyones resultados.
- 5.4.2.3. Los parámetros de integración de los picos deberán escabilecerse de medo que se obrenga una evaluación correcta de las áreas de los picos tomados en consideración.
- 5.4.3. Realización del analisis
- 5.4.3.1. Con la microjeringa de 10 jal nomar 1 jal de hexano, aspurar 0.5 jal de aire y a communición, cuerro 0.5 y 1 jal de la solución problema, elevar el embolo de la jeringa de modo que la agusa quede vacia, introducir la aguja a través del septum y, despues de 1 o 1 segundos, invectar rapidamente, transcurridos unos 5 segundos, extraer la aguja lencamente.
- 5.4.3.2. Continuar el registro basta la completa chación de los TMSE de los akcoholes presentes.
 La linea de base debe ajustanse en todo momento a las condiciones expedas (5.4.1.2).
- 5.4.4. Identificación de los picos.

Para la identificación de los diferentes picos se utilizan los tempos de resercion y la comparación con merclas de TMSE de los alcoholes analizadas en las mismas condiciones.

La figura l'inuestra un cromatograma de la fracción alcobólica de un actes de obra virgen.

- 5.4.5. Determinación cuancitativa.
- 5.4.5.1. Calcular las áreas de los picos del 1-eicosanol y de los aicoholes alidicicos de C_{12.3} C₂₄ solar ando el invegrador.

5.4.5.2. Calcular del modo siguiente el contenido de cada uno de los alcoboles, expresado en mg 100 g de materia grasa:

alcohol
$$x = \frac{A_x - m_x \cdot 1000}{A_x \cdot m}$$

siendo:

A_x: area del pico del alcohol x.

A.: area del pico del 1-eicosanol.

m.: peso de 1-eicosanol añadido, en miligramos.

m: peso de la muestra tomado para la determinación, en gramos.

EXPRESIÓN DE LOS RESULTADOS

Se expresa el contenido de cada uno de los alcoholes alifancos en mg/100 g de materia grasa y como «alcoholes alifancos totales», su suma. $(C_{22} + C_{24} + C_{24} + C_{24})$.

APÉNDICE

Determinación de la velocidad lineal del gas

inyectar en el cromatógrafo, preparado para trabajar en condiciones normales, de I a 3 µl de metano (o propano) y medir el tiempo que tarda el gas en recorrer la columna, desde el momento de la inyección hasta que aparece el pico (tM).

La velocidad lineal en cm/s viene dada por L/tM, siendo L la longitud de la columna en cm y tM el tiempo, expresado en segundos.

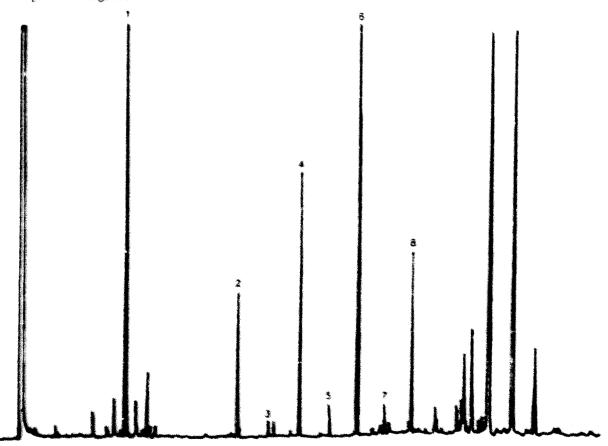


Figure 1 — Cromatograma de la fracción alcoholica de un aceste de situa segure

1 ± Eiconanol 5 ± Pensaconanol 2 ± Diconanol 6 = Hexaconanol 3 ± Triconanol 7 ± Heptaconanol

ANEXO V

DETERMINACIÓN DE LA COMPOSICIÓN Y DEL CONTENIDO DE ESTEROLES MEDIANTE CROMATOGRAFÍA DE GASES CON COLUMNA CAPILAR

L OBIETO

El presente método describe un procedimiento para la determinación del contenido de esteroles en las materias grasas, expresado como contenido de cada uno de los esteroles analizados y como contenido total de esteroles.

2 PRINCIPIO

Saponificación de la materia grasa, a la que se habra añadio α-colestanol como patron interno, con una solución etanólica de hidróxido potásico; a continuación, extracción del insaponificable con eteretilico.

Separación de la fracción de esteroles del insaponificable extraido mediante cromatografía en placa de gel de silice basica; los esteroles recuperados del gel de silice se transforman en trimetilsilileteres y se analizan mediante cromatografía de gases con columna capilar.

3. MATERIAL

- 3.1. Matraz de 250 ml, provisto de refrigerante de teflujo con juntas esmenladas.
- 3.2. Embudos de separación de 500 ml.
- 3.3. Matraces de 250 ml.
- Equipo completo de cromatografía en capa fina, utilizando placas de vidros de 20 x 20 cm.
- 1.5. L'ampara ultravioleta de una longarad de onda de 366 o 254 ana.
- 3.6. Microjeringa de 100 ul y 500 ul.
- 3.7. Embudo cilindrico filtrante con filtro poroso G3 (porosidad 15-40 um), de 2 cm de diametro y 8 cm de altura, aproximadamente, con un dispositivo adecuado para la filtración en vacio y una junta esmerilada macho 12/21.
- Matraz c\u00e9nico para vacio de 50 ml, con junta esmerilada hembra 12/21 acopiable al embudo filtrante (3.7).
- 3.9. Probeta de 10 mil de fondo cónico con tapón hermético.
- 3.10. Equipo de cromatografía de gases que pueda funcionar con columna capitar, provisto de un sistema de división de flujo formado por:
- 3.10.1. Horno para la columna, que pueda mantener la imperatura deseuda con precisson de 🛫 1 °C.,
- 3.10.2. Inyector con elemento vaporizador de vidro tratado con persisteo.
- 3.10.3. Detector de ionización de llama y convertidor-amplificados.
- 3.10.4. Registrador-integrador que pueda funcionar con el convertidor-amplificador (3.10.3), con un tiempo de respuesta no superior a 1 segundo y con velocidad de papel variable.
- 3.11. Columna capitar de vidrio o silice fundida, de 20 x 30 m de longitud y de 0,25 a 0,32 mm de diametro interno, recubierta interiormente de liquido SE-32, SE-54 o equivalente, con un espesor uniforme que oscile entre 0,10 x 0,30 um.
- 3.12. Microjeringa de 10 al para cromatografia de gases, con agua enducecida.

4. REACTIVOS

4.1. Hidrónido porásico, solución etanólica IN aproximadamente: disolver, enfrundo al mismo tiempo, 130 g de hidrónido porásico (valoración minima del 85%) en 200 mi de agua destilada y completar hasta un litro con etanol. Conservor la solución en hotellas de vidrio oscuro bien cerradas.

- 4.2. Eter etilico de calidad para analisis.
- Sulfato sodico anhidro de calidad para analisis.
- 4.4. Placas de vidrio recubiertas con gel de silice, sin indicador de fluorescencia, de 0.25 mm de espesor (disponibles en el comercio ya preparadas para el uso...
- 4.5. Hidróxido potásico, solución etanólica 0.2N: disolver 13 g de hidróxido potásico en 20 ml de agua destilada y completar hasta un litro con etanol.
- Benceno para cromatografia.
- 4.7. Acetona para cromatografia. (Vease 5.2.2).
- 4.8. Hexano para cromatografia. (Véase 5.2.2).
- 4.9. Éter enlico para cromatografia. (Véase 5.2.2).
- 4.10. Cloroformo de calidad para analisis.
- 4.11. Solución patrón para cromatografía en capa fina: colesterol o fitosteroles, solución al 5% en cloroformo.
- 4.12. Solución de 2,7-diclorofluoresceina al 0,2% en etanol. Para hacerla ligeramente basica se añaden algunas gotas de solución alcohólica 2N de hidróxido potásico.
- 4.13. Piridina anhidra para cromatografia.
- 4.14. Hexamenidisilazano.
- 4.15 Trimetilelegosilano
- 4.16. Solución problema de trimenisililéteres de los esteroles: preparar en el momento del uso a partir de esteroles puros o de mezclas de esteroles obtenidos de aceites que los contengan.
- 4.17. a-colestanol, disolución al 0.2% (m/V) en cloroformo (patrón interno).
- 4.18. Gas portador: hidrógeno o belio de calidad para cromatografía de gases.
- 4.19 Gases auxiliares:
 - hidrógeno de calidad para cromatografía de gases,
 - aire de calidad para cromatografia de gases.

§ PROCEDIMIENTO

- Preparación del insapomácable.
- 5.1.1. Con la microjeringa de 500 µl introducir en el matraz de 250 ml un volumen de disolación de α-colestanol al 0,2 % en cloroformo (4.17) que contenga una cantidad de α-colestanol correspondiente al 10 % aproximadamente del contenido de esteroles en la alicuota de la muestra para la determinación. Por ejemplo, para 5 g de muestra añadir 500 µl de la solación de α-colestanol al 0,2 %, si se trata de aceite de oliva, y 1 500 µl, si se trata de aceite de oliva.

Evaporar en corriente de nitrógeno hasta sequedad y, a continuación, pesar con precisión, en el mismo matraz. 5 g de muestra seca y filtrada.

En el caso de acestes y grasas animales o vegetales con un alto contenido de colesterol poede producirse ou pico cuyo tiempo de retención sea idéntico al del colestantol. En tal caso el analisis de la fracción de esteroles debe realizarse dos veces: con patrón interno y sin el.

- 5.1.2. Añadir 50 mi de solución etanólica de hidróxido potasico 2N, adaptar el refrigerante de reflujo y calentar en baño Maria con ligera ebullición, agitando enérgica e immerrampidamente hasta que se produzca la suponificación (la solución se vuelve limpida). Calentar durante 20 minutos más y, a continuación, ailadir 50 mi de agua desollada por la parte superior del refrigerante; separar el refrigerante y enfritar el matriaz a 30 °C aproximadamente.
- 5.1.3. Transvasar cuantitativamente el contenido del matraz a un embudo de separación de 500 ml, mediante varios lavados con un total aproximado de 50 ml de agua destilada. Agregar 80 ml aproximadamente de éter etilico, agitar enérgicamente durante unos 30 segundos y dejar reposar hasta la separación de las fases (nota 1).

Separar la fase acuosa inferior pastindola a un segundo embado de separación. Efectuar otras dos extracciones de la fase acuosa por el mismo procedimiento, unitrando cada vez de 60 a 70 ml de éter etilico.

Note l: Las guidiles emulsiones godeim eliminume añadiendo pequeñas considades de alcobol enlico o menlico con un pulverinador.

- 5.1.4. Reunir las fracciones etereas en un mismo embudo de separación y lavarias con agua destilada. 50 ml cada vez) basta que el agua de lavado presente reacción neutra.
 - Una vez eliminada el agua de lavado, secar con sulfato sódico anhidro y filtrar sobre sulfato sódico anhidro a un matraz de 250 ml previamente pesado, lavando el embudo y el filtro con pequeñas cantidades de éter etilico.
- 5.1.5. Destilar el éter hasta que queden unos pocos mic a commuación, secar con un vacio ligero o en una corriente de nitrógeno, completando el secado en una estufa a 100 °C durante 15 minutos aproximadamente; dejar enfriar en un desecador y pesar.
- 5.2. Separación de la fracción de esteroles.
- 5.2.1. Preparación de las placas basicas: sumergir completamente las placas con gel de silice (4.4) en la solución etanólica 0.2N de hidróxido pocasico (4.5) durante 10 segundos; dejar secar las placas en campana durante dos horas y, por último, mantenerlas en una estura regulada a 100 °C durante una hora. Sacarlas de la estufa y conservarlas en un desecador de cloruro de calcio hasta el momento del uso (las placas sometidas a este tratamiento deberan utilizarse en un plazo de quince dias como máximo).
 - Nota 2. Si se utilizan placas básicas de gel de silice para la separación de la fracción de esteroles, ya no es necesario tranar el insaponificable con alumina. De este modo, todos los compuestos de naturaleza acida (acidos grasos y otros) quedan retenidos en la línea de aplicación, y la banda de los esteroles aparece perfectamente diferenciada de la banda de los alcoholes alitancos y tricerpensios.
- 5.2.2. Introducir en la cubeta de desarrollo de las placas una mercia de benceno-acetona 95:5 (v/v) hasta una altura de 1 cm aproximadamente. Puede utilizarse como alternativa una mercia de hexano y èter etilico 65:35 (v/v). Cerrar la cubeta con su correspondiente tapa y dejar transcurrir media hora como mínimo, de forma que se alcance el equilibrio liquido-vapor. En las caras interiores de la cubeta pueden colocarse tiras de papel de filtro que se sumerjan en el eluvente: de esta manera el tiempo de desarrollo se reduce casi un tercio y se obtiene una elución más uniforme y regular de los componentes.
 - Nota 3: Para que las condiciones de elución sean perfectamente reproducibles, la mercia de desarrollo deberá cambiarse en cada prueba.
- 5.2.3. Preparar una solución de insaponificable (5.1.5) en cloroformo al 5 % aproximadamente y, con la microjeringa de 100 µl, depositar 0,3 ml de dicha solución en una placa cromatográfica (5.2.1) a unos 2 cm de uno de los bordes, formando una linea lo más fina y uniforme posible. A la altura de la linea de aplicación se depositan, en un extremo de la placa, de 2 a 3 µl de la solución de referencia de esteroles (4.11) para poder identificar la banda de esteroles una vez efectuado el desarrollo.
- 5.2.4. Introducir la placa en la cubeta de desarrollo, preparada como se indica en el punto 5.2.2. Deberá mantenerse una temperatura ambiente entre 15 y 20 °C. Tapar inmediatamente la cubeta y dejar que se produzica la elación hasta que el frente del disolvente se sitúe a 1 cm aproximadamente del borde superior de la placa. Sacar la placa de la cubeta y evaporar el disolvente en una corriente de aire caliente o dejando la placa bajo una campana unos minutos.
- 5.2.5. Pulverizar la placa ligera y uniformemente con la solución de 2,7-diclorofluoresceina. Al examinar la placa a la hiz ultravioleta puede identificarse la banda de los esceroles mediante comparación con la mancha obtenida a partir de la solución de referencia; marcar con lápiz negro los limites de la banda a lo largo de los márgenes de fluorescencia.
- 5.2.6. Rascar con una espatula metálica el gel de vilice contenido en el área delimitada. Introducar el material obtenido, finamente triturado, en el embudo filtrante (3.7% añada 10 ml de elocoformo cabente, mezelar cuidadosamente con la espatula metálica y filtrar en vacio, recopendo el filtrado en el matraz cónico (3.3) acoplado al embudo filtrante.

Lavar el residuo en el embudo tres veces con eter etilico (empleando cada vez unos 10 ml), recogiendo cada vez el filtrado en el mismo matras cónico acopiado al embudo. Evaporar el filtrado hasta obrener un volumen de 4 a 5 ml, transvasar la volución residual al tubo de ensuvo de 10 ml (3.9) previamente pesado, evaporar hasta sequedad mediante calentamiento suave en corriente ligera de natrigento, recoger con algunas gotas de acetona, evaporar de nuevo hasta sequedad, introducir en una estufa a 105 °C durante unos 10 minutos, dejar enfrar en el desecador y pesar.

El residuo que queda en el tubo de cosago está formado por la fracción de esteroles.

- 5.3. Preparación de los trimetibilidareres.
- 5.3.1. Agregar al tubo que contiene la fracción de esteroles el reactivo de salamención formado por una mercia de piridina-hexamenidistilazano-minetilcioroniumo (h.). 1 (x.0000) (nota 4), a razón de 50 µ1 por miligranto de enteroles, evitando toda absorción de humedad (nota 5).
 - Nota 4: Existen subsciones contencides hous para el uso. Ademios, cambras escora ceros reactivos de vásica acoa, como el bis-termenlabilitaretamida » 1% de trimenlabirocalismo, que se dibare en el mesmo volumen de pindina arthidia.

- 5.3.2. Tapar el tubo y aguar cuidadosamente (sin invertir) hasta la completa disolución de los esteroles. Delar reposar un cuarto de hora, como minimo, a temperatura ambiente y centrifugar durante algunos minutos; la solución limpida queda lista para el analisis mediante cromatografia de gases.
 - Nota 5.— La formación de una ligera opalescencia es normal y no ocasiona minguna internerencia. La formación de una floculación blanca o la aparición de una coloración rosa son indicion de presencia de humedad o de deterioro del reactivo. En este caso debera repetirse la prueba.
- 5.4. Cromatografia de gases.
- 5.4.1. Operaciones preliminares: acondicionamiento de la columna
- 5.4.1.1. Colocar la columna en el cromatógrafo umendo uno de los extremos de la columna al invector y el otro al detector.

Efectuar los controles generales del equipo para cromatografia de gases esculquidad de los cricuitos de gases, eficacia del detector, eficacia del sistema de división de flujo y del sistema de registro, etc...

5.4.1.2. Si la columna se unliza por vez primera, es conveniente acondicionarla previamente. Hacer pasar un ligero flujo de gas a través de la columna, encender el equipo de cromatografia de gases e iniciar un calentamiento gradual hasta alcanzar una temperatura al menos 20 °C superior a la temperatura de trabajo (nota 6). Mantener dicha temperatura durante 2 horas como minimo; a continuación, poner el equipo completo en condiciones de funcionamiento (regulación del flujo de gases y de la relación de «split», ignición de la llama, conexión con el registrador electrónico, regulación de la temperatura del horno del detector y del inyector, etc.) y registrar la señal con una sensibilidad al menos dos veces superior a la prevista para el análisis. El trazado de la linea de base debe ser lineal, exento de picos de cualquier npo y no debe presentar deriva.

Una deriva rectilinea negativa indica que las conexiones de la columna no son totalmente estancas; una deriva positiva indica que el acondicionamiento de la columna es insuficiente.

Nota 6: La temperatura de acondicionamiento debera ser siempre, como minimo 20 °C inferior a la temperatura maxima prevista para la fase estacionaria unilizada.

- § 4.2. Elección de las condiciones de trabajo.
- 5.4.2.1. Las condiciones de trabajo exigidas son las siguientes:
 - temperatura de la columna: 260 °C + 5 °C.
 - temperatura del evaporador: 280 °€.
 - temperatura del detector: 290 °C.
 - velocidad lineal del gas portador: helio 20 a 35 cm/s, hidrógeno 30 a 50 cm/s.
 - relación de «split» de 1/50 a 1/100.
 - sensibilidad del instrumento: de 4 a 16 veces la atenuación minima.
 - sensibilidad de registro: La 2 mV f.e.
 - velocidad del papel: 30 a 50 cm /hora.
 - cantidad de sustancia inyectada: 0,5 a 1 sil de sobocion de TMSE.

Estas condiciones pueden modificanse en función de las características de la columna y del cromatografo, de modo que se obtengan cromatogramas que cumplan los siguientes requisitos:

- el tiempo de retención del β-suosterol debe ser de 20 ± 5 minutos.
- el pico del campesterol debe sen: para el aceste de oliva (contenido medio del 3 %), 15 ± 5 % del fondo de escala; para el aceste de soja (contenido medio del 20 %), 80 ± 10 % del fondo de escala;
- se deben separar todos los espiroles presentes; es necesario que los picos no solo se separen sino que se resuelvan completamente, es decir, que el trazo del pico llegue a la linea de base antes de que se inicie el pico siguiente. No obstante, podrá adminirie una resolución incompleta si el pico a TRR 1,02 puede cuantificarse unitarando la perpendicular.
- 5.4.3. Realización del analisis.
- 5.4.3.1. Con la microjeringa de 10 al tomar 1 al de hexano, aspurar 0,5 al de aire y a continuación, entre 0,5 y 1 al de la solución problema; elevar el embolo de la jerioga de modo que la aguia quede vacia, introducir la aguia a través del septiam y, después de 1 o 2 segundos, inyectar rápidamente; transcurridos unos 5 segundos, extraer la aguia lentamente.
- 5.4.3.2. Continuar el registro hasta la completa elucion de los TMSE de los esteroles presentes. La linea de base debe ajustarse en rodo momento a las condiciones ecopidas (5.4.1.2...)
- 5 4.4. Identificación de los picos.

Para la identificación de los diferentes picos se unha in los trempos de retración y la comparación con mercias de TMSE de los esteroles analizadas en las mismas condiciones.

La elución de los esteroles se efectua en el orden signamor: colesterol, brasacasterol, 24-menlencolesterol, campesterol, campestanol, estigmasterol, 4-7-campesterol, 4-5,23-estigmastadienol, cierosterol, §-sitosterol, sitostanol, 4-5-avenusterol, 4-5,24-estigmastadienol, 4-7-estigmasterol, 4-7-avenasterol. En el cuadro I figuran los tiempos de retencion correspondientes al β-sirosterol para las columnas SE 52 y SE 54.

Las figuras I y 2 ilustran los cromatogramas típicos de algunos acestes.

- 5.4.5. Determinación cuantitativa.
- 5.4.5.1. Calcular las áreas de los picos del α-colestanol y de los esteroles utilizando el integrador. No se tomaran en cuenta los picos de aquellos componentes que no figuren en el cuadro I. El factor de respuesta para el α-colestanol debe considerarse como 1.
- 5.4.5.2. Calcular del modo siguiente el contenido de cada uno de los esteroles, expresado en mg/100 g de materia grasa:

esterol
$$x = \frac{A_x \cdot m_y \cdot 100}{A_y \cdot m}$$

siendo:

A_s: área del pico del esterol x, en milimetros cuadrados,

A: area del pico del a-colestanol,

m.: peso de a-colestanol añadido, en miligramos,

m: peso de la muestra tomado para la determinación, en gramos.

- EXPRESIÓN DE LOS RESULTADOS
- 6.1. Se registran el contenido de cada uno de los esteroles en mg 100 g de materia grasa y, como «esteroles totales», su suma.
- 6.2. El porcentaje de cada uno de los esteroles simples es la razón entre el área del pico correspondiente y la suma de las áreas de los picos de los esteroles.

% lei esterol
$$X = \frac{A_x}{\Sigma A} \times 100$$

siendo:

A, : area del pico de x,

EA : suma de las areas de todos los picos.

APENDICE

Determinación de la velocidad lineal del gas

Inyectar en el cromatógrafo, preparado para trabajar en condiciones normales, de 1 a 3 μ l de metano (o propano) y medir el tiempo que tarda el gas en recorrer la columna, desde el momento de la inye non hasta el momento en que aparece el pico ($t_{\rm M}$).

La velocidad lineal en cm/s viene dada por L/tM, siendo L la longitud de la columna en cm y tM el tiempo, expresado en segundos.

Cuadro I

Tiempos de retención relativos de los esteroles

Total Commercial	ldentificación		Tempo de retención	
Pico			Columns SE 54	Columna SE 52
•	colesterol	Δ 5-colesten-3β-ol	0.67	0,63
2	colestanol	Sa-colestan-3\$-ol	0,68	0,64
3	brasicasterol	[24S]-24-menl-A 5,22-colestadien-3\$-ol	0,73	0,71
4	24-metilencolesterol	24-metilen-A 5,24-coleszadien-33-ol	0,82	0.80
5	campesterol	[24R]-24-metil-\Delta Scolesten-3\textit{B-ol}	0.83	0,81
6	campes and	[24R]-24-menil-colestan-38-ol	0,85	0,82
7	estigmasterol	[24S]-24-etil-4 5,22-colestadien-38-ol	0.88	0,87
8	Δ7-campesterol	[24R]-24-metil-A 7-colesten-3\$-ol	0.93	0,92
9	A 5,23 · ingmustachenol	[24R.S]-24-etil-A 5.23-colestadien-3\$-ol	0,95	0,95
10	cleros erol	[245]-24-mil-4 5,25-colestadien-38-ol	0,96	0.96
11	β-sitosterol	[24R]-24-enl-A 5-colesten-38-ol	76. 11.	1
12	sitostanol	24-enil-colescan-3\$-ol	1,02	1,02
13	Δ 5-avenasterol	[24Z]-24-enliden-A S-colesten-SB-ol	1.03	1,03
4	A 5,24-estigmastadienol	[24R,5]-24-eni-Δ 5,24-colestadien-3β-ol	80,1	1,08
15	Δ7-estigmastenol	[24R.5]-24-etil-4 7,24-coleszen-38-ol	1,12	1,12
16	Δ 7-avenasterol	[24Z]-24-enliden-Δ 7-38-ol	1,16	1.16

Figura 1

Cromatograma de la fracción de esteroles de un aceite de oliva bruto

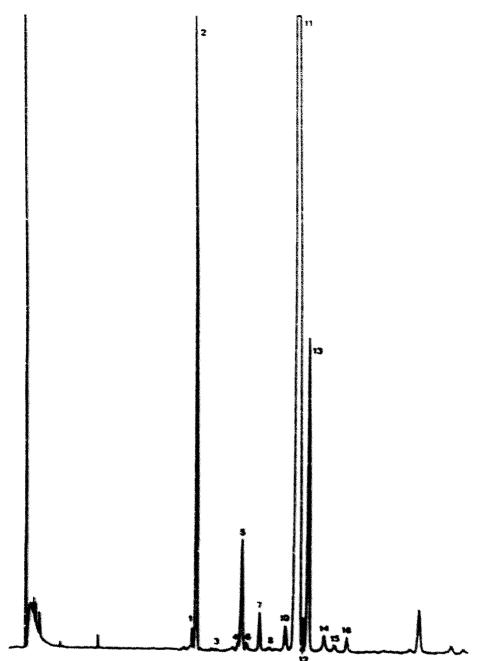
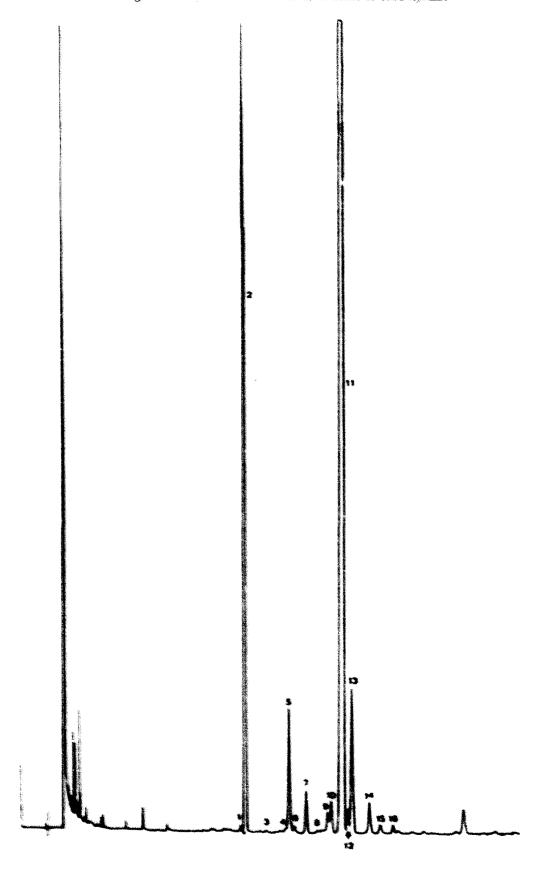



Figura 2

Cromatograma de la fracción de esteroles de um acesse de oltra refinado

ANEXO VI

DETERMINACIÓN DEL CONTENIDO EN ERITRODIOL Y UVAOL

INTRODUCCIÓN

El eritrodiol, entendido corrientemente como conjunto de los dioles entrodiol y uvaol, es un componente del insaponificable, característico de algunos tipos de materias grasas. Su concentración es mucho más elevada en los aceites de oliva obtenidos mediante extracción que en los obtenidos mediante presión o en el aceite de pepita de uva y, por lo tanto, su determinación puede servir para comprobar la existencia de aceite de oliva obtenido mediante extracción.

1. OBJETO

El presente método describe un procedimiento para determinar el entrodiol en las materias grasas.

PRINCIPIO

La materia grasa se saponifica con una solución etanólico de hidroxido porasico; a continuación se extrae el insaponificable con éter etilico y se purifica pasandolo por una columna de alúmina.

El fraccionamiento del insaponificable se realiza mediante cromatografia en capa fina en placa de gel de silice y se aislan la banda de la fracción esterólica y la del entrodiol.

Los esteroles y el eritrodiol recuperados de la piaca se transforman en trimetilsibléteres y seguidamente se analiza la mezcla mediante cromatografia de gases.

El resultado se expresa en porcentaje de entrodiol respecto del conjunto de entrodiol + exteroies.

3. MATERIAL Y APARATOS

 El mismo material que el indicado para el método del Anexo V (Determinación del contenido de esteroles).

4. REACTIVOS

- Los mismos reactivos que los indicados para el método del Anexo V (Determinación del contenido de esteroles).
- 4.2. Solución pacron de critrodiol al 0,5 % en cioroformo.

5. PROCEDIMIENTO

5.1. Preparación del insaponificable

Se realiza tal como se indica en el apartado 5.1.2 del metodo del Anexo V

- 5.2. Separación del critrodiol y los esteroles
- 5.2.1. Véase el apartado 5.2.1 del metodo del Anexo V.
- 5.2.2. Véase el apartado 5.2.2 del método mencionado.
- 5.2.3. Preparar una solución del insaponificable al 5% en cloroformo.

Con una microseringa de 0,1 ml depositar 0,3 ml de esta solución en una placa cromatográfica a aproximadamente 1,5 cm del borde inferior de la placa, formando una banda lo mas fina y aniforme posible. Depositar en un extremo de la placa, como referencia, algunos microseros de las soluciones de colesterol y extrodiol.

- 5.2.4. Introducir la placa en la cabeta de desarrollo, preparada como se indica en el apartado 5.2.1. La temperatura ambiente debe ser de unos 20 °C. Tapor immediatamente la cabeta y dejar que se producca la elistión hanta que el frente del disolvente se sinúe a 1 cm aproximadamente del borde superior de la placa. Sacar esta de la cabeta de desarrollo y evaporar el disolvente en una corriente de aire caliente.
- 5.2.5. Pulverinne la placa uniformemente con la solución alcoholica de 2°, 7° dictorofluoresceina. Al examinar la placa a la lun altravioleta pueden alemaficarse las bandas de los esteroles y del entrodiol mediante comparación con les referencias; delimetar las bandas con una pueta ligeramente por el exterior de los márqueses de 65/9/escencias.

- 5.2.6 Rascar con una espatula metàlica el gel de silice contenido en las areas delimitadas. Reunir el material obtenido en un matriaz cónico de 50 ml; añadir 15 ml de cloroformo caliente, agitar bien y filtrar en el embudo de filtro poroso vertiendo el gel de silice sobre el propio filtro. Lavar tres veces con 10 ml de cloroformo caliente cada vez, recogiendo el filtrado en un matriaz esferico de 100 ml. Evaporar hasta obtener un volumen de 4 a 5 ml, transvasar al tubo de centrifugado de fondo cónico de 10 ml previamente tarado, evaporar hasta sequedad mediante calentamiento suave en corriente de nitrogeno y pesar.
- 5.3. Preparación de los trimetilsililéteres

Se realiza tal como se indica en el apartado 5.3 del metodo del Anexo V.

5.4. Cromatografia de gases

Se realiza tal como se indica en el apartado 5.4 del merodo citado. Las condiciones operativas de la cromatografía de gases deben cumplir los requisitos necesarios para analizar los esteroles y, además, permitir la separación de los TMSE del entrodiol y del uvaol.

Una vez inyectada la muestra, dejar que se desarrolle el proceso hasta que se produzca la elución de los esteroles presentes, el eritrodiol y el uvaol; identificar los picos (el eritrodiol y el uvaol tienen tiempos de retención relativos, respecto al β-sitosterol, de alrededor de 1,45 y 1,55, respectivamente) y calcular assareas de la misma forma que para los esteroles.

6. EXPRESION DE LOS RESULTADOS

Entrodiol, % =
$$\frac{A_1 + A_2}{A_1 + A_2 + \sum A_{\text{carroles}}} \times 100$$

siendo:

A₁: 1200 del pico del entrodiol.

A2: sera cel pico del avaol, en milimetros cuadrados,

EAcuerores, was de las areas de los esteroles presentes.

Los resultas decimal decimal.

ANEXO VII

DETERMINACIÓN DE LOS ÁCIDOS GRASOS SITUADOS EN LA POSICIÓN 2 DE LOS TRIGLICÉRIDOS DE ACEITES Y GRASAS

1. OBJETO

La presente norma describe un métudo para la determinación de la composición porcentual de ácidos grasos que se encuentran esterificados en la posición 2 (oposición interna) de los triglicendos.

2. CAMPO DE APLICACIÓN

La presente norma es aplicable a los acestes y grasas cuyo punto de fusión se situa por debajo de los 45 °C, debido a las características especiales de la acción de la lipasa pancreática.

No es aplicable sin reservas a los aceites y grasas que contengan cantidades importantes de ácidos grasos con 12 átomos de carbono o menos (aceites de coco y de palmiste, materias grasas butíricas), de ácidos grasos altamente insaturados (con más de cuatro enlaces dobles) que tengan 20 átomos de carbono o más (aceites de pescado y de mamíferos marinos) o de ácidos grasos que tengan grupos con funciones oxigenadas, además del grupo ácido.

3. PRINCIPIO

Neutralización de los aceites y grasas si fuera necesario. Purificación mediante tratamiento en columna de ultimina. Hidrólisis parcial de los triglicéridos bajo la acción de la lipasa pancreánca durante un tiempo determinado. Separación de los minoglicéridos resultantes mediante cromatografía en capa fina y metanólisis de estos monoglicéridos. Análisis de los ésteres metilicos mediante cromatografía gas-liquido.

4. EQUIPO

- 4.1. Matraz de fondo redondo de 100 ml.
- 4.2. Matraz de fondo redondo de 25 ml con boca esmerilada.
- 4.3. Refrigerante de aire de 1 m de longinud, adaptable al matraz 4.2.
- 4.4. Matraz erlenmever de 250 mi.
- 4.5. Vaso de precipicados de 50 mi.
- 4.6. Embudo de separación de 500 mi.
- 4.7. Columna para cromatografia, de vidrio, con diâmetro interior de 13 mm y longitud de 400 mm, provista de un disco de vidrio poroso y de una llave.
- 4.8. Tubo de centrifuga de 10 ml con tapón de vidrio esmenilado.
- 4.9. Burera de 5 mi graduada en 🖰 35 mi.
- 4.10. Jeringa hipodérmica de I mí provista de una aguja fina.
- 4.11. Microjeringa que pueda dispensar gotas de 3-4 gl.
- Aplicador para cromatografía en capa fina.
- 4.13. Macas de vidrio de 20 × 20 cm para cromatografia en capa fina.
- 4.14. Cubera de disarrollo para cromatografia en capa fina, de vidrio, provinta de una tapa de vidrio esmerilado, adecuada para los placas de 20 × 20 cm.
- Pulverizador para cromatografía en capa tina.
- 4.16. Estufa regulada a 103 ± 2 °C.
- 4.17. Termontato regulable a uma temperatura comprendida entre 30 y 45 °C con precisión de 0,5 °C.
- 4.18. Evaporador rocatorio
- 4.19. Vibradar eléctrico, con el que parda agrarse agrarenamente el tabo de centrálique.
- 4.20. L'impara ultraviolera para es immar las placas de capa fina.

Para el control de la actividad lipásica:

- 4.21. oH-metro.
- 4.22. Agitador espiral.
- 4.23. Bureta de 5 ml.
- 4.24. Cronômetro.

Para la eventual preparación de la lipasa:

4.25. Agitador de laboratorio, adecuado para dispersar y mezclar materiales heterogeneos.

REACTIVOS

- 5.1. n-Hexano o, en su defecto, éter de petróleo (punto de ebullición 30-50 °C), de calidad para cromatografía.
- 5.2. 2-Propanoi, o etanoi, 95% (v/v) de calidad para análisis.
- 5.3. 2-Propanol, o etanol, solución acuosa 1/1.
- 5.4. Éter dietilico, exento de perexidos.
- S.S. Acetona.
- 5.6. Acido fórmico, al menos de 98 % (p/p).
- 5.7. Solvente de desarrollo: una mezcla de n-hexano (5.1), éter dietilico (5.4) y acido fórmico (5.6) en las proporciones 70/30/1 (v/v/v).
- 5.8. Aliamina activada para cromatografia, neutra, actividad l según Brockmann.
- 5.9. Gel de silice con aglutinante, de calidad para cromatografia en capa fina.
- 5.10. Lipasa pancreática de calidad adecuada (véanse las notas 1 v 2).
- 5.11. Hidróxido sódico en solución acuosa de 120 g/l.
- 5.12. Acido clorhidrico, solución acuosa 6 N.
- 5.13. Solución acuosa de 220 g/l de cioruro de calcio (CaCl₂).
- 5.14. Solución acuosa de 1 g/l de colato sódico (de calidad enzimática).
- 5.15. Solación tampón: solación acuosa de tris-hidroximenil-aminometano 1 M, ajustada a pH = 8 con acido clorhídrico (5.12) (controlar con un potención etro).
- 5.16. Solución de 10 g/l de fenolfialeina en etanol al 95 % (v/v).
- 5.17. Solución de 2 g/l de 2' J' -diciorofluoresceina en etanol al 95 % (v/v); alcalinizar ligeramente attadiendo 1 gota de solución de hidróxido sódico 1 N por 100 ml.

Para el control de la actiendad libra sca-

- 5.18. Aceste neutralizado.
- 5.19. Solución acuosa de hidróxido sódico 0.1 N.
- 5.20. Solución acuosa de 200 g/l de colaro sódico (de calidad enzimática).
- 5.21. Solución acuosa de 100 g/l de goma arábiga.

PREPARACIÓN DE LA MUESTRA

Si la acidez de la muestra, determinada con arreglo al método del Anexo II es inferior al 3%, se efectuará directamente la purificación en columna de alúmina como se describe en el punto 6.2.

Si la acidez de la muestra, determinada con arregio al metodo del Anexo II, es superior al 3 %, se efectuará una neutralización alcalina en presencia de un solvente, como se describe en el punto 6.1, y a continuación e realizará la purificación en columna de alumina descrita en el punto 6.2.

6.1. Neutralización alcalina en presencia de un solvente

introducir en el embudo de separación (4.6) aproximadamente 10 g de aceste crado y añada 100 ml de hexano (5.1), 50 ml de 2-peoparol (5.2), algunas goras de solución de fenolitaleina (5.16) y el volumen de solución de hidrónido sódico (5.11) correspondiente a la acider libre del aceste más un 0,3 % de esceso. Agitar energicamente durante 1 minuto, añadar 50 ml de agua desulada, agitar de nuevo y dejar reposar.

Uma vez que se haya producido la separación, separar la capa inferior que conciene los jabones. Separar, asimismo, todas las capas intermedias inacclingo, nauterias insolubles). Lavar la solución de hexano del

aceite neutralizado con porciones sucesivas de 25-30 ml de la solución de 2-propanol (5.3), hasta que desaparezca el color rosa de la fenolfitaleína.

Eliminar la mayor parte del hexano mediante destilación en vacio en el evaporador rotatorio (4.18); desecar el aceite en vacio a 30-40 °C mediante una corriente de nitrógeno puro hasta la completa eliminación del hexano.

6.2. Purificación con alúmina.

Preparar una suspensión de 15 g de alúmina activada (5.8) en 50 mi de hexano (5.1) y verterla en la columna cromatográfica (4.7), removiendo al mismo tiempo. Dejar que la alúmina se asiente uniformemente y esperar a que el nivel del solvente descienda a 1-2 mm por encima del absorbente. Verter cuidadosamente en la columna 5 g de aceite disueltos en 25 ml de hexano (5.1); recoger todo el eluyente de la columna en un matraz de fondo redondo (4.1).

7. PREPARACIÓN DE LAS PLACAS CROMATOGRÁFICAS

Limpiar perfectamente las placas de vidrio (4.13) con etanol, êter de petróleo y acetona para eliminar cualquier rastro de materia grasa.

Introducir en un matraz erlenmeyer (4.4) 30 g de polvo de silice (5.9). Añadir 60 ml de agua destilada. Tapar y agitar enérgicamente durante 1 minuto. Transferir inmediatamente al aplicador la mezcla semifluida (4.12) y recubrir las placas limpias con una capa de 0,25 mm de espesor.

Secar las placas al aire durante 15 minutos y a continuación en la estufa (4.16) a 103 ± 2 °C durante 1 hora. Antes del uso, enfriar las placas en un desecador a temperatura ambiente. En el comercio pueden adquirirse placas preparadas.

8. PROCEDIMIENTO

8.1. Hidrólisis con lipasa pancreática.

Pesar en el tubo de centrifuga (4.8) 0,1 g aproximadamente de la muestra preparada; si la muestra es aceite liquido, proceder como se indica a continuación; si es una grasa sólida, disolverla en 0,2 ml de hexano (5.1), aplicando, si es necesario, un ligero calentamiento.

Añadir 20 mg de lipasa (5.10) y 2 ml de solución tampón (5.15). Agitar bien, pero con cuidado, y añadir a continuación 0.5 ml de la solución de colato sódico (5.14) y 0.2 ml de la solución de cloruro de calcio (5.13). Cerrar el tubo con el tapón esmerilado, agitar cuidadosamente (evitando humedecer el tapón) e introducir el tubo inmediatamente en el termostato (4.17) a 40 ± 0.5 °C y agitar manualmente durante 1 minuto exacto.

Sacar el tubo del termostato y agitar energicamente con el vibrador eléctrico (4.19) durante 2 minutos exactos.

Enfriar de immediato en agua corriente; añadir 1 ml de ácido clorhádrico (5.12) y 1 ml de éter dietilico (5.4). Tapar y mezclar enérgicamente con el vibrador eléctrico. Dejar en reposo y extraer la capa orgánica con la jeringa (4.10), tras centrifugar si fuese necesario.

8.2. Separación de los monoglicéridos por cromatografia en capa fina.

Con ayuda de la microjeringa (4.11) colocar el extracto a 1,5 cm aproximadamente del borde inferior de la placa cromatográfica, depositándolo de manera que forme una linea fina, uniforme y lo más estrecha posible. Introducir la placa en una cubeta de desarrollo (4.14) bien saturada y desarrollar con el solvente de desarrollo (5.7) a unos 20 °C hasta 1 cm aproximadamente del borde superior de la placa.

Secar la placa al aire a la temperatura de la cubeta y pulverizarla con la solución de 2^{\prime} , 7^{\prime} -dicloro-fluoresceina (5.17). Identificar la banda de los monoglicéridos (R_{ij} aproximadamente 0,035) con luz ultravioleta (4.20).

Análisis de los monogliceridos por cromatografia gas-liquido.

Raspar con una espátula la banda cirada en el punto 8.2 (procurando no raspar los componentes que permanencian en la linea de base) y pasarla al marraz de metilación (4.2). Tratar directamente la silice recugida como se indica en el Anexo X-8, de modo que los monogliceridos se transformen en esteres metilicos, y, a continuación, examinar los ésteres mediante cromatografia en fase gaseosa, como se describe en el Anexo X-A.

SEXPRESIÓN DE LOS RESULTADOS

Calcular la composición de los ácidos grasos situados en la posición y expresar el resultado con una cifra decimal (nota 3).

NOTAS

Nota 1. Control de la actividad lipassica

Preparar una emulsión oleosa como sigue: agitar en un mezidador adecuado una mezida constituida por 165 ml de solución de goma arábiga [5,21], 15 g de hielo picado y 20 ml de aceste neutralizado (5,18).

En un vaso de precipitados (4.3) introducir 10 ml de esta emulsión, 0.3 ml de solución de colato sodico (5.20) y 20 ml de agua descriada.

Colocar el vaso en un termostato a 37 °C \pm 0.5 °C (nota 4) e introducar los electrodos del pH-metro (4.21) y un agitador espiral (4.22); después, añadir gora a gora con una bureta (4.23) solución de hidroxido sodico (5.19) hasta obtener un pH de 8.5.

Añadir una suspensión acuosa de la lipasa (véase a continuación, en cantidad suficiente. Se mide el pH), tan pronto como alcance el vallor de 8.3, se pone en marcha un cronómetro y se va añadiendo la disolución de hidróxido sódico (5.19) gota a gota, con la velocidad necesaria para mantener constante el pH de 8.3; anotar cada minuto el volumen de solución alcalina consumido.

Llevar los datos obtenidos a un sistema de ejes de coordenadas, indicando en abscisas los tiempos y en ordenadas los mililátros de solución alcalina necesarios para mantener constante el pH. Debera obtenerse una gráfica lineal.

La suspensión de lipasa mencionada es una suspensión en agua al $1/1.000\,(p/p)$. Deberá emplearse en cada ensayo una cantidad suficiente de esca suspensión, de modo que en 4/0.5 minutos se consuma 1 mi de solución alcalina aproximadamente. Normalmente se necesiran de 1/a.5 mg de polyo.

La unidad lipásica se define como la cantidad de enzima que libera 10 ueq de ácido por minuto. La actividad A del polvo utilizado, medida en unidades lipásicas por mg. se calcula mediante esta fórmula:

$$A = \frac{V \times 10}{p}$$

szendo

V = volumen de solución de hidroxido sódico (5.19) consumido por minuto (calculado a partir de la gráfica).

p = peso, en mg, de la muestras problema de polvo.

Nota 2: Preparación de la lipasa

En el comercio pueden encontrarse lipasas de actividad lipásica satisfactoria. También es posible prepararlas en laboratorio de la manera siguiente: tomar S kg de pancreas fresco de cerdo, refrigerado a $0\,^{\circ}$ C; eliminar la grasa sólida y el tejido conjuntivo que lo rodean, y triturar en un molino de cuchillas hasta obtener una pasta fluida. Con un agizador (4.25) agitar la pasta junto con 2.5 l de acerona anhidra, durante 4-6 horas y después centrifugar. Efectuar tres extracciones más del residuo con el mismo volumen de acetona anhidra, dos extracciones con una mezcla de acerona y éter etilico 1:1(V/V), y dos extracciones con eter etilico, en este orden.

Desecar el residuo al vacio durante 48 horas para obtener un polvo estable, que debe almacenarse en un reinigerador.

- Nota 3: Es aconsejable en todos los casos determinar la composición de los ácidos grasos totales de la misma muestra, ya que la comparación con la de los ácidos situados en la posición 2 facilitará la interpretacion de las cifras obsenidas
- Nota 4: Por tratarse de un aceite líquido, la hidrólisis se efectua a 37 °C. No obstante, en el caso de la muestra probles a se efectuará a 40 °C a fin de que puedan examinarse las grasas con puntos de fusion de hasta 45 °C.

ANEXO VIII

DETERMINACIÓN DEL PORCENTAJE DE TRILINOLEÍNA

1. OBJETO

Determinación de la composición de los triglicéridos de los aceites liquidos vegerales expresada en su número equivalente de carbonos mediante cromatografia de liquidos de alto rendimiento.

La presente norma describe un método para efectuar la separación y determinación de la composición de los triglicéridos de los aceites vegetales según su peso molecular y grado de insaturación en función de su número equivalente de carbonos (véase la nota 1).

2. CAMPO DE APLICACIÓN

La presente norma es aplicable a todos los acertes vegetales que contengan triglicéridos de ácidos grasos de cadena larga. Este método es especialmente adecuado para detectar la presencia de pequeñas cantidades de acertes semisecantes (ricos en ácido linoleico) en acertes vegetales cuyo principal ácido graso insaturado sea el ácido oleico, como es el caso de los acertes de oliva.

3. PRINCIPIO

Separación de los triglicéridos en función de su número equivalente de carbonos mediante cromatografía de liquidos de alta resolución en fase inversa e interpretación de los cromatogramas.

4. APARATOS

- Cromatógrafo de líquidos de alta resolución con control termostático de la temperatura de la columna.
- 4.2. Sistema de inyección con un volumen de 10 µl.
- 4.3. Detector: refractómetro diferencial, La sensibilidad en toda la escala deberá ser como mínimo de 10⁻⁴ unidades de indice de refracción.
- 4.4. Columna de acero inoxidable de 250 mm de longitud y 4,5 mm de diámetro interior, rellena de particulas de sílice de 5 µm de diámetro con un 22-23% de carbono en forma de octadecilsilano inota 2).
- 4.5. Registrador y/o integraçõor.

REACTIVOS

Los reactivos deberán ser de calidad para análisis. Los disolventes de elución deberán desgasificarse y podrán reciclarse varias veces sin que ello afecte a las separaciones.

- 5.1. Cloroformo.
- 5.2. Acetona.
- 5.3. Acetonitrilo.
- 5.4. Fase móvil: acetonitrilo + acetona (las proporciones se ajustarán para obtener la separación deseada; comenzar con una mezcla 50:50).
- Disolvente de solubilización: acetona o mezcla de acetona-cloroformo 1:1.
- 5.6. Triglicéridos de referencia: pueden utilizarse bien trigliceridos comerciales (tripalmitina, trioleina, etc.), en cuyo caso se reflejarán en un gráfico los tiempos de retención frente al número equivalente de carbonos, alternativamente un cromatograma de referencia del aceite de soja (véanse las notas 3 y 4 y las figuras 1 y 2).

6. PREPARACIÓN DE LAS MUESTRAS

Preparar del signiente modo una solución al 5 % de las muestras que vayan a analizarse: pesar 0.5 ± 0.001 g de la muestra en un marraz aforado de 10 mi y enrasar hasta 10 mi con el disolvente de solubilización (5.5).

- PROCEDIMIENTO
- 7.1. Instalar el sistema cromatográfico. Bombear fase móvil (5.4) a razón de 1,5 ml/mm para purgar el sistema completo. Esperar hasta que se obtenga una linea de base estable, Inyectar 10 µl de la muestra preparada como se indica en el punto 6.
- 8. CÁLCULO Y EXPRESIÓN DE LOS RESULTADOS

Utilicese el método de normalizacion interna, es decir, considérese que la suma de las áreas de los picos de los diferentes triglicéridos es igual a 100%. Calcular el porcentaje relativo de cada triglicérido mediante esta fórmula:

% del triglicerido =
$$\frac{\text{área del pico}}{\text{suma de las áreas de los picos}} \times 100$$

El resultado se expresa con un decimal.

Nota 1: El orden de elución puede determinarse calculando el número equivalente de carbonos, que a menudo viene dado por la relación NEC = NC - 2n, siendo NC el número de carbonos y n el número de enlaces dobles; es possible calcularlo con una precisión mucho mayor tomando en consideración el origen del enlace doble. Si no, ni y nia son el número de enlaces dobles atribuible a los ácidos oleico, linoleico y linolénico, respectivamente, el número equivalente de carbonos puede calcularse mediante la relación siguiente:

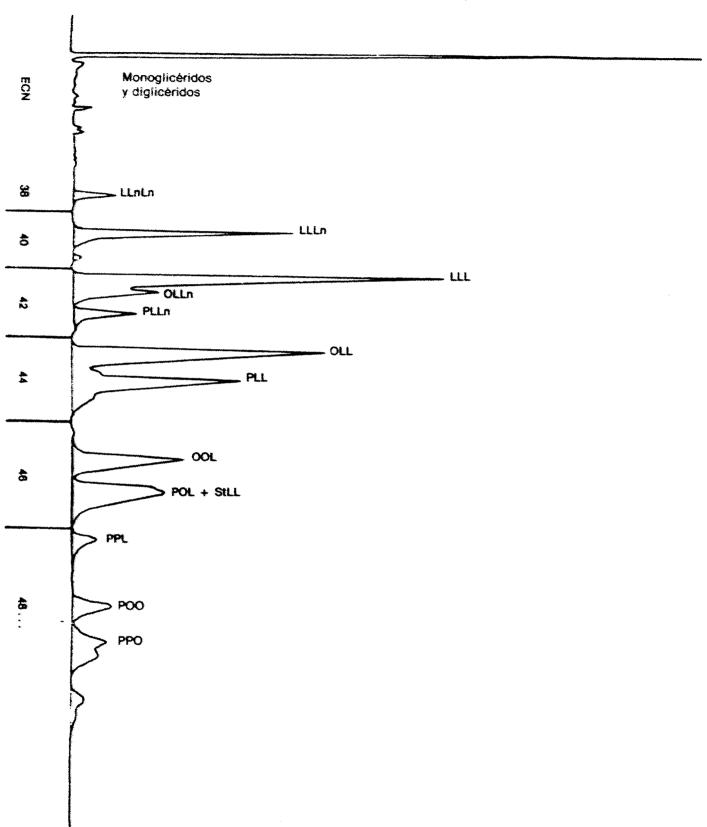
Los coeficientes dos di y dia pueden calcularse mediante los triglicendos de referencia.

En las condiciones que se específican en el presente método, la relación que se obtenga sera similar a la siguiente:

NEC = NC -
$$\{2.60 \text{ m}\}$$
 - $\{2.35 \text{ m}\}$ - $\{2.17 \text{ m}\}$

Nota 2: Ejemplos: Lichrosorb (Merck) RP 18 Art 50333; Lichrosphere (Merck) 100 CH 18 Art 50377 o similares.

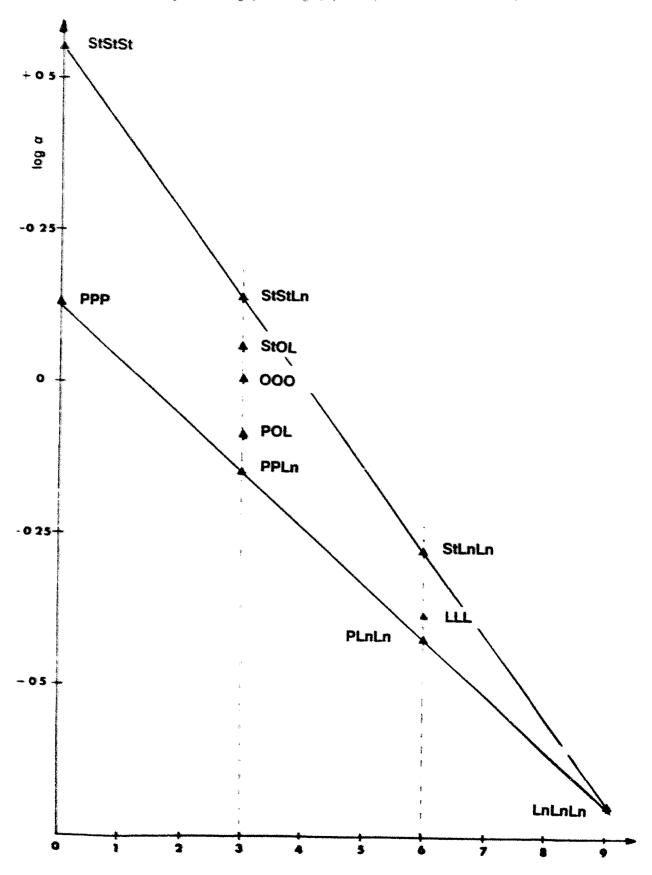
Nota 3: Algunos triglicéridos de referencia también permiten calcular la resolución respecto a la trioleinan:


utilizando el tiempo de retención corregido TR' = TR - TR disolvente.

La representación gráfica del log o frente a f (número de enlaces dobles) permite determinar los valores de retención de todos los triglicéridos de los acidos grasos contenidos en los triglicéridos de referencia (véase la figura 2).

Nota 4: La eficacia de la columna debe permitir separar claramente el pico de la LLL (tribnoleina) de los triglicéridos con tiempo de retenición próximo.

Figura 1


Cromatograma de una muestra de aceste de sosa

Nota: P. ácido palmítico; St. ácido esteárico; O: ácido oleico; L: ácido linoleico; Ln: ácido linoleico

Figura 2

Representación gráfica del log alfa frente a f (número de enlaces dobles)

Nota: La: ácido laúrico; My: ácido mirístico; P: ácido palmítico; St: ácido esterárico; O: ácido oleico; L: ácido finoleico; La: ácido

ANEXO IX

PRUEBA ESPECTROFOTOMÉTRICA EN EL ULTRAVIOLETA

INTRODUCCIÓN

La prueba espectrofotomètrica en el ultravioleta puede proporcionar indicaciones sobre la calidad de una materia grasa, su estado de conservación y las modificaciones inducidas por los procesos tecnológicos.

Las absorciones en las longitudes de onda indicadas en el método se deben a la presencia de sistemas diénicos y triénicos conjudagos. Los valores de estas absorciones se expresan en extinción específica $E_{1cm}^{-1/6}$ (extinción de una solución de la materia grasa al 1 % en el disolvente determinado, en un espesor de 1 cm) que se expresará convencionalmente como K, también denominado coeficiente de extinción.

I. OBJETO

El método describe el procedimiento de ejecución de la prueba espectrofotométrica en el ultravioleta de las materias grasas.

2. PRINCIPIO

La materia grasa se disuelve en el disolvente requerido y se determina la extinción de la solución a las longitudes de onda prescritas, respecto al disolvente puro. A partir de los valores espectrofotométricos se calculan las extinciones específicas.

MATERIAL Y APARATOS

- Espectrofotómetro para medidas de extinción en el ultravioleta entre 220 y 360 nm, con posibilidad de lectura para cada unidad nanometrica.
- 3.2. Cubetas de cuarzo, con tapadera, con paso óptico de 1 cm. Las enbetas, llenas de agua o de otro disolvente adecuado, no ueben presentar entre ellas diferencias superiores a 0,01 unidades de extinción.
- 3.3. Matraces aforados de 25 ml.
- 3.4. Columna de cromatografía, de 540 mm de longitud y 35 mm de diâmetro, con tubo de reflujo de un diâmetro aproximado de 10 mm.

4. REACTIVOS

- 4.1. Isooctano (2,2,4-trimetilpentano) de calidad para espectrofotometría: debe tener, respecto al agua destilada, una transmitancia del 60 % como minimo a 220 nm y del 95 % como minimo a 250 nm;
 - ciclohexano de calidad para espectrofotometria: debe tener, respecto al agua destilada, una transmitancia del 40% como minimo a 220 mm y del 95% como minimo a 250 nm; u
 - otro disolvente adecuado, que permita obtener una disolución completa de la materia grasa (por ejemplo, alcohol etilico para el aceite de ricino).
- Alúmina básica para cromatografia en columna, preparada y controlada como se describe en el apéndice I.
- 4.3. n-Hexano para cromatografia.

5. PROCEDIMIENTO

5.1. La muestra debe ser perfectamente h. nogénea y estar exenta de impurezas en suspensión. Los aceites líquidos a temperatura ambiente se filtran con papel de filtro a una temperatura aproximada de 30 °C, las grasas sólidas se homogeneizan y se filtran a una temperatura superior en 10 °C como máximo a su temperatura de fusión.

- 5.2. Se pesan con precision 0,25 g aproximadamente de la muestra preparada y se colocan en un matraz aforado de 25 ml, se completa con el disolvente adecuado y se homogeneiza. La solución resultante debe estar perfectamente clara. Si presenta opalescencia o turbidez, se filtrara rápidamente con papel de filtro.
- 5.3. Se llena una cubeta con la solución obtenida y se miden las extinciones, usando como referencia el disolvente empleado, a las longitudes de onda comprendidas entre 232 y 276 nm. Los valores de extinción obtenidos deben estar comprendidos en el intervalo entre 0,1 y 0,8; en caso contrario es necesario repetir la medida utilizando soluciones más concentradas o mas diluidas según el caso.
- 5.4. Cuando se quiera determinar la extinción especifica después del tratamiento con alúmina se procederá del siguiente modo: en la columna para cromatografía se introducen 30 g de alúmina basica en suspensión en hexano; después de asentarse el absorbente se elimina el exceso de hexano, hasta 1 cm aproximadamente sobre el nivel superior de la alúmina.

Se disuelven 10 g de materia grasa, homogeneizada y filtrada tal como se describe en el punto 5.1, en 100 ml de hexano y se vierte esta solución en la columna. Se recoge el liquido eluido y se evapora totalmente el disolvente en vacio a una temperatura inferior a 25 °C.

Con la materia grasa asi obtenida se procede inmediatamente tal como se indica en el punto 5.2.

6. EXPRESIÓN DE LOS RESULTADOS

6.1. Se expresan las extinciones específicas o coeficientes de extinción a las diversas longitudes de onda, calculadas como sigue:

$$K_{\lambda} = \frac{E_{\lambda}}{c.e.}$$

siendo:

K₁ = extinción especifica a la longitud de onda lambda,

E_k = extinción medida a la longitud de onda lambda,

c = concentración de la disolución en g por 100 mi,

e = espesor de la cubeta en cm.

Los resultados deben expresarse con dos cifras decimales.

6.2. La prueba espectrofotométrica del aceite de oliva según el método oficial de los Reglamentos de la CEE requiere la determinación de la extinción específica, en solución en isooctano, a las longitudes de onda de 232 y 270 nm, y la determinación de Δ E definido como:

$$\Delta K = K_m - \frac{K_{m-4} + K_{m+4}}{2}$$

donde K_m es la extinción especifica a la longitud de onda m, longitud de onda de máxima absorción alrededor de 270 nm.

APÉNDICE I

Preparación de la alúmina y control de su actividad

A.1.1. Preparación de la alúmina

En un recipiente que pueda cerrarse herméticamente se echa la alúmina previamente desecada en horno a 380-400 °C durante tres horas, se añade agua destilada en una proporción de 5 ml por 100 g de alúmina, se cierra rápidamente el recipiente, se agita repetidas veces y se deja reposar durante 12 horas como mínimo antes del uso.

A.1.2. Control de la actividad de la alumina

Se prepara una columna para cromatografia con 30 g de alumina. Se opera tal como se describe en el apartado 5.4. Se hace pasar a traves de la columna una mezcla formada por:

- 95% de aceite de oliva virgen, con extinción específica a 268 am menor que 0.18.
- 5% de aceite de cacabuete tratado con tierras decolorantes en el proceso de refinado, con una extinción específica a 268 nm mayor o igual que 4.

Si, después del paso por la columna, la mezcia presenta una extinción especifica a 268 nm mayor que 0.11, la alumina es aceptable; en otro caso se debe aumentar el porcentaje de hidratación.

APÉNDICE II

Ajuste del espectrofotometro

- A.2. El aparato debe revisarse periòdicamente (por lo menos cada seis meses) tanto en lo que se refiere a la conformidad de la longitud de onda como a la exactitud de la respuesta.
- A.2.1. El control de la respuesta de la longitud de onda puede hacerse mediante una lampara de vapor de mercurio o mediante filtros adecuados.
- A.2.2. Para controlar la célula fotoeléctrica y el fotomultiplicador se procede como sigue: se pesan 0,2 g de cromato potásico de calidad para espectrofotometria, se disuelven, en un matraz aforado de 1 000 ml, en una solución de hidróxido potásico 0,05 N y se completa hasta el enrase. De la solución obtenida se toman exactamente 25 ml, se transvasan a un matraz aforado de 500 ml y se completa hasta el enrase con la misma solución de hidróxido potásico.

Se mide la extinción a 275 nm de la solución así obtenida, utilizando la solución de hidróxido porásico como referencia. La extinción medida en cubera de 1 cm deberá ser de 0.200 ± 0.005 .

ANEXO X .A.

ANÁLISIS DE LOS ÉSTERES METILICOS DE LOS ÁCIDOS GRASOS MEDIANTE CROMATOGRAFÍA DE GASES

1. OBJETO

El presente método internacional proporciona orientaciones generales para determinar, mediante cromatografia de gases con columna de relieno o capilar, la composación cualitativa y cuantitativa de una mezcla de esteres metilicos de ácidos grasos obtenidos con arreglo al Anexo X B.

El metodo no es aplicable a los acidos grasos polimenzados.

2. REACTIVOS

2.1. Gas portador

Gas inerte (nitrógeno, helio, argón, hidrógeno, etc.), perfectamente desecado y que contenga menos de 10 mg/kg de oxígeno.

Nota 1: El hadrógeno, que solo se emplea como gas portudor en las columnas capilares, puede duplicar la velocidad del análisis, pero es peligroso. Existen dispositivos de seguridad.

2.2. Gases auxiliares

- 2.2.1. Hidrógeno (pureza ≥ 99,9%) exento de impurezas orgânicas.
- 2.2.2. Aire u oxigeno, exento de impurezas organicas.

2.3. Patrón de referencia

Una mezcia de ésteres metilicos de ácidos grasos puros, o los esteres metilicos de una grasa de composición conocida y, preferentemente, similar a la de la materia grasa objeto de análisis.

Deberá evitarse la oxidación de los ácidos grasos polinsaturados.

APARATOS

Las normas que figuran a continuación se refieren al equipo ordinario para cromatografía de gases, utilizando columnas de relleno y/o capilares y un detector de ionización de llama. Podrá utilizarse cualquier aparato cuya eficacia y resolución se ajusten a lo dispuesto en el punto 4.1.2.

3.1. Cromatógrafo de gases

El cromatógrafo de gases constará de los siguientes elementos:

3.1.1. Sistema de invección

Utilizar un sistema de inyección:

- a) con columnas de relleno, con un espacio muerto lo más pequeño posible (en este caso, el sistema de inyección podrá calentarse a una temperatura que sea entre 20 y 50 °C superior a la de la columna);
 o
- b) con columnas capilares; en este caso, el sistema de invección estará especialmente diseñado para poder operar con esa clase de columnas; podrá utilizarse un invector con división de flujo o un invector «on column».

Nota 2: En ausencia de ácidos grasos con menos de 16 átomos de carbono, podrá utilizarse un inyector de aguja móvil.

3.1.2. Horno

El horno podra calentar la columna a 260 °C como mínimo y mantener dicha temperatura con una oscilación máxima de 1 °C, si se emplea una columna de relieno, y de 0,1 °C, si se emplea una columna capilar. Este último requisito es especialmente importante si se utiliza una columna de silice fundida.

Se recomienda emplear en todos los casos un sistema de calentamiento programado, sobre todo en el caso de ácidos grasos con menos de 16 áromos de carbono.

3.1.3. Columna de relleno

- 3.1.3.1. Columna de un material inerte a las sustancias que vayan a analizarse (es decar, vidrio o acero inoxidable) y de las dimensiones signientes:
 - a) Longitud: de 1 a 3 m. Con ácidos grasos de cadena larga (más de C₂₀) es conveniente utilizar una columna relativamente corta. Para el análisis de ácidos con 4 o 6 átomos de carbono se recomienda una columna de 2 m.
 - b) Diametro interior: de 2 a 4 mm.
 - Nota 3: Si hay componentes politinsaturados con más de tres enlaces dobles, pueden descomponerse en una columna de acero inoxidable.
 - Nota 4: Puede utilizarse un sistema con doble columna de relleno.
- 3.1.3.2. Relleno, que incluya los siguientes elementos:
 - a) Soporte: tierra de diatomeas lavada con ácido y silanizada, u otro soporte inerte adecuado, con un margen estrecho de tamaño de grano (margen de 25 μm, entre 125 y 200 μm); el tamaño medio de grano estará en función del diámetro interior y de la longitud de la columna.
 - b) Fase estacionaria: líquido polar de tipo poliéster (por ejemplo, polisuccinato de dietilenglicol, polisuccinato de butanodiol, poliadipato de etilenglicol, etc.), cianosiliconas o cualquier otro líquido que permita efectuar la separación cromatogo ifico exigida (véase el punto 4). La fase estacionalia deberá constituir del 5 % (m/m) al 20 % (m/m) del relleno. Para algunas separaciones podrá utilizarse una fase fija no polar.
- 3.1.3.3. Acondicionamiento de la columna

Estando la columna desconectada del detecto. Estando la posible, calentar el horno gradualmente hasta 185 °C y hacer pasar a través de la columna recién preparada una corriente de gas inerte a razón de 20-60 ml/min durante 16 horas como mínimo a la temparatura citada y, a continuación, a la temperatura de 195 °C durante 2 horas más.

3.1.4. Columna capilar

- 3.1.4.1. Tubo de un material inerte a las sustancias que vayan a analizarse (generalmente, vidrio o silice fundida). El diámetro interior estará comprendido entre 0,2 y 0,8 mm. La superficie interior se someterá a un tratamiento adecuado (por ejemplo, preparación de la superficie, inactivación) antes de introducir el recubrimiento de fase fija. En la mayoría de casos, es suficiente una longitud de 25 mm.
- 3.1.4.2. Fase estacionaria de tipo poliglicol [poli(etilenglicol) 20 000], poliéster (polisuccinato de butanodiol) o polisiloxano polar (cianosiliconas), generalmente. Son apropiadas las columnas de fase quimicamente ligada.
 - Nota 5: Existe el riesgo de que los polisiloxanos polares dificulten la identificación y separación del ácido linolénico y de los ácidos C₂₀.

El espesor de la fase estará comprendido entre 0,1 y 0,2 µm.

3.1.4.3. Montaje y acondicionamiento de la columna.

Observar las precauciones normales de montaje de columnas capilares (es decir, instalación de la columna en el horno, elección y montaje de las juntas (estanqueidad), conexión de los extremos de la columna al inyector y al detector (reducción de los espacios muertos). Colocar la columna bajo un flujo de gas portador [por ejemplo, 0,3 bar (30 kPa) para una columna de 25 mm de longitud y 0,3 mm de diámetro interior].

Acondicionar la columna programando el gradiente de temperatura del horno a 3 °C/min a partir de la temperatura ambiente hasta alcanzar una temperatura 10 °C inferior al limite de descomposición de la fase estacionaria. Mantener el horno a esa temperatura durante 1 hora hasta que se estabilice la linea de base. Restablecer la temperatura de 180 °C para trabajar en condiciones isotérmicas.

Nota 6: En el comercio pueden obtenerse columnas adecuadas previamente acondicionadas.

3.1.5. Detector que puede calentarse a una temperatura superior a la de la columna.

3.2. Jeringa

Tendrá una capacidad máxima de 10 µl y estará graduada en 0,1 µl.

3.3. Registrador

Si se emplea la curva del registrador para calcular la composición de la mezcla analizada, se necesita un registrador electrónico de alta precisión compatible con los aparatos utilizados. El registrador deberá tener las siguientes características:

 a) tiempo de repuesta inferior a 1,5 s y, preferiblemente, inferior a 1 s (el tiempo de repuesta es el tiempo que tarda la pluma registradora en pasar de 0 a 90 % después de la introducción instantánea de una señal del 100 %);

- b) ancho del papel: 20 cm como minimo;
- c) velocidad del papel: ajustable a valores comprendidos entre 0,4 cm/min y 2,5 cm/min.

3.4. Integrador

La utilización de un integrador electrónico permite efectuar cálculos rápidos y precisos. Debe proporcionar una respuesta lineal de sensibilidad adecuada y la corrección de la desviación de la linea de base debe ser satisfactoria.

TRUCEDIMIENTO

i as operaciones descritas en los puntos 4.1 a 4.3 sólo son válidas si se emplea un detector de ionización de llama.

Como alternativa puede emplearse un cromatógrafo de gases con catarómetro (cuyo funcionamiento se basa en el principio de los cambios de conductividad térmica). En ese caso, las condiciones de ensayo deberán modificarse como se indica en el punto 6.

4.1. Condiciones de ensayo

4.1.1. Determinación de las condiciones operativas óptimas

4.1.1.1. Columna de relleno

Al establecer les condiciones de ensayo deberán tenerse en cuenta las variables siguientes:

- a) longicud y diametro de la columna;
- b) composición y cantidad de la fase estacionaria;
- c) temperatura de la columna;
- d) flujo del gas portador;
- e) resolución exigida;
- f) tamaño de la muestra problema, determinado de modo que el conjunto del detector y el electrómetro dé una respuesta lineal;
- g) duración del analisis.

Como norma general, las cifras de las tablas 1 y 2 permitirán obtener los resultados deseados, es decir, al menos 2 000 platos teóricos por metro de longitud de columna en el caso del estearato de metilo, y su elución en 15 minutos aproximadamente.

Cuando el aparato lo permita, la temperatura del inyector deberá ser de 200 °C aproximadamente y la del detector deberá ser igual o superior a la de la columna.

Por lo general, la razón entre la velocidad de flujo del hidrógeno suministrado al detector de ionización de llama y la del gas portador oscila entre 1:2 y 1:1, en función del diámetro de la columna. El flujo del oxígeno es de 5 a 10 veces superior al del hidrógeno.

Tabla I

Diámetro anterior de la columna ann	Flujo del gas portador mi/min
2	15 2 25
3	20 • 40
4	40 3 60

Table 2

Concentración de la fase fija % (m/m)	Temperatura de la columna °C
5	173
10	180
15	185
20	185

4.1.1.2. Columna capilar

Las propiedades de eficacia y permeabilidad de las columnas capitares implican que la separación de los constituyentes y la duración del análisis dependen considerablemente del flujo del gas portador en la columna. Por lo tanto, para optimizar las condiciones operativas sera necesario manipular este parámetro (o, lo que es mas senciflo, la presion en cabeza de columna) segun se desee mejorar las separaciones o efectuar un análisis rápido.

4.1.2. Determinación del número de platos teóricos (eficacia) y de la resolución

Véase la figura 1)

Efectuar el análisis de una mezcla de estearato de metilo y de oleuto de metilo (por ejemplo, esteres metilicos de manteca de cacao) en proporciones aproximadamente equivalentes.

Escoger la temperatura de la columna y el flujo del gas portador de manera que el máximo del pico del estearato de metilo se registra aprova a convente 15 minutos después del pico del disolvente. Utilizar una cantidad suficiente de la metala de acceptante mélicos, de manera que el pico del estearato de metilo se eleve a tres cuartos aprova nationare de la escala completa.

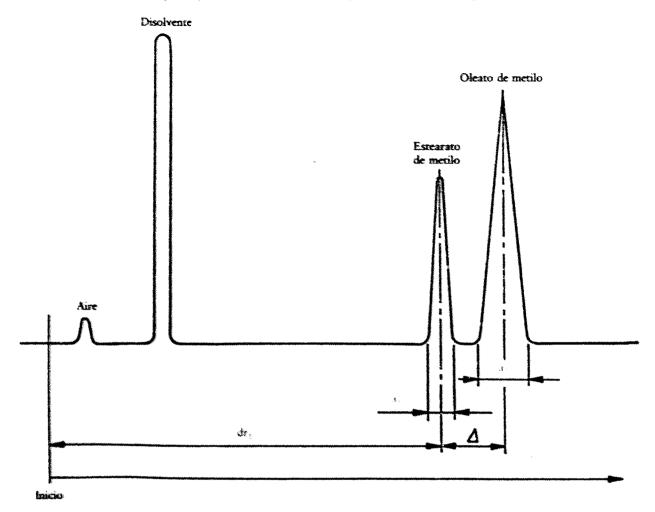
Calcular el numero de de como accomediante la siguiente formula:

$$y = 10 \left[-\frac{dx_1}{x_2} \right]^2$$

y la resolución «R» mediante la siguiente formula:

$$R = \frac{2\Delta}{a_1 + a_2}$$

siendo:


 dr. = distancia en mm, desde el inicio del cromatograma hasta el máximo del pico del estearato de metilo.

a₁ y a₂ = anchura, en mm, de los picos del estearato de metilo y del oleato de metilo, respectivamente, medida entre los puntos de intersección de las tangentes en los puntos de inflexión de la curva con la linea de base.

de la distancia, en mm, entre los dos máximos de los picos del estearato de menlo y del oleato de menlo.

Figura 1

Cromatograma para determinar el número de platos teoricos (eficacia) y la resolución

Se establecerán unas condiciones de analisis que permitan obtener al menos 2 000 platos teóricos por metro de longitud de columna para el estearato de metilo y una resolución de 1,25 como mínimo.

4.2. Muestra problema

Tomar con la jeringa (3.2) de 0,1 sil a 2 sil de la solución de esteres metibicos preparados con arreglo al Anexio X B e invectarlos en la columna.

En el caso de ésteres no disueitos, preparar una solución de 100 mg/ml aproximadamente en heptano de calidad para cromatografía e invectar de 0,1 ul a 1 ul de esta solución.

Si vólo se desean detectar los componentes presentes en cantidades muy pequeñas, se podrá aumentar el tamaño de la muestra "hasta 10 veces".

4.3. Analisis

Como norma general, las condiciones de ensavo son las que se especifican en el punto 4.1 L.

No obstante, cuando se determinan ácidos con menos de 12 áromos de carbono es posible operar a menor temperatura de colamna, mientras que cuando se determinan ácidos grasos con más de 20 átomos de carbono es posible operar a una temperatura mayor. A veces se puede utilizar en los dos casos ameriores un sistema de programación de temperatura. Por ejemplo, si la muestra contiene éstivos menticos de ácidos grasos con menos de 12 atomos de carbono, invectar la muestra a 100 °C (o a 50 – 60 °C si hay ácido butífico) y elevar unmediatamente la temperatura a razón de 4 – 8 °C/min hasta alicanzar el nivel desendo. En algunos casos es posible combinar ambos procedimientos.

Fras elicalentamiento programado, se continúa la elación a temperatura constante hasta que todos los componentes se hayen aluido. Si el instrumento no puede efectuar un calentamiento programado, se opera a dos temperaturas fijas comportadas entre 100 y 195 °C.

Si en mecesario, se reconsiendis que se efectue an analisis con dos fases fijas de diferente polaridad para comprobar la ausemba de picos «ocultos», por ejemplo en caso de presencia simultanea de C_{xx} , y C_{xx} , o C_{xx} , y C_{xx} , conjugados.

4.4. Preparación del cromatograma y las gráficas de referencia

Analizar la mezcla patron de referencia (2.3) aplicando las mismas condiciones de ensayo que a la muestra y medir los tiempos o las distancias de retención de los acidos grasos que la componen. Representar gráficamente en papel semilogaritmico, para cualquier grado de insaturación, el logaritmo del tiempo o de la distancia de retención en función del número de atomos de carbono. En condiciones isotérmicas, las gráficas de los esteres de cadena lineal con el mismo grado de insaturación deben formar líneas rectas. Dichas líneas rectas deben ser aproximadamente paralelas.

Deben evitarse las condiciones que propicien la existencia de «picos ocultos», es decir, una resolucion insuficiente para separar dos componentes.

EXPRESIÓN DE LOS RESULTADOS

5.1. Análisis cualitativo

Identificar los picos del estearato de metilo de la muestra a partir de los gráficos citados en el punto 4.4, si es necesario por interpolación.

5 2. Análisis cuantitativo

5.2.1. Determinación de la composición

Salvo en casos excepcionales, utilizar el método de normalización interna, es decir, partir del principio de que todos los componentes de la muestra están representados en el cromatograma, de manera que el total de las áreas situadas debajo de cado pico representa el 100% de los constituyentes (elución total).

Si el equipo incluye un integrador, utilizar las cifras que éste proporcione. En caso contrario, determinar el área situada debajo de cada pico multiplicando la altura del pico por el ancho a la mitad de la altura y, cuando sea necesario, tomar en consideración las atenuaciones utilizadas durante el registro.

5.2.2. Método de cálculo

5.2.2.1. Caso general

Calcular el contenido de un componente dado (i) (expresado como porcentaje en masa de ésteres metilicos), mediante la determinación del porcentaje que representa el área de su pico en relación con la suma de las áreas de todos los picos, aplicando la fórmula siguiente:

$$\frac{A_i}{\Sigma A} \times 100$$

ciendo

Ai: area del pico correspondiente al componente i.

ΣA: suma de las áreas de todos los picos.

Expresar el resultado con una cifra decimal.

Nota 7: En este caso general se considera que el resultado del cálculo basado en las áreas relativas representa el porcentaje en peso. Para los casos en que no es válida esta consideración, véase el punto 5.2.2.2.

5.2.2.2. Utilización de factores de corrección

En algunos casos, por ejemplo en presencia de acidos grasos con menos de 8 átomos de carbono o de ácidos con grupos secundarios, si se utilizan detectores de conductividad térmica o si es necesario alcanzar mayor nivel de exactitud, deben aplicarse factores de corrección para convertir los porcentajes de las áreas de los picos en porcentajes en peso de los componentes.

Determinar los factores de corrección con un cromatograma obtenido del análisis de una mezcla de referencia de ésteres metilicos de composición conocida en condiciones de ensayo idénticas a las empleadas para el análisis de la muestra.

La fórmula que se aplicará a la muestra de referencia para obtener el porcentaje en peso del componente è es la siguiente:

$$\frac{m_s}{V_m} \times 100$$

siendo:

me = peso del componenze i de la muestra de referencia,

Em = suma de los pesos de los diversos componentes de la muestra de referencia.

A partir del cromatograma de la muestra de referencia (4.4) calcular el porcentaje (área/área) del componente i del siguiente modo:

$$\frac{A_i}{\Sigma A} \times 100$$

siendo:

Ai: área del pico correspondiente al componente i,

ΣA: suma de las áreas de todos los picos.

El factor de corrección se calcula del siguiente modo:

$$K_i = \frac{m_i \times \Sigma A}{A_i \times \Sigma m}$$

Por lo general, los factores de corrección se expresan con relación a KC16, de modo que los factores relativos se convierten en lo siguiente:

$$K'_i = \frac{K_i}{K_{C16}}$$

En la muestra, el contenido de cada componente i, expresado como porcentaje en peso de los ésteres metilicos, es el siguiente:

$$\frac{K'_i \times A_i}{\Sigma \left(K'_i \times A_i \right)} \times 100$$

Expresar los resultados con una cifra decimal.

5.2.2.3. Utilización de patrón interno

En algunos análisis (por ejemplo, cuando no se cuantifican todos los ácidos grasos por estar presentes simultáneamente ácidos de 4 y 6 átomos de carbono y ácidos de 16 y 18 átomos de carbono, o cuando es necesario determinar la cantidad absoluta de un ácido graso en la muestra) es preciso utilizar un patrón interno. Se emplean con frecuencia ácidos grasos de 5, 15 o 17 átomos de carbono. Debe determinarse, si es necesario, el factor de corrección del patrón interno.

El porcentaje en peso del componente i, expresado como ésteres metilicos, se calcula mediante esta fórmula:

$$\frac{m_p \times K'_i \times A_i}{m \times K'_p \times A_p} \times 100$$

siendo:

Ai: área del pico correspondiente al componente i.

Apr. área del pico correspondiente al patrón interno.

K'_i: factor de corrección del componente i (con relación a KC16).

K' p. factor de corrección del patrón interno (con relación a KC16).

m: peso, en mg, de la muestra.

mp: peso, en mg, del patrôn interno.

Expresar los resultados con una cifra decimal.

6. CASO ESPECIAL DE UTILIZACIÓN DE UN CATARÓMETRO (FUNCIONAMIENTO BASADO EN EL PRINCIPIO DE LOS CAMBIOS DE CONDUCTIVIDAD TÉRMICA)

Para la determinación de la composición cualitativa y cuantitativa de una mezcla de ésteres metilicos de ácidos grasos también podrá utilizarse un cromatógrafo de gases provisto de un detector cuyo funcionamiento se base en el principio de los cambios de conductividad térmica (catarómetro). En ese caso, las condiciones establecidas en los puntos 3 y 4 deberán modificarse como se indica en la tabla 3.

Para el análisis cuantitativo, utilizar los factores de corrección definidos en el punto 5.2.2.2.

Tabla 3

Variable	Valor/condición
Columna	Longitud: 2 a 4 m Diámetro interior: 4 mm
Soporte	Tamaño de grano entre 160 y 200 µm
Concentración de la fase estacionaria	De 15% a 25% (m/m)
Gas portador	Helio o, en su defecto, hidrógeno, con el menor contenido de oxígeno posible
Gases auxiliares	Ninguno
Temperatura del inyector	De 40 a 60 °C más que la de la columna
Temperatura de la columna	De 180 a 200 °C
Flujo del gas portador	Normalmente entre 60 y 80 ml/min
Tamaño de la muestra problema inyectada	Normalmente entre 0,5 y 2 µl

7. INFORME DEL ANÁLISIS

En el informe del análisis se expondrán los métodos utilizados para la preparación de los ésteres metilicos y para la realización del análisis mediante cromatografía de gases, así como los resultados obtenidos. Se mencionarán, asimismo, cualesquiera procedimientos de trabajo que no se especifiquen en la presente norma internacional o que se consideren facultativos, así como toda circunstancia que pueda haber influido en los resultados.

El informe del análisis incluirá todos los datos necesarios para la completa identificación de la muestra.

ANEXO X «B»

PREPARACIÓN DE LOS ÉSTERES METÍLICOS DE LOS ÁCIDOS GRASOS DE CONFORMIDAD CON LOS PUNTOS I Y II DEL ANEXO VI DEL REGLAMENTO (CEE) N° 72/77 O SEGÚN EL MÉTODO QUE SE DESCRIBE A CONTINUACIÓN

INTRODUCCIÓN

La elección del procedimiento a utilizar deberá hacerse en función de la composición de los ácidos y de la acidez de la materia grasa que haya que examinar y del análisis mediante cromatografia de gases que deba efectuarse.

En particular:

- cuando se trate de materias grasas que contengan ácidos grasos inferior a C₁₂, sólo podrán utilizarse los procedimientos en tubo cerrado o con dimetilico,
- cuando se trate de materias grasas con una acidez superior al 3%, sólo podrán utilizarse los procedimientos con mezcla de metanol y ácido clorhidrico o con sulfato dimetílico,
- en la determinación mediante cromatografía de gases de los isómeros trans, sólo podrán utilizarse los procedimientos con metilato sódico o con sulfato dimetílico,
- el procedimiento con mezcla de metanol, hexano y ácido sulfúrico deberá utilizarse en la preparación de los ésteres metilicos de pequeñas cantidades de materias grasas por separación mediante cromatografía en capa fina.

No se tendrá en cuenta el insaponificable cuando no supere el 3%; en caso contrario, los ésteres metilicos deberán prepararse a partir de los ácidos grasos.

OBJETO

A continuación se describen cinco procedimientos para la preparación de los ésteres metilicos de las materias grasas:

- a) con metilato sódico;
- b) con metilato sódico en tubo cerrado;
- c) con mezcla de metanol y ácido clorhídrico en tubo cerrado;
- d) con sulfato dimetilico:
- e) con mezcla de metanol, hexano y ácido sulfúrico.

Procedimiento A

2. PRINCIPIO DEL MÉTODO

La materia grasa objeto de análisis se calienta a reflujo con alcohol metilico y metilato sódico. Los ésteres metilicos que se obtengan se extraen con éter etilico.

3. MATERIAL Y APARATOS

- Matraz redondo de 100 ml con refrigerante de reflujo, provisto en su extremidad superior de un tubo para cal sódica, con junta esmerilada.
- 3.2. Probetas de 50 ml.
- 3.3. Pipeta de 5 ml graduada en divisiones de 0,1 ml.
- 3.4. Embudos de separación de 250 ml.
- 3.5. Matraz redondo de 200 ml.
- 4. REACTIVOS
- 4.1. Metanol anhidro.

- 4.2. Solución de metilato sódico en metanol al 1% aproximadamente. Se prepara disolviendo 0,34 g de sodio metal en 100 ml de metanol anhidro.
- 4.3. Éter etílico.
- 4.4. Solución de cloruro sódico al 10%.
- 4.5. Éter de petróleo 40 °-60 °C.

5. PROCEDIMIENTO

- 5.1. Introducir en el matraz de 100 ml 2 g de grasa previamente deshidratada en sulfato sódico y filtrada. Añadir 35 ml de metanol, acoplar el refrigerante y llevar a ebullición manteniéndola a reflujo durante algunos minutos.
- 5.2. Interrumpir el calentamiento, separar el refrigerante y añadir rápidamente 3,5 ml de la solución de metilato sódico; acoplar nuevamente el refrigerante y hervir a reflujo durante 3 horas como mínimo. La metilación se habrá completado cuando toda la materia grasa se haya disuelto y la mezcla de reacción esté perfectamente transparente a temperatura ambiente.
- 5.3. Enfriar y verter la mezcla de reacción en una ampolla de separación de 250 ml, añadir 35 o 40 ml de éter etílico, 100 ml de agua y 5 o 6 ml de la solución de cloruro sódico al 10%. Agitar y esperar a que se produzca la separación de las capas; transferir la fase acuosa a una segunda ampolla de separación y extraerla de nuevo con 25 ml de éter etílico.

Añadir a los extractos etéreos reunidos 50 ml de éter de petróleo 40 °—60 °C, lo que provocará la separación del agua que debe eliminarse.

Lavar la fase etérea tres veces con 10 o 15 ml de agua cada vez, desecar sobre sulfato sódico y pasar filtrando a través de papel a un matraz redondo de 200 ml.

Concentrar la solución al baño María hasta unos 20 ml mientras se hace pasar una corriente de nitrógeno puro.

Procedimiento B

2. PRINCIPIO DEL MÉTODO

La materia grasa objeto de análisis es tratada con metilato sódico en solución metanólica, en recipiente cerrado, a 85 °-90 °C.

- MATERIAL Y APARATOS
- 3.1. Tubo de vidrio de paredes gruesas, de unos 5 ml (altura: 40—45 mm, diámetro: 14—16 mm).
- 3.2. Pipeta de 1 ml graduada en divisiones de 0,1 ml.
- 4. REACTIVOS
- 4.1. Solución de metilato sódico en metanol al 1,5 % aproximadamente. Se prepara disolviendo 0,50 g de sodio metal en 100 ml de metanol anhidro.
- 5. PROCEDIMIENTO
- 5.1. Introducir en el tubo de vidrio 2 g de materia grasa previamente deshidratada en sulfato sódico y filtrada. Añadir 0,3 g (unos 0,4 ml) de la solución de metilato sódico y cerrar el tubo a la llama.
- 5.2. Mantener el tubo durante dos horas al baño María a una temperatura entre 85 ° y 90 °C agitándolo de vez en cuando. La esterificación se habrá conseguido cuando se vuelva transparente el contenido del frasco tras la sedimentación de la glicerina y de los residuos de los reactivos.
- 5.3. Enfriar a temperatura ambiente. Abrir el tubo cuando se vayan a utilizar los ésteres metilicos. Éstos no necesitan de ninguna otra manipulación antes de ser analizados.

Procedimiento C

2. PRINCIPIO DEL MÉTODO

La materia grasa objeto de análisis es tratada con una mezcla de metanol y ácido clorhídrico, en tubo cerrado, a 100 °C.

- MATERIAL Y APARATOS
- 3.1. Tubo de vidrio de paredes gruesas, de unos 5 ml (altura: 40—45 mm, diametro: 14—16 mm).
- 3.2. Pipetas aforadas de 1 v 2 ml.

4. REACTIVOS

- 4.1. Solución de ácido clorhídrico en metanol al 2 %. Se prepara con ácido clorhídrico gaseoso y metanol anhidro (nota 1).
- 4.2. Hexano de calidad adecuada para cromatografía.

5. PROCEDIMIENTO

- 5.1. Introducir en el tubo de vidrio 0,2 g de materia grasa, previamente deshidratada en sulfato sódico y filtrada, y 2 ml de la solución de ácido clorhídrico en metanol. Cerrar el tubo a la llama.
- 5.2. Mantener el tubo durante 40 minutos al baño María a 100 °C.
- 5.3. Enfriar el tubo en agua corriente, abrirlo, añadir 2 ml de agua destilada y 1 ml de hexano. Centrifugar y extraer la fase del hexano que estará lista para ser utilizada.

Procedimiento D

2. PRINCIPIO DEL MÉTODO

La materia grasa objeto de análisis se saponifica con una solución en alcohol metílico de hidróxido potásico, y después se trata con sulfato dimetílico. Tras añadir ácido clorhídrico, los ésteres metílicos formados se separan espontáneamente. Mediante el tratamiento posterior con alúmina, se obtienen ésteres metílicos de elevada pureza.

3. MATERIAL Y APARATOS

- 3.1. Tubo de ensayo de vidrio de paredes gruesas, de 20 ml aproximadamente de capacidad, con tapón esmerilado 10/19 y enganches de seguridad.
- 3.2. Refrigerante de reflujo de cinco ampollas con junta esmerilada 10/19.
- 3.3. Filtros de vidrio de fondo poroso, de graduación G 2 y diámetro de 20 mm.
- 3.4. Tubos de ensayo de vidrio de fondo cónico, de unos 10 ml de capacidad.
- 3.5. Jeringas de 1 y 5 ml.

4. REACTIVOS

- Solución al 10% de hidróxido potásico en alcohol metilico de calidad adecuada para cromatografía.
- 4.2. Solución al 0,05 % del indicador verde de bromocresol en alcohol metilico.
- 4.3. Sulfato dimetilico (d = 1,335 a 15 °C).
- 4.4. Ácido clorhídrico concentrado (d = 1,19) diluido 1:1 con alcohol metílico de calidad cromatográñca.
- 4.5. Óxido de aluminio normalizado según el método Brockmann para cromatografía de adsorción.

PROCEDIMIENTO

5.1. Introducir en el tubo de ensayo de 20 ml unos 2,2 ml de materia grasa previamente deshidratada en sulfato sódico y filtrada; añadir 5 ml de la solución de hidróxido potásico y algunos granos de piedra pómez para regular la ebullición. Acoplar el refrigerante de reflujo y calentar agitando sobre llama pequeña durante 5 minutos. Para que la saponificación sea completa, la solución deberá volverse transparente. Por último, enfriar en agua corriente y separar el refrigerante.

- 5.2. Añadir dos gotas del indicador y, lentamente, con la ayuda de una jeringa, 1 ml de sulfato dimetilico. Cerrar herméticamente el tubo de ensayo y agitar durante dos o tres minutos, introduciendo con frecuencia el fondo del tubo en agua hirviendo: la reacción será completa cuando el indicador pase del azul al amarillo. Al final, enfriar el tubo en agua corriente, abrirlo y añadir 5 ml de la solución metanólica de ácido clorhídrico.
- 5.3. Tras agitar durante unos segundos, inclinar el tubo y darle ligeras sacudidas que faciliten la aparición de los ésteres metilicos en forma de masa oleosa (nota A).

Retirar los ésteres metilicos con una jeringa, introducirlos en un tubo de fondo cónico, añadir un volumen de alúmina equivalente a un cuarto del volumen de los ésteres metilicos, agitar y filtrar con papel de filtro.

Nota A: En caso de que no se produzca espontáneamente la separación de los esteres metilicos, añadir al tubo 5 ml de agua y agitar.

Procedimiento E

PRINCIPIO DEL MÉTODO

La materia grasa objeto de análisis se calienta a reflujo con metanol, hexano y ácido sulfúrico. Los ésteres metílicos que se obtengan se extraerán con éter de petróleo.

MATERIAL Y APARATOS

- 3.1. Tubo de ensayo de unos 20 ml de capacidad, con refrigerante de reflujo de aire, de 1 m aproximadamente de longitud, con junta esmerilada.
- 3.2. Pipeta aforada 5 ml.
- 3.3. Ampolla de separación de 50 ml.
- 3.4. Probetas de 10 v 25 ml.
- 3.5. Tubo de fondo cónico de 15 ml.

4. REACTIVOS

- 4.1. Reactivo de metilación: metanol anhidro, hexano y ácido sulfúrico concentrado (d = 1,84) en la seguiente proporción: 75:25:1 (V/V/V).
- 4.2. Éter de petróleo 40-60 °C.
- 4.3. Sulfato sódico anhidro.

5. PROCEDIMIENTO

- 5.1. Introducir en el tubo de 20 ml el material recuperado de la placa y añadir 5 ml de reactivo de metilación.
- 5.2. Acoplar el refrigerante de reflujo y calentar al baño María en ebullición durante 30 minutos (nota 2).
- 5.3. Transferir cuantitativamente la mezcla a una ampolla de separación de 50 ml con la ayuda de 10 ml de agua destilada y 10 ml de éter de petróleo. Agitar energicamente y esperar a que se produzca la separación de las fases, extraer la capa acuosa y lavar la capa etérea dos veces con 20 ml de agua destilada. Añadir a la ampolla de separación una pequeña cantidad de sulfato sódico anhidro, agitar, dejar reposar unos minutos y pasar filtrando a un tubo de fondo cónico de 15 ml.

Evaporar el disolvente al baño María haciendo pasar una corriente de nitrógeno.

- Nota 1: En el laboratorio pueden prepararse fácilmente pequeñas cantidades de ácido clorhídrico gaseoso por simple desplazamiento de la solución comercial (p = 1,18), añadiendo algunas gotas de ácido sulfurico concentrado (p = 1,84). El gas liberado se deseca fácilmente por borboteo a través de ácido sulfúrico concentrado. Dado que el ácido clorhídrico es absorbido por el metanol con mucha rapidez, se aconseja que se adopten las precauciones necesarias al disolverlo (es decir, introducir el gas a través de un embudo pequeño invertido cuyo borde roce la superficie del líquido). Pueden prepararse con antelación cantidades grandes de solución metanólica de ácido clorhídrico, ya que se conserva en perfectas condiciones en la oscuridad dentro de botellas con tapones de vidrio.
- Nota 2: Para controlar la ebullición, introducir una varita de vidrio en el tubo y limitar la temperatura del baño Maria a 90 °C.

ANEXO XI

DETERMINACIÓN DEL CONTENIDO EN SOLVENTES HALOGENADOS VOLÁTILES EN EL ACEITE DE OLIVA

1. PRINCIPIO DEL MÉTODO

Análisis por cromatografía en fase gaseosa según la técnica del espacio de cabeza (head space).

- 2. EQUIPO
- Cromatografía de gases con detector de captura de electrones (ECD).
- 2.2. Equipo para espacio de cabeza (head space).
- 2.3. Columna de cromatografía en fase gaseosa de vidrio de 2 metros de largo y 2 mm de diámetro, fase estacionaria.

OV 101 al 10% impregnado en cromosorb W-AW-DMCS (tierra de diatomeas calcinada lavada con ácido y silanizado (80—100 Mesh).

- 2.4. Gas portador y gas auxiliar: nitrógeno para cromatografía de gases de pureza adecuada para la detección por captura de electrones.
- 2.5. Frascos de cristal de 10 a 15 ml provistos de septum de teflón y con una cápsula de aluminio con un orificio para toma de muestras con jeringa.
- 2.6. Pinzas capsuladora para cerrar herméticamente.
- 2.7. Jeringa para gases de 0,5 y 2 ml.

REACTIVOS

Solventes halogenados con una pureza apropiada para su uso en cromatografía en la fase gaseosa.

4. PROCEDIMIENTO DE ANÁLISIS

4.1. Pesar con exactitud unos 3 g de aceite en un frasco de cristal (no reutilizable), tapar el frasco de manera que quede cerrado herméticamente. Introducir el frasco en un baño con termostato a 70 °C durante 1 hora. Extraer con precisión, por medio de una jeringa, un volumen de 0,2 a 0,5 ml del espacio de cabeza. Inyectarlo en la columna del cromatógrafo de gases con las siguientes condiciones:

temperatura inyector: 150 °C temperatura columna: 70—80 °C temperatura detector: 200—250 °C

Podrán utilizarse otras temperaturas siempre que los resultados sean equivalentes.

La inyección se puede realizar con el equipo para espacio de cabeza.

- 4.2. Soluciones de referencia. Preparar soluciones patrón utilizando aceite de oliva refinado sin trazas de solventes con concentraciones en hidrocarburos halogenados de 0,05 a 1 ppm (mg/lg) según el contenido supuesto de la muestra. Para preparar la solución de referencia, si es ne esario diluir previamente el hidrocarburo halogenado patrón, puede utilizarse pentano.
- 4.3. Cuantificación. Se efectúa por cálculo mediante la relación de áreas o alturas del pico de la muestra y de la solución patrón cuya concentración sea la más próxima a la de la muestra. Si la desviación es superior al 10%, será necesario volver a hacer el análisis, comparándolo con una nueva solución patrón de concentración tal que se ajuste a la desviación relativa antes mencionada. El contenido se establecerá efectuando la media de varias inyecciones.
- 4.4. Expresión de los resultados. Los resultados se expresarán en ppm (mg/kg). El límite de detección del método es de 0,01 mg/kg.

ANEXO XII

VALORACIÓN ORGANOLÉPTICA DEL ACEITE DE OLIVA VIRGEN

1. OBJETO

El presente método tiene por finalidad establecer los criterios necesarios para valorar las características del flavor del aceite de oliva virgen y desarrollar la sistemática necesaria.

CAMPO DE APLICACIÓN

El método que se describe sólo es aplicable a la valoración y clasificación organoléptica del aceite de oliva virgen utilizable para consumo directo. Se limita a clasificar el aceite virgen en una escala numérica, relacionada con la percepción de los estimulos de su flavor, según el juicio de un grupo de catadores seleccionados constituidos en panel.

3. ANÁLISIS SENSORIAL: VOCABULARIO GENERAL BÁSICO

Véase el capítulo «Análisis sensorial: vocabulario general básico».

4. VOCABULARIO ESPECÍFICO PARA EL ACEITE DE OLIVA

Almendrado: este flavor puede darse en dos aspectos, el típico de la almendra fresca o el propio de la almendra seca y sana que puede confundirse con un rancio incipiente. Se aprecia como un regusto cuando el aceite permanece en contacto con la lengua y el paladar, se asocia a los aceites dulces y de olor apagado.

Alpechin: flavor característico adquirido por el aceite a causa de una mala decantación y prolongado contacto con las aguas de vegetación.

Amargo: sabor característico del aceite obtenido de aceitunas verdes o en envero. Puede ser más o menos agradable según su intensidad.

Apagado o plano: flavor del aceite de oliva cuyas características organolépticas son muy tenues, debido a la pérdida de sus componentes aromáticos.

Áspero: sensación característica de algunos aceites que al ser degustados producen una reacción buco-táctil de astringencia.

Atrojado: flavor característico del aceite obtenido de aceitunas amontonadas que han sufrido un avanzado grado de fermentación.

Avinado-avinagrado: flavor característico de algunos aceites que recuerdan al vino o vinagre. Es debido fundamentalmente a la formación de ácido acético, acetato de etiolo y etanol, en cantidades superiores a lo normal en el aroma del aceite de oliva.

Basto: percepción característica de algunos aceites que, al ser degustados, producen una sensación buco-táctil densa y pastosa.

Borras: flavor característico del aceite recuperado de los lados decantados en depósitos y trujales.

Capacho: flavor característico del aceite obtenido de aceitunas prensadas en capachos sucios con residuos fermentados.

Cocido o quemado: flavor característico del aceite originado por un excesivo y/o prolongado calentamiento durante su obtención muy particularmente durante el termo-batido de la pasta, si éste se realiza en condiciones inadecuadas.

Dulce: sabor agradable del aceite que, sin ser precisamente azucarado, no predominan en él los atributos amargo, astringente y picante.

Esparto: flavor característico del aceite obtenido de aceitunas prensadas en capachos nuevos de esparto. El flavor puede ser diferente si el capacho está fabricado con esparto verde o si lo está con esparto seco.

Frutado: flavor que recuerda el olor y gusto del fruto sano, fresco y recogido en el punto óptimo de su maduración.

Frutado maduro: flavor del aceite de oliva obtenido de frutos maduros generalmente de olor apagado y sabor dulce.

Grasa de máquina: olor del aceite de oliva obtenido en una almazara de cuya maquinaria no han sido adecuadamente eliminados residuos de petróleo, de grasa o aceite mineral.

Gusano: flavor característico del aceite obtenido de aceitunas fuertemente atacadas por larvas de mosca del olivo (Dacus oleae).

Heno: flavor característico de algunos aceites que recuerda a la hierba más o menos desecada.

Hierba: flavor característico de algunos aceites que recuerda a la hierba recien cortada.

Hojas verdes (amargo): flavor del aceite obtenido de aceitunas excesivamente verdes o que se han molido mezcladas con hojas y tallos.

Jabonoso: flavor con una sensación olfato-gustativa que recuerda a la del jabón verde.

Manzana: flavor del aceite de oliva que recuerda a dicho fruto.

Metálico: flavor que recuerda a los metales. Es característico del aceite que ha permanecido en contacto, durante tiempo prolongado, con alimentos o superficies metálicas en condiciones indebidas, durante los procesos de molienda, batido, prensado o almacenamiento.

Moho-humedad: flavor característico del aceite obtenido de frutos en los que se han desarrollado abundantes hongos y levaduras a causa de haber permanecido amontonados y con humedad varios días.

Orujo: flavor característico que recuerda al del orujo de aceituna.

Pepino: flavor que se produce en el aceite sometido a un envasado hermético y excesivamente prolongado particularmente en hojalata, que es atribuido a la formación de 2-6 nonadienal.

Rancio: flavor característico y común a todos los aceites y grasas que han sufrido un proceso autoxidativo, a causa de su prolongado contacto con al aire. Este flavor es desagradable e irreversible.

Salmuera: flavor del aceite extraído de aceitunas conservadas en soluciones salinas.

Tierra: flavor característico del aceite obtenido de aceitunas recogidas con tierra, embarradas y no lavadas. Este flavor puede ir unido al de moho-humedad en algunas ocasiones.

Viejo: flavor característico del aceite cuando permanece demasiado tiempo en recipientes de almacenamiento. También puede darse en aceites envasados durante un período prolongado.

COPA PARA DEGUSTACIÓN DE ACEITES

Véase el capítulo «Copa para la degustación de aceites».

SALA DE CATA

Véase el capítulo «Guía para la instalación de una sala de cata».

7. UTENSILIOS

En cada cabina y a disposicion del catador deben estar los utensilios necesarios para que este pueda ejercer adecuadamente su cometido. Estos son:

- copas (normalizadas), conteniendo las muestras marcadas en clave con un par de números dígitos tomados al azar, o con un par de números y letras. Las marcas se deben hacer con un lapiz indeleble e inodoro,
- vidrios de reloj con idénticas marcas, para cubrir las copas,
- hoja de puntuación, véase figura 2, conteniendo las instrucciones para su utilización,
- lápiz o boligrafo,
- bandejitas conteniendo rodajas de manzanas,
- vaso de agua a la temperatura ambiente.

METODOLOGÍA

En este apartado se establecen los conocimientos previos necesarios para la realización del análisis sensorial de los aceites de oliva vírgenes y trata de normalizar el comportamiento y la actuación de los catadores que han de intervenir en las pruebas, los cuales han de tomar conciencia tanto de las recomendaciones de tipo general como de las específicas para la cata de los aceites de oliva.

8.1. Actuación del organizador o jefe del panel (o grupo de catadores)

El organizador del panel deberá ser una persona suficientemente formada, conocedora y experta en los tipos de aceites que encontrará en su trabajo. Es la figura clave del panel y el responsable de la organización y del funcionamiento del mismo. Convocará con tiempo suficiente a los catadores y les aclarará cualquier duda en cuanto a la realización de los ensayos, aunque se abstendrá de sugerirles ningún tipo de opinión sobre la muestra.

Será responsable del inventario de los utensilios, de su adecuada limpieza, de la preparación y codificación de las muestras, así como de su presentación a dos catadores según el diseño experimental adecuado; de la recopilación de los datos y de su tratamiento estadístico, a fin de obtener los mejores resultados con el menor esfuerzo.

El trabajo del jefe del panel requiere habilidad sensorial, meticulosidad en la preparación de los ensayos, riguroso orden para su ejecución, así como habilidad y paciencia para planificar y ejecutar las pruebas. Es misión del jefe de panel estimular la moral de los componentes del grupo, fomentando entre ellos el interés, curiosidad y espíritu competitivo. Debe evitar que su opinión sea conocida e impedir que los criterios de posibles líderes se impongan sobre los restantes catadores. También es de su competencia el entrenamiento, selección y control sobre los mismos, a fin de conocer si se mantienen con el adecuado nivel de aptitud.

8.2. Condiciones del ensayo

8.2.1. Tamaño de la muestra

La cantidad de aceite contenido en cada copa debe ser de 15 ml.

8.2.2. Temperatura de la prueba

Las muestras de aceite a catar se mantendrán dentro de las copas a 28 °C ± 2 °C. Esta temperatura se ha elegido por ser en la que se observan con mayor facilidad diferencias organolépticas, dentro de la temperatura normal, cuando los aceites se usan como condimento. Otro aspecto que inclina a tomar este valor es que temperaturas más bajas o más altas producen una escasa volatilización de los compuestos aromáticos o por el contrario volátiles ya propios de aceites calentados.

8.2.3. Horario del ensavo

Para la cata de aceites, las horas de trabajo óptimas son las de la mañana. Está demostrado que durante el día existen períodos de óptima percepción para el gusto y el olfato.

Las comidas son precedidas de un período de incremento de la sensibilidad olfato-gustativa, seguidas de un decrecimiento de la misma.

Sin embargo, este criterio no debe ser llevado al extremo, hasta el punto de que el hambre pueda distraer a los catadores, haciendo descender en ellos su capacidad de discriminación y, particularmente, sus criterios de preferencia y aceptación.

CATADORES

Las personas que intervengan como catadores en los ensayos organolépticos de aceites de oliva comestibles deberán ser entrenados y seleccionados de acuerdo con su habilidad para distinguir entre muestras similares, debiéndose tener en cuenta que la precisión se mejorará con el entrenamiento (véase apartado correspondiente).

Para la prueba se exige un número de 8 a 12 catadores siendo conveniente disponer de algunos más en reserva, para cubrir posibles ausencias.

9.1. Normas generales de comportamiento para candidatos y catadores

Las presentes recomendaciones se refieren al comportamiento de los candidatos y catadores durante su trabaio.

Al recibir la comunicación del jefe del panel para intervenir en un ensayo organoléptico, el catador deberá estar en condiciones de realizarlo a la hora previamente señalada, ateniéndose a las siguientes normas:

- 9.1.1. Se abstendrá de fumar al menos 30 minutos antes de la hora fixada.
- 9.1.2. No utilizara ningun perfume, cosmetico o jabon cuyo olor persista en el momento del ensayo. Para el lavado de las manos utilizara un jabon no perfumado o poco perfumado, procediendo a enjuagarse las manos y a secarselas tantas veces como sean necesarias para eliminar cualquier olor.
- 9.1.3. No debera haber tomado ningun alimento al menos una hora antes de realizar la cata.
- 9.1.4. Si se encontrase en condiciones de inferioridad fisiologica, particularmente si tiene afectado el sentido del olfato o del gusto, o bajo algun efecto psicologico que le impida concentrarse en su trabajo, debera comunicarlo al jefe del panel al objeto de que lo aparte del trabajo, o bien para que tome las decisiones oportunas, teniendo en cuenta su posible desviación de los valores medios del resto del panel.
- 9.1.5. El catador, una vez cumplidas las normas precedentes, procedera a ocupar su lugar en la cabina que le corresponda, con el mayor orden y silencio posibles.
- 9.1.6. Una vez sentado, procedera a examinar si el material que necesita esta en orden y es el correcto, comprobando si la clave de la copa se corresponde con la del vidrio de reloj que la cubre.
- 9.1.7. Leerá detenidamente las instrucciones contenidas en la hoja de puntuación, no comenzando el examen de la muestra hasta estar totalmente compenetrado con el trabajo que debe realizar. En caso de duda, debe consultar privadamente las dificultades encontradas con el jefe del panel.
- 9.1.8. El catador procederá a tomar la copa, manteniendola cubierta con su vidrio de reloj, la inclinara ligeramente, y en esta posición le dara un giro total a fin de mojar lo mas posible la superficie interior. Hecha esta operación, separará el vidrio de reloj y procedera a oler la muestra, haciendo inspiraciones suaves, lentas e intensas, hasta formarse un criterio sobre el aceite que debe juzgar. El periodo de olfacción no debe soprepasar 30 segundos. Si en este periodo no se ha llegado a ninguna conclusión, debe tomarse un pequeño descanso, antes de un nuevo intento. Una vez realizado el ensayo olfativo, se procederá a enjuiciar el flavor (sensación conjunta olfato-gustativa-tactil). Para ello se tomará un pequeño sorbo de aceite, de unos 3 ml aproximadamente. Es muy importante distribuir el aceite por toda la cavidad bucal, desde la parte anterior de la boca y la lengua, por los laterales y la parte posterior, hasta los pilares del paladar; ya que, como se sabe, la percepción de los cuatro sabores fundamentales, dulce, salado, acido y amargo, se hace con distinta intensidad según las zonas de la lengua y el paladar.

Debe insistirse en la necesidad de que el aceite se extienda en cantidad suficiente y muy lentamente por la parte posterior de la lengua hacia los pilares del paladar y la garganta, concentrando la atención en el orden de aparición de los estimulos amargo y picante; si no se procede así, en algunos aceites ambos estimulos pueden pasar inadvertidos o el amargo quedar oculto por el picante.

Aspiraciones cortas y sucesivas, introduciendo aire por la boca, permiten, ademas de extender la muestra ampliamente por la cavidad bucal, percibir por via retronasal los componentes volatiles aromáticos.

La sensación tactil debe tomarse, también, en consideración: así, la fluidez, pastosidad y picor o escozor deben ser anotados cuando se detecten y, si la prueba así lo exige, cuantificar su intensidad.

9.1.9. La valorazión organoleptica de un acerte virgen debe hacerse evaluando una sola muestra por sesión, para evitar el efecto de contraste que podría producir la degustación inmediata de otras.

Puesto que las catas sucesivas son afectadas por la fanga, o perdida de sensibilidad, causadas por las precedentes, se impone utilizar un producto capaz de eliminar de la boca los restos de acette de la cata anterior.

Se recomienda el uso de un pequeño trozo de manzana, de unos 15 gr. el cual, despues de masticado, puede ser vertido al escupidor, procediendo seguidamente a enjuagarse con un poco de agua a temperatura ambiente. Entre la cata finalizada y la siguiente deben transcurrir al menos 15 minutos.

9.2. Preselección de candidatos

Esta etapa deberá realizarla el organizador del panel mediante entrevistas personales y nene por objeto conocer la personalidad del candidato y las características que le rodean. Las exigencias previas respecto a las condiciones fisiológicas y psicológicas no son muy rigurosas, ya que, en principio, cualquier persona normal puede desarrollar esta actividad. La importancia de la edad, sexo, determinados hábitos (fumar) etc., se consideran secundarios frente a otros aspectos, tales como: la salud, el interés personal y disponer de tiempo para este trabajo.

Durante la entrevista, el organizador del ensayo debe explicar al candidato las caracteristicas de la funcion que va a realizar e informarle del tiempo aproximado que le va a ocupar. A continuación ha de recabar datos que le permitan valorar el grado de interés y monvación del candidato, así como de su disponibilidad real de tiempo. La encuesta signiente debera servirle como referencia.

ENCUESTA

Conteste ahora, por favor, a las siguientes preguntas:

		SA	20
E)	¿Le gustaria colaborar en los trabajos de este tema?		
2)	¿Considera que el trabajo puede ser importante para mejorar la calidad de los alimentos en su país y el comercio internacional?	3	no
3)	¿Por qué (1)?		

4 }	No olvide que en este trabajo tendrá que probar aceites cuando sea requerido para ello. ¿Le desagrada hacerlo?	Second	
5)	¿Le gustaria comparar su habilidad olfato-gustativa con la de sus compañe- ros?	\$	no
6)	¿Tiene tiempo disponibile? ¿Tiene independencia suficiente para organizar su trabajo diario?	* Comment	DO)
7)	Si depende de su jefe, ¿cree que si, reiteradamente, en dias sucesivos le apartasen en algunos casos, hasta media hora, de su trabajo usual le permitiria participar en este asunto?	9	mo
3)	¿Seria capaz de suplir el tiempo que dedique al análisis sensorial para no caer en falta en su trabajo ordinario?	S Comment	100
	¿Considera que este trabajo debería ser retribuido?	Si water	
)	¿Cômo?		

Con esta información el organizador realizará la preselección, rechazando a los candidatos con poco interés por este tipo de trabajo, poco tiempo disponible, o incapaces para concretar sus ideas.

9.3. Determinación del «umbral medio» del grupo para «atributos característicos»

Se eligen cuidadosamente cuatro aceites, de tal forma que cada uno sea considerado como representante típico de los atributos: atrojado, aviatado, rancio y amargo, con la mayor y más clara intensidad posible.

Tomando una parte alicuota de cada uno de ellos se preparan muestras, a distintas concentraciones de razón 2, por sucesivas diluciones con el soporte apropiado hasta que en las dos o tres diluciones ultimas no sea posible detectar diferencia con la copa que contiene solo el soporte. Una ultima pareja la formarán dos copas de soporte.

La serie se completara con copas de concentraciones superiores, hasta un total de 8.

Preparar suficiente cantidad de moestras de las distintas concentraciones para entregar series completas de cada atributo a cada uno de los candidatos.

Para estabelecer el «umbral medio» de los candidatos, para cada atributo se presentará a estos una copa conteniendo 15 ml de una cualquiera de las concentraciones preparadas, junto con otra copa que contenga sólo 15 ml del «soporte». El candidato, después de realizar el ensayo, debe indicar si son iguales o distintas.

El mismo ensayo se repite para las restantes concentraciones del atributo estudiado.

Se anota el número de contestaciones correctas obtenidas para cada concentración del conjunto de candidatos, y se refiere como porcentaje del número de ensayos efectuados.

⁽¹⁾ Describa el interés que puede tener la valoración organológico de cualque- alimento o a le parece del acese de cliera.

Se representa en orden creciente, en abscisas las concentraciones ensayadas y en ordenadas el % de identificaciones correctas hechas para cada concentración.

La figura 1 representa un ejemplo practico de lo expuesto anteriormente. El umbral de detección se define sobre abscisas extrapolando de la curva el punto de la ordenada que corresponde a un 75 % de aciertos.

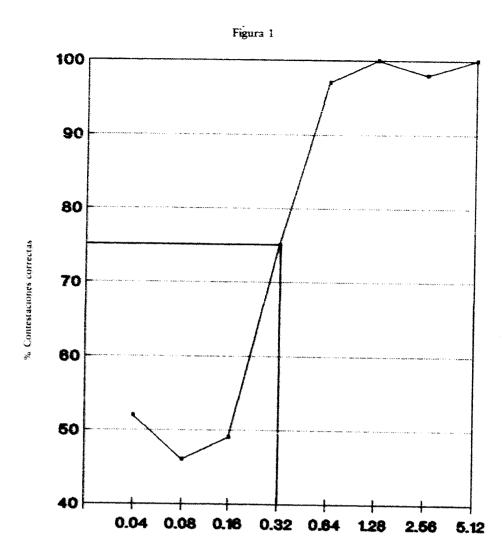
Esta concentración «umbral», que puede ser distinta para cada aceite de partida, dependiendo de la intensidad del atributo en dicho aceite, debe ser similar para los distintos grupos de candidatos de distintos paneles; no está unida a ninguna costumbre, habito o preferencia tendenciosa, consiguientemente es un punto de referencia común a cualquier grupo humano normal y puede servir para homogeneizar los distintos paneles solo por su sensibilidad olfato-gustativa.

A partir de la concentración umbral del grupo obtenida se procedera como sigue:

Preparese una serie de concentraciones crecientes y decrecientes de forma que esta «concentración umbral» corresponda al lugar 10 de esta escala. Lógicamente las concentraciones 11 y 12 serán mas diluidas y consiguientemente muy dificiles de detectar en ellas la presencia del aceite con el atributo elegido.

A partir de la concentración C14, las restantes muestras pueden prepararse mediante la fórmula:

 $C_{10} \times a^n$, donde «a» es una constante correspondiente al factor de dilucion igual a 1,5 y «n» el exponente que variará desde 9 a -2.


Por ejemplo: supuesto el umbral obtenido para el aceste rancio = 0.32; será C_{10} = 0.32, a partir de ella como a = 1.5 la serie de muestras tendria las siguientes concentraciones.

Muestras	Ŀ	2	3	4	5	6	7	8	9	10	11	12
Concentración	12,30	8,20	5,47	3,65	2,43	1.62	1,08	0,72	0,48	0,32	0,21	0,14

Si se repite todo lo anterior para los tres restantes atributos, partiendo de los umbrales respectivos calculados también como antes se indicó, se obtendrán asi escalas que para todos los laboratorios tendrán intensidades aromáticas similares para cada estimulo, aunque se haya partido de acentes de oliva cuyos defectos son perceptibles con distinto intensidad.

9.4. Selección de catadores por el método de «clasificación de intensidad»

La selección debe realizarse partiendo de un número de candidatos dos o tres veces superior al necesario para formar el grupo, con objeto de poder elegir a los más sensibles y de mayor capacidad discriminatoria. Siempre es aconsejable realizar las pruebas con el mismo producto que se va a analizar posteriormente. (Consignientemente nosotros unilizaremos aceite de oliva.)

% Concentraciones de aceite rancio en el soporte

En la elección del método, junto a su eficacia no se puede olvidar que es de interés que el procedimiento a seguir sea lo más económico posible en cuanto a cantidad de aceite, número de muestras a utilizar y tiempo dedicado a la selección. La eficacia de un procedimiento de selección se caracteriza por la elección de los niveles óptimos de las tres variables dependientes siguientes: a) «costo» determinado por el número de ensayos, b) «proporción» de candidatos potencialmente aptos que por azar pueden ser desafortunadamente rechazados en la criba y c) «proporción» de candidatos no apropiados que por un azar favorable son aceptados en la selección sin deber serio.

El procedimiento de selección elegido: «prueba de clasificación de intensidad» (The intensity rating test) descrito en las normas ASTM (American Society for Testing and Materials) y STP (Special Technical Publication) 440 página 53, modificado en cuatro puntos:

- 1) reducción del número de muestras en la serie;
- ampliación de estímulos con objeto de aumentar el número de notas olfato-gustativas sobre las que está basada la selección, a fin de adecuarlas a los defectos más comunes perceptibles en el aceite de oliva;
- 3) variación de la relación de concentración en la serie;
- 4) tratamiento estadistico de los resultados.

Material necesario

- botellas o matraces de 1 500 mi,
- copas de vidrio oscuro,
- probetas de 10 ml, 15 ml, 1 000 ml y 1 500 ml.

Productos necesarios

- Parafina Merck (referencia 7.160, DAB 8, USP XX) o soporte oleoso modoro e insipida in reite de oliva a orro similar recien refinado);
- acties: arojado, avinado, rancio y amargo.

9.4.1. Procedimiento operatorio

Una vez preparadas las concentraciones se empezará la selección partiendo de 25 candidatos, de acuerdo con la metodología que se explicará a continuación para cada estimulo:

- Se preparan series de 12 copas, marcadas en clave (una serie por candidato). En cada copa se vierten 15 ml de cada una de las distintas concentraciones, preparadas de acuerdo con la fórmula C₁₀ × aⁿ.
- 2) Una vez llenas las copas conviene que permanezcan en la sala de cata, a 20—22 °C, cubiertas con un vidrio de reloj al menos una hora antes de comenzar los ensayos, a fin de homogeneizar su temperatura con la ambiente.
- Las 12 copas de una serie se colocan por el organizador del ensayo, de mayor a menor concentración, en una fila.

A continuación se procede a invitar a cada candidato para que realice el ensayo por separado, dándole las siguientes instrucciones:

9.4.2. Instrucciones para el candidato

Las 12 copas alineadas frente al candidato contienen diluciones de cada uno de los estímulos atrojado, avinado, rancio y amargo según sea el caso. Las copas se diferencian unas de otras en la intensidad del olor, la de olor más intenso se encuentra en el extremo izquierdo, la intensidad de olor de las restantes va disminuyendo gradualmente hacia la derecha. La última copa de la derecha puede tener tan poco olor que podría no ser detectable.

Procédase como sigue: familiarícese con los olores de las copas que forman la serie. Para ello comience a oler por la de la derecha $(n^{\circ} 12)$ e intente recordar la intensidad de los olores. Procure no fatigarse.

Cuando considere que se ha habituado a la escala de concentraciones de olor presentada, salga de la habitación.

El organizador del ensayo procederá, mientras tanto, a entresacar una copa de la serie que emparejará con la última de la derecha procediendo a tapar el hueco aproximando entre sí las restantes. Vuelva entonces de nuevo a la habitación para continuar el ensayo.

La prueba consiste en lo siguiente:

La copa separada debe ser restituida al lugar que le corresponde en la serie. Para ello puede olerla y compararla con las restantes tantas veces como se quiera, teniendo en cuenta que si la restituye correctamente al lugar que le corresponde, debe oler más fuerte que su inmediata de la derecha y más débil que la de la inzquierda. Esta prueba se repetirá con otras tres copas.

Para facilitar el trabajo y la recogida de la respuesta emitida, a cada candidato se le entregará junto con las instrucciones anteriormente descritas el siguiente estadillo.

SELECCIÓN DE CANDIDATOS

Prueba n°		Atributo		
Le copa problema corres	sponde al lugar n°			
Fecha		Nombre	• • • • • • • • • • • • • • • • • • • •	
Obtención de los re	esultados			
Para facilitar la ordenació de la forma siguiente:	on de datos de cada u	ino de los candidato	os, el organizador de	l panel los anotara
Nombre del candidato	Ambuto estudiado	N° de orden dado ⟨K'⟩	N° de orden que le corresponde {K}	Puntuación (K′ – K)²
	Tiple star conspect		deliteration of the state of th	
			\$	

9.4.4. Procedimiento estadístico de puntuación

9.4.3.

En el caso concreto de la selección efectuada, las copas a reintegrar en su lugar serán las mismas para todos y cada uno de los candidatos y de acuerdo con los calculos estadisticos realizados para este caso serán aquellas cuyo orden de serie se indica a continuación para cada atributo.

Atrojado (At)	Avinado (Av)	Rancio (Ra)	Amargo (Am)
Copa n°	Copa n°	Copa n°	Copa n°
(10, 5, 7, 2)	(11, 3, 8, 6)	(7, 4, 10, 2)	(6, 3, 11, 9)

El número ocupado por las copas en la serie no puede ser variado, puesto que los cálculos estadísticos para este ensayo se han realizado de acuerdo con la probabilidad de que las copas indicadas sean restituidas a su lugar por azar.

Ahora bien, con objeto de dificultar, cualquier paso de información de un candidaro a otro el organizador del panel tendra presente los siguientes puntos:

- Los candidatos no pueden comunicarse entre sí. Las claves serán diferentes para cada candidato.
- 2) Los candidatos no pueden enterarse qué posición ocupan las copas que se le han retirado.
- 3) Aunque todos los candidatos deben recibir las copas reseñadas anteriormente, el organizador debe variar el orden en que las entrega a cada candidato.

A cada candidato se le asigna una puntuación en función de sus resultados obtenidos; procediendo tal y como se pasa a describir a continuación:

Sean eⁱ₁, eⁱ₂, . . . eⁱ₁₂ las 12 copas con las doce concentraciones correspondientes de un atributo i (i = cualquiera de los cuatro atributos atrojado, avinado, rancio y ámargo) ordenadas de mayor a menor.

Sea e¹_k una de las copas seleccionadas y sea K' la posición que asigna el candidato a dicha copa en la serie. Los valores de K y K' son, por consiguiente, números enteros comprendidos entre el 1 y el 12 ambos inclusive que corresponden a las posiciones real y asignada por el candidato, respectivamente, de la copa seleccionada.

Sea T (máxima desviación admitida) un valor, fijado de antemano, en nuestro caso igual a 3 de tal forma que si (K' + K) > T el candidato es rechazado automáticamente (1),

Si por el contrario $(K'-K) \le T$, el candidato, en principio, no es rechazado y puede continuar la prueba, puesto que es capaz de situar el estímulo problema en el lugar que le corresponde o cuando menos en los lugares próximos inmediatos.

En este caso, la puntuación asignada a un candidato cuando valora un estímulo (concentración) de un determinado atributo, por ejemplo, de la serie atrojado (At), será igual al cuadrado de la diferencia entre el número de orden que corresponde a la posición correcta que ocuparía en la serie la copa portadora del estímulo y la posición a que el candidato la ha reintegrado, es decir:

$$P^{(At)}_{h} = (K' - K)^2$$

Puesto que esta operación será realizada por un mismo cadidato sobre cuatro estímulos (concentraciones) de cada atributo, la puntación parcial para dicho atributo (por ejemplo At) sería:

$$Z^{At} = P^{At}_{b} + P^{At}_{i} + P^{At}_{i} + P^{At}_{m}$$

Para facilidad de comprensión se exponen los siguientes ejemplos:

Ejemplo 1:

Supongamos que las respuestas del candidato A para los cuatro estímulos que se han retirado de la serie del atributo (i) son las siguientes:

Posición correcta de la copa en la serie (K)	Posición en que fue colocada (K')	Separación de la posición correcta (K' – K)
7	7	7 - 7 = 0
4	5	4-5 = -1
10	6	$10-6 = 4(^{1})$
2	4	2-4 = -2

⁽¹⁾ Este candidato es rechazado, ya que ha obtenido en el ensayo un valor de T>3.

⁽¹⁾ Es importante que el organizador insista sobre el candidato a fin de que el ensayo se conduzca razonablemente sin que se produzca una pérdida de sensibilidad por cansancio olfativo.

Ejemplo 2: Supongamos que un candidato reordena las copas de un atributo como sigue:

Posición correcta de la copa en la serie (K)	Posición en que fue colocada (K')	Separación de la posición correcta (K´ – K)
7	7	7 - 7 = 0
4	4	4-4 = 0
10	7	10 - 7 = 3
2	3	2-3=-1

Este candidato no es rechazado y la puntuación que obtiene para este atributo es:

$$Z^i = 0^2 + 0^2 + 3^2 + (-1)^2 = 10$$

La puntuación final del candidato que nos permitirá seleccionarlo o no como catador en función de sus respuestas frente a los cuatro atributos que hemos tomado para la selección sería:

siendo: At: atrojado. Av: avinado. Ra: rancio. Am: amargo.

El problema es ahora determinar hasta qué valor de Z es posible considerar que el candidato posee buenos niveles de percepción, memoria olfativa y organización mental para dar la adecuada respuesta para los cuatro estímulos considerados. Naturalmente Z es siempre un valor no negativo, y Z=0 significa que el candidato ha reconocido y cuantificado correctamente todas las 16 intensidades presentadas (cuatro de cada atributo). Valores de Z distintos de cero indican que el candidato ha reconocido las zonas de las escalas donde se sitúan las intensidades seleccionadas, pero dentro de ellas no ha podido realizar una correcta situación a su posición debido a que no posee una buena capacidad discriminatoria asociada a la escala de intensidad que se le ha presentado para uno o varios de los estímulos.

Así pues, habrá que determinar un valor crítico Z, tal que en el supuesto de que el candidato realice todas sus asignaciones de posición en la escala al azar dentro de las zonas que previamente ha reconocido, la probabilidad de una puntación definitiva Z, inferior a Z_c , sea una cantidad suficientemente pequeña α que previamente se puede fijar. En otras palabras, que la probabilidad de que con este procedimiento se seleccione un catador para el panel que no posea suficiente capacidad discriminatoria para las intensidades de estos estímulos que se han utilizado para la selección, sea inferior a α .

Fijado α , en nuestro caso igual 0,05, la obtención de Z_c depende de la distribución de probabilidad de la variable Z, que a su vez depende de las distribuciones de probabilidad de las variables p(K').

Realizados los cálculos estadísticos correspondientes, el valor obtenido para Z_c es igual a 34.

Una vez obtenida la puntuación Z de todos los candidatos, serán rechazados aquellos cuya puntuación sea superior a 34.

Por ejemplo, los candidatos A y B obtienen las siguientes puntuaciones:

Atributo	Candidato A	Candidato B
Atrojado	$Z^{At} = 10$	$Z^{At} = 12$
Avinado	$Z^{Av} = 10$	$Z^{Av} = 11$
Rancio	$Z^{Ra} = 10$	$Z^{Ra} = 15$
Amargo	$Z^{Am} = 4$	$Z^{Am} = 0$
	Σ = 34	Σ = 38

Los valores de Z para ambos candidatos son para el A = 34 y para el B = 38, luego será elegido el candidato A y rechazado el B. Eliminando los candidatos con puntuación superior a 34 los restantes se ordenarán por sus valores de Z, eligiéndose por orden hasta completar el número de 12 que deseamos reunir.

9.5. Entrenamiento

El entrenamiento tiene como objetivos principales:

- familiarizar al catador con las numerosas variantes olfato-gustativo-táctiles que ofrecen los aceites de oliva vírgenes;
- b) familiarizar a los catadores con la metodología sensorial específica;
- c) incrementar la habilidad individual para reconocer, identificar y cuantificar los atributos sensoriales;
- d) mejorar la sensibilidad y la memoria frente a los distintos atributos para conseguir juicios consistentes.

El período de entrenamiento suele consistir en una serie de sesiones según las posibilidades del grupo y del estudio, en las que después de analizar individualmente los aceites, los catadores discuten conjuntamente con el director las dificultades encontradas y comentan las calificaciones para aunar criterios y unificar opiniones.

El grado de entrenamiento conseguido después de un determinado número de sesiones se evalúa observando el incremento en el porcentaje de juicios correctos si se utilizan pruebas discriminatorias o analizando las variaciones de las calificaciones individuales medias del grupo, cuando se trata de pruebas escalares.

La utilidad práctica de este período de entrenamiento ha sido ampliamente discutida, pero hoy se considera muy eficaz e incluso imprescindible cuando se necesita disponer de datos sensoriales exactos y precisos.

9.6. Comprobación

Los grupos de catadores muy entrenados suelen realizar catas periódicas y continuadas con pruebas sensoriales que requieren un gran esfuerzo. Sobre su opinión se basan, en muchas ocasiones, decisiones de gran importancia tecnológica y comercial, y por ello, después de seleccionados y entrenados, deben estar sometidos a comprobaciones que garanticen la fiabilidad de los resultados.

Es evidente que sería necesario, una vez los paneles constituidos y sometidos a ensayos de rutina, proceder periódicamente a comprobar su «performance» a intervalos adecuados.

10. PROCEDIMIENTO PARA LA EVALUACIÓN ORGANOLÉPTICA DE ACEITES DE OLIVA VÍRGENES

Reunidas las condiciones y medios necesarios indicados en las normas anteriormente citadas y seleccionado el grupo de catadores, cada uno de ellos olerá y degustará (1) la copa que contiene la muestra de aceite sometida a examen analizando en ella las percepciones olfativas, gustativas, táctiles y quinestéticas con ayuda de la hoja de la figura 2 donde anotará su presencia y el valor de su intensidad. A continuación pasará a puntuar la calidad del aceite.

10.1. Utilización de la hoja de la figura 2 (descripción del flavor y puntuación de calidad)

En la parte izquierda de esta hoja se incluyen algunas de las percepciones sensoriales más características que suelen encontrarse con mayor frecuencia en los aceites de oliva y que describen su flavor. En el caso de que se perciban otros estímulos que no se correspondan con los calificativos enumerados deberá anotarlos como «otros» empleando el calificativo o calificativos que lo describa o describan con mayor propiedad.

Los estímulos perceptibles deberán ser valorados proporcionalmente a su intensidad indicando ésta con un signo (+) en el casillero correspondiente, de acuerdo con el criterio siguiente:

- 1: casi imperceptible.
- 2: ligera.
- 3: media.
- 4: grande.
- 5: extrema.

En la parte derecha de esta hoja, se establece una escala de 9 puntos (9 calidad excepcional, 1 pésima) que será utilizada por el catador para dar una puntuación única, conjunta, de las características del aceite. Esta puntuación debe ser consecuente con las virtudes, defectos encontrados en el aceite, anotados ya en la parte de la izquierda.

⁽¹⁾ Podrá abstenerse cuando al olerla encuentre algún atributo extremada e intensamente desagradable y anotará esta circunstancia excepcional en la hoja de puntuación.

La primera columna (defectos) de la tabla de puntuación comprende cinco apartados, de esta forma la clasificación de los aceites se basará fundamentalmente en la ausencia total o en la presencia de flavores defectuosos así como en la mayor o menor gravedad o intensidad de estos; sin embargo, como la escala de valoración es de 9 puntos, deberán considerarse algunos matices o aspectos que contribuyen de forma definitiva a decidir la puntuación total de calidad, que se describen en la segunda columna (características).

10.2. Puntuación final

El jefe del panel recogerá las puntuaciones dadas por cada uno de los catadores, comprobará que los atributos y las intensidades con que los ha percibido y marcado en la tabla de perfil se corresponden aceptablemente con la valoración asignada al aceite en la «hoja de puntuación». En caso de existir una diferencia apreciable, solicitará al catador que revise su hoja de puntuación.

Si fuese necesario, el catador repetirá el ensayo.

Por último, el jefe del panel tabulará las puntuaciones de todo el grupo y calculará la media aritmética y el error típico (de la media).

Si el error típico es superior al error de método, hará repetir el ensayo a todo el grupo.

El grupo repetirá los ensayos hasta obtener una evaluación por triplicado de la muestra, únicamente en el caso de análisis de revisión. La puntuación final de la muestra será la media de las tres puntuaciones dadas, con una cifra decimal.

Si el valor de intensidad media de amargo y/o picante es superior a 2,5, al aceite se le dará la calificación correspondiente y se hará constar que es especialmente amargo y/o picante.

Expresión de los resultados: el jefe del panel determinará, a partir de la puntuación media, la categoría a la que corresponde la muestra, según los valores establecidos en el Anexo I. En el informe se indicará únicamente esta categoría.

Nota: Las muestras deberán conscrvarse cerradas y en frigorifico hasta su análisis, devolviéndolas a éste hasta completar el triplicado.

Figura 2 Aceite de oliva virgen

Hoja de perfil Notas olfato-gustativas-táctiles

Atributos		Intensidad de percepción (²)					
	0	1	2	3	4	5	
Frutado de aceituna (madura [o] verde) (¹)							
Manzana							
Otra(s) fruta(s) madura(s)							
Verde (hoja, hierba)					•		
Amargo							
Picante							
Dulce							
Otro(s) atributo(s) tolerable(s)	1			1	1		
¿Cuál(es)?			-				
				1	-		
Agrio/Avinado/Avinagrado/Ácido (¹)	1		_		1		
Basto	_		_		1		
Metálico	1	-	1	-			
Moho/Humedad		1	+		+		
Borras/Turbios			+	1	\dashv		
Atrojado	\dashv	1	\dashv	-	+		
Rancio	\dashv		\dashv	+	+		
Otro(s) atributo(s) intolerable(s)	-+	+	-+	+	\dashv		
Cuál(es)?		-	+	\dashv	-		
		+	\dashv	+	+		
	Į.				\bot		

Táchese lo que no proceda. Intensidad de la percepción 0 = Ausencia total (³) 1 = Casi imperceptible 2 = Ligera 3 = Media 4 = Grande 5 = Extrema

(3) Es obligatorio indicar la ausencia de la nota sensorial marcando una « \times » en la casilla correspondiente.

Tabla de puntuación

	abia de pulituación	
Defectos	Características	Evaluación global: puntos
Ninguno	Frutado de aceitunas Frutado de aceitunas y otros frutos frescos	9 8 7
Leves y casi imperceptibles	Frutado apagado de cualquier tipo	6
Perceptibles	Frutado algo defectuo- so, olores y sabores anómalos	5
Notables, en el límite de aceptación	Claramente defectuoso, olores y sabores des- agradables	4
Grandes y/o graves cla- ramente perceptibles	Olores y sabores to- talmente inadmisibles para el consumo	3 2 1
Observaciones		
Nombre del catador		••••••

Clave de la muestra

ANÁLISIS SENSORIAL: VOCABULARIO GENERAL BÁSICO

1. OBJETO

La presente norma tiene por objeto agrupar los términos generales utilizados para el análisis sensorial y proporcionar su definición.

2. VOCABULARIO

2.1. Terminología general

Análisis sensorial (sustantivo):

examen de los caracteres organolépticos de un producto mediante los sentidos.

Percepción (sustantivo):

toma de conciencia sensorial de objetos o acontecimientos exteriores.

Organoléptico (adjetivo) (carácter o propiedad):

califica toda propiedad de un producto susceptible de ser percibida por los órganos de los sentidos.

Experto (sustantivo):

(en lo que concierne al examen de los caracteres organolépticos)

catador especializado en el análisis sensorial de un determinado producto y que posee conocimientos básicos sobre la elaboración del mismo y las preferencias del mercado.

Catador (sustantivo):

persona perspicaz, sensible, seleccionada y entrenada, que estima con los órganos de sus sentidos los caracteres organolépticos de un alimento.

Grupo de catadores:

conjunto de sujetos o jueces los cuales han sido especialmente seleccionados y entrenados y que se reúnen para efectuar bajo condiciones controladas el análisis sensorial del producto.

Sensación (sustantivo):

fenómeno subjetivo resultante del estímulo de un sistema sensorial. Este fenómeno es subjetivamente discriminable y objetivamente definible a través del órgano sensorial interesado, según la naturaleza o la cualidad del estímulo, así como por su intensidad.

Sensibilidad (sustantivo):

capacidad de los órganos sensoriales que les permite percibir cualitativa y cuantitativamente un estímulo de poca intensidad o diferencias pequeñas entre estímulos.

Cata (sustantivo):

operación que consiste en percibir, analizar y juzgar los caracteres organolépticos, y más particularmente los olfato-gustativos, táctiles y quinestéticos de un producto alimenticio.

Aceptación (sustantivo):

acto que consiste en admitir como favorable un producto por parte de un individuo o una población.

Armonía (sustantivo):

cualidad de un producto que origina una sensación de conjunto agradable. Dicha sensación es debida a la percepción de sus componentes, aportados como estímulos olfativos, gustativos, táctiles y quinestéticos porque se encuentran en relaciones de concentración adecuadas.

Aceptabilidad (sustantivo):

estado de un producto recibido favorablemente por un individuo o población en función de sus propiedades organolépticas.

Discriminación (sustantivo):

diferenciación cualitativa y/o cuantitativa entre dos o varios estímulos.

Compensación (sustantivo):

resultado de la interacción debida a un conjunto de estímulos de modo que cada uno se percibe con menor intensidad que si actuara solo. Aspecto (sustantivo):

conjunto de caracteres organolépticos percibidos por el órgano de la vista: tamaño, forma, color, conformación, turbidez, limpieza, fluidez, espuma y efervescencia.

Este término es preferible al de apariencia.

Atributo (sustantivo):

propiedad car. stica perceptible.

2.2. Terminología elativa a la fisiología

Estímulo (sustantivo):

agente físico o químico que produce específicamente la respuesta de los receptores sensoriales externos o internos.

Gusto:

(Sentido del gusto)

uno de los sentidos cuyos receptores están localizados en la boca, particularmente sobre la lengua y que son activados por diferentes compuestos en solución.

Gustativo (adjetivo):

califica la propiedad de un producto capaz de estimular el aparato gustativo despertando las sensaciones correspondientes a uno a varios de los cuatros sabores elementales: dulce, salado, ácido y amargo.

Receptor (sustantivo):

estructura especializada de un órgano sensorial excitable, capaz de recibir un estímulo y convertirlo en influjo nervioso.

Nota: Los receptores se clasifican según el tipo de energía asociada al estímulo (luz, calor, sonido, etcétera).

Olfacción (sustantivo):

función del aparato olfativo con vistas a la percepción y discriminación de las moléculas que acceden a él, en fase gaseosa desde un medio externo, por vía nasal directa o indirecta.

Intensidad (sustantivo):

grado de energía de una cualidad medible según una escala cuantitativa de valores superiores al umbral.

Adaptación (sustantivo):

modificación temporal de la sensibilidad para percibir estímulos sensoriales como resultado de una contínua y repetida exposición a ese o similar estímulo.

Inhibición (sustantivo):

falta de respuesta por parte de un órgano sensorial o de una parte del mismo, a pesar de estar sometido a la acción de un estímulo adecuado de intensidad superior ai umbral.

Respuesta (sustantivo):

acción con que las células sensoriales corresponden a la de uno o varios estímulos relativos a una modalidad sensorial definida.

Cuerpo (sustantivo):

sensación táctil percibida en la boca y que otorga un grado de densidad, viscosidad, consistencia o compacidad a un producto.

Fragancia (sustantivo):

olor fresco, suave y delicioso.

Oler (verbo):

(sentido activo aplicado al olfato)

designa la acción de percibir un olor.

Objetivo (adjetivo):

- a) califica a aquello que proporciona una representación real y comprobable del objeto, reduciendo al mínimo los factores humanos (por ejemplo: preferencia, costumbre, afectividad);
- califica a aquella técnica que, bien utilizando métodos sensoriales o métodos instrumentales, permite reducir al mínimo los errores propios.

Nota: Se desaconseja emplear como sinónimo el término de instrumental.

Subjetivo (adjetivo):

califica a aquello que proporciona una percepción condicionada por nuestro modo de pensar o sentir y no sólo por el estímulo.

Quinestesia:

conjunto de sensaciones resultante de una presión aplicable a la muestra por un movimiento (por ejemplo, presión de los dedos en el caso de un queso).

Umbral (sustantivo):

Umbral absoluto:

cantidad mínima de un estímulo sensorial, que da lugar:

- a la aparición de una sensación (umbral de aparición o de detección),
- o al reconocimiento de dicha sensación (umbral de identificación).

Umbral diferencial:

cantidad mínima de estímulo sensorial que da lugar a una diferencia perceptible en la intensidad de la sensación.

Umbral final:

cantidad máxima de un estímulo a partir de la cual un aumento de intensidad no se percibe.

Umbral preferencial:

valor cuantitativo mínimo de un estímulo o valor crítico supraliminar de este estímulo al que corresponde la aparición de una respuesta de atracción o repulsa en relación con un estímulo neutro, por ejemplo, en la elección entre una solución azucarada y el agua.

Nota: se debe distinguir entre umbral absoluto de preferencia y umbral diferencial de preferencia.

Subliminar (adjetivo):

por debajo del umbral absoluto.

Supraliminar (adjetivo):

por encima del umbral absoluto.

Fatiga sensorial:

caso particular de adaptación sensorial en el que se produce una disminución de la sensibilidad.

Compensación (sustantivo):

resultado de la interacción debida a un conjunto de estímulos de modo que cada uno se percibe con menor intensidad que si actuara solo.

Sinérgico (adjetivo):

efecto o acción concertada de determinadas sustancias, de modo que la intensidad de los caracteres organolépticos resultantes de la mezcla son superiores a la suma de las intensidades que cada uno de ellos mostraba por separado.

Efecto de contraste:

aumento de la respuesta a las diferencias entre los estimulos simultáneos o consecutivos. Contrario del efecto de convergencia.

Efecto de convergencia:

disminución de la respuesta a las diferencias entre los estímulos simultáneos o consecutivos. Contrario del efecto de contraste.

2.3. Terminología relativa a las propiedades organolépticas

Ácido (adjetivo):

- a) califica el sabor elemental producido por soluciones acuosas diluidas de la mayoría de los ácidos (por ejemplo, ácidos citrico, láctico y tartárico);
- b) califica la propiedad de los cuerpos puros o mezclas que al ser degustados producen este sabor.

El sustantivo correspondiente es acidez.

Agrio (adjetivo):

califica la sensación olfato-gustativa con predominio de ácidos generalmente de origen fermentativo, y a los alimentos que producen esta sensación. Algunos factores que contribuyen a dicha sensación están relacionados con el proceso de fermentación, por ejemplo acética, de un producto alimenticio.

Amargo (adjetivo):

- a) califica el sabor elemental producido por soluciones acuosas diluidas de diversas sustancias tales como quinina, cafeina y determinados heterósidos;
- califica la propiedad de aquellos cuerpos puros o sus mezclas que al ser degustados producen este sabor.

El sustantivo correspondiente es amargor.

Salado (adjetivo):

- a) sensación característica que se percibe a través del sentido del gusto, cuyo ejemplo más típico es el producido por una solución de cloruro sódico;
- b) califica la propiedad de las sustancias o mezclas que producen este sabor durante la degustación.

El sustantivo correspondiente es salinidad.

Duice (adjetivo):

- a) califica el sabor elemental producido por las soluciones acuosas de diversas sustancias, por ejemplo, la sacarosa;
- califica la propiedad de las sustancias puras o mezclas, que al ser degustadas producen este sabor.
- El sustantivo correspondiente es dulzor.

Astringente:

- a) califica la sensación compleja producida en la boca por una solución acuosa diluida de productos como algunos taninos (por ejemplo, los taninos del caqui y de endrina);
- b) califica la propiedad de los cuerpos puros o mezclas que producen esta sensación.
- El sustantivo correspondiente es astringencia.

Flavor (sustantivo):

se entiende por flavor el conjunto de percepciones de estímulos olfatogustativos, táctiles y quinestéticos que permite a un sujeto identificar un alimento y establecer un criterio, a distintos niveles, de agrado o desagrado.

Sabor (sustantivo):

- a) sensaciones percibidas como consecuencia del estímulo de las papilas gustativas por algunas sustancias solubles,
- b) cualidad de la sensación particular producida por tales sustancias.

Sabor elemental (sustantivo):

Cada uno de los cuatro sabores reconocidos: dulce, salado, ácido, amargo.

Olor (sustantivo):

- a) conjunto de sensaciones percibidas por el órgano olfativo cuando se inspiran determinadas sustancias volátiles;
- b) cualidad de la sensación particular producida por cada una de las sustancias anteriores.

Aroma (sustantivo):

- a) sensaciones agradables percibidas por el órgano olfativo por vía indirecta cuando se realiza la degustación de un alimento;
- b) en perfumería y en lenguaje no especializado se aplica también a las mismas sensaciones apreciadas por vía nasal directa.

Regusto (sustantivo):

Conjunto de sensaciones percibidas después de haber desaparecido el estímulo de la boca, distintas a las percibidas previamente.

Es sinónimo de dejo.

Aromático (adjetivo):

- a) califica la propiedad de los cuerpos puros o mezclas que, al ser degustados, producen las sensaciones calificadas como aroma;
- califica a aquellos productos que, examinados por vía nasal directa, producen sensaciones de fragancia y frescor.

Textura (sustantivo):

características del estado sólido o reológico de un producto, cuyo conjunto es capaz de estimular los receptores mecánicos, durante la degustación, particularmente de los situados en la región bucal.

Nota: Este término se refiere únicamente a las propiedades objetivas y no a las sensaciones producidas y que se designan por términos generales, tales como consistencia, fibrosidad, unruosidad, etc.

Paladear:

acción de conseguir que un alimento situado en la boca entre en contacto con todas las zonas sensibles de la misma, con objeto de percibir las sensaciones bucales que produce.

Nota: Este vocabulario puede ampliarse consultando las Normas ISO 5492/I, Il, IlI, IV, V y otras existentes, tales como el elaborado por J.L. Magnen «Les cahiers techniques du Centre national de coordination des etudes et recherches sur la nutrition et l'alimentation», etc.

COPA PARA LA DEGUSTACIÓN DE ACEITES

1. OBJETO

La presente norma tiene por objeto describir las características de la copa destinada al análisis organoléptico de los aceites comestibles (olor, sabor, flavor).

Describe, además, el dispositivo de calentamiento adaptado, necesario para la obtención y el mantenimiento de la temperatura adecuada para este análisis.

2. DESCRIPCIÓN

El esquema diseñado de la figura 1 pretende optimizar las características deseables en un utensilio de esta naturaleza, y que pueden concretarse en los puntos siguientes:

- a) máxima estabilidad, dificultando su inclinación y derramamiento del aceite contenido;
- b) fondo fácilmente adaptable a los huecos del bloque de calefacción que permite el calentamiento homogéneo de la base de la copa;
- c) estrechamiento de la boca que favorece la concentración de olores y facilita su identificación;
- de vidrio oscuro que no permita al catador percibir el color del aceite, impidiéndole cualquier prejuicio y la posible creación de sesgos o tendencias que puedan afectar a la objetividad de la determinación.

2.1. Dimensiones

El esquema de la copa va representado en la figura 1, teniendo las dimensiones siguientes:

— capacidad total	130 ml ± 10 ml,
— altura total	60 mm ± 1 mm,
— diámetro de la boca	50 mm ± 1 mm,
— diámetro de la parte más ancha	70 mm ± 1 mm,
— diámetro de la base	35 mm ± 1 mm,
- espesor de vidrio en las paredes laterales	,5 mm ± 0,2 mm,
- espesor de vidrio en el fondo	5 mm + 1 mm.

Cada copa irá acompañada de un vidrio de reloj cuyo diámetro será de unos 10 mm superior al de su boca. Este vidrio servirá de tapa para evitar la pérdida de aroma y la entrada de polyo.

2.2. Características de fabricación

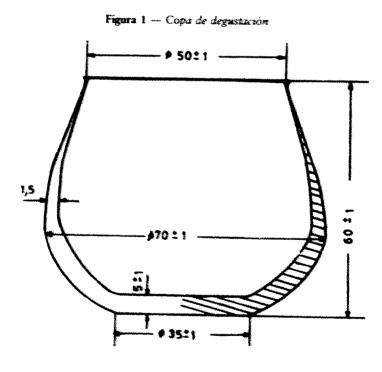
La copa deberá estar fabricada con vidrio resistente; de color oscuro que impida apreciar la coloración de su contenido, exento de rayas o burbujas.

El borde deberá ser regular, liso y rebordeado.

La pieza deberà estar recocida, permiticadole resistir las variaciones de temperatura que ha de sufrir en los ensayos.

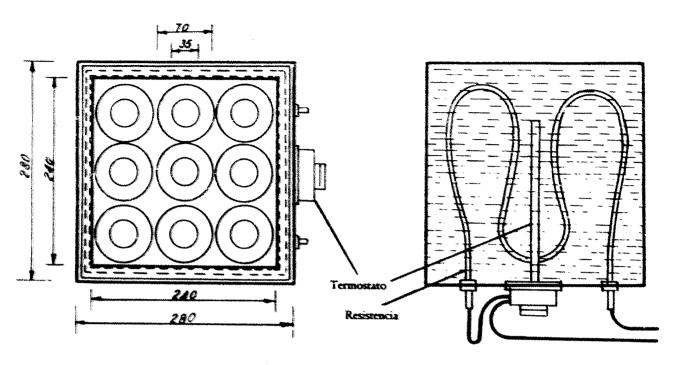
2.3. Normas para la utilización

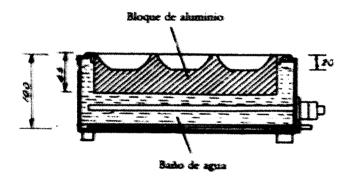
La limpieza de las copas deberá realizarse utilizando jabón o detergente no perfumados, enjuagandose a continuación repetidas veces hasta eliminar totalmente el agente de limpieza. Se enjuaga finalmente con agua destilada, se deja escurrir y se seca en una estufa de desecación.

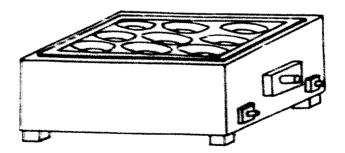

No deben utilizarse ácidos concentrados ni mezcla crómica.

Las copas deben mantenerse en la estufa hasta su utilización, o conservarse en un armario protegiéndolas de toda contaminación de olores extraños.

Antes de cada utilización, deberá olerse cada copa, con el fin de comprobar la ausencia de cualquier olor extraño. Al preparar el ensayo e tendrá mucho cuidado de anotar la clave de cada copa y el aceite que le corresponde. Esta correspondencia clave/aceite sólo será conocida por el organizador del ensayo.


DISPOSITIVO DE CALENTAMIENTO DE LAS MUESTRAS


El examen organoléptico de las muestras deberá efectuarse a una temperatura determinada que, para los aceites comestibles, debe ser de 28 ± 2 °C. Para conseguir esto, debera instalarse en el interior de cada cabina, al alcance del catador, un dispositivo de calefacción como el representado en la figura 2. Consiste en un bloque de aluminio sumergido en un baño de agua regulado termostáticamente, con el objeto de obtener una temperatura uniforme. Este bloque lleva una serie de oquedades a las que se adaptan los fondos de las copas. La diferencia de temperatura entre el dispositivo de calentamiento y el accite de las copas colocadas en las oquedades de los distintos bloques no debe ser superior a ± 2 °C.



Demensiones en men

Figura 2 — Dispositivo de calentamiento de las muestras. Dimensiones en milimetros

GUÍA PARA LA INSTALACIÓN DE UNA SALA DE CATA

1. INTRODUCCIÓN

La sala de cata tiene por objeto proporcionar al grupo de catadores que intervienen en los ensayos sensoriales un ambiente adecuado, cómodo y normalizado que facilite el trabajo y tienda a mejorar la repetitividad y reproducibilidad de los resultados.

OBJETO

La presente norma tiene por objeto precisar las condiciones basicas a que debe atenerse la instalación de una sala de cata.

ESPECIFICACIONES GENERALES DE LA INSTALACIÓN

Un local, cualquiera que sea su superficie, deberá responder a las especificaciones siguientes:

El local deberá ser agradable y estar convenientemente iluminado, pero conservando un carácter neutro. Con este fin, se recomienda un color relajante, liso y claro en las paredes para que se cree una atmósfera de distensión (1).

El local será de fácil limpieza y estará aislado de cualquier fuente de ruido; por tanto, preferentemente insonorizado. Estará igualmente aislado de olores extraños por lo que, a ser posible, estará provisto de un dispositivo eficaz de ventilación. Si las oscilaciones de la temperatura ambiental lo aconsejan, la sala de cata deberá dotarse de aire acondicionado que mantenga el ambiente próximo a 20-22 °C.

3.1. Dimensiones

Las dimensiones del local dependen frecuentemente de las disponibilidades de los laboratorios o de las empresas. En general, deberá ser lo suficientemente espacioso para permitir la instalación de unas diez cabinas y también de una zona para la preparación de las muestras.

Sin embargo, es evidente que cuanto mayor sea el espacio dedicado a las instalaciones, mejor será, ya que así se podrán prever dependencias anexas para, por ejemplo, limpieza del material, colocación de preparaciones culinarias y reuniones de «paneles abiertos».

3.2. Iluminación

La iluminación general, ya provenga de la luz solar o de lámparas (por ejemplo, lámparas de tubo tipo «luz de día») será uniforme, regulable y con luz dífusa.

3.3. Temperatura y estado higrométrico

El local se mantendrá continuamente en condiciones térmicas e higrométricas agradables. Salvo circunstancias especiales, se recomienda una temperatura de 20-22 °C y un estado higrométrico de 60 a 70 % de humedad relativa.

4. DESCRIPCIÓN DE LAS CABINAS

4.1. Características generales

Las cabinas se situarán en el local una al lado de otra, serán identicas entre si y estarán separadas unas de otras por mamparas lo suficientemente altas y anchas para aislar a los catadores entre si, una vez sentados. Se pueden construir de cualquier material apropiado y de fácil limpieza y conservación (por ejemplo: madera, contra-chapado vitrificado, paneles laminados, etcetera). Si se utilizan pinturas, estas deberán, después de secas, ser totalmente inodoras.

Los asientos previstos en cada cabina seran cómodos y de altura regulable.

También hay que prever que en cada una de ellas el alumbrado sea individual, regulable en direccion e intensidad.

Es muy recomendable que las cabinas estén provistas de un pulsador conectado a un dispositivo luminoso exterior que permita al catador comunicar a la persona que lo atiende desde el exterior, sin distraer a los demás, que ha terminado el ensayo, desea nuevas muestras, carece de algún utensilio, ha observado alguna irregularidad, o desea alguna información, etc.

⁽El color de la habitación y su diuminación puedes influer en los resultados del analeses sensonal.

4.2. Dimensiones

Las cabinas serán suficientemente amplias y confortables.

En general, se mantendrán las siguientes dimensiones:

- ancho:
 - 0,75 m (sin pila en la mesa),
 - 0.85 m (con pila en la mesa);
- fondo:
 - 0,50 m (la mesa),
 - 0,20 m exceso de la mampara;
- altura de las mamparas:
 - 0,60 m mínimo a partir de la mesa;
- altura de la mesa:
 - 0,75 metros.

4.3. Disposición

La superficie de la mesa será de fácil limpieza.

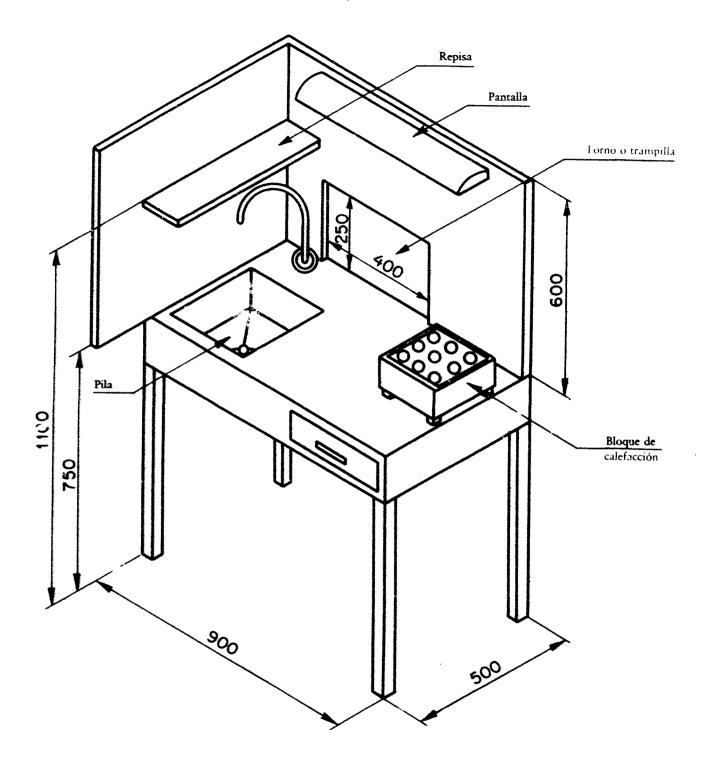
Una parte de esta superficie debe reservarse para una pila dotada de agua corriente potable. Sin embargo, si esto no es factible, se reservará este espacio para la colocación de una cubeta, escupidera o similar.

Cuando se deban mantener las muestras, mientras se realiza la prueba a temperatura constante superior o inferior al ambiente, conviene disponer de un equipo adecuado para tal fin (baño María, placa calefactora, etc.).

También se puede instalar una repisa, a una altura aproximada del suelo de 1,10 metros, para colocar en ella diferentes accesorios (vasos, material menudo, etc.).

Si la disposición de las cabinas en la sala lo permite, es conveniente instalar un dispositivo para facilitar la presentación de las muestras. Este puede ser en forma de corredera (figura 1), de torno vertical (figura 2) indicado para vasos o copas (recipientes altos), o de torno horizontal cuando los recipientes en que se sirven las muestras tienen poca altura (figura 3). Sencillamente, que posea hueco suficiente para el paso de las bandejas y copas que contengan las muestras a examinar.

5. LOCALES COMPLEMENTARIOS


Si se dispone de espacio suficiente, conviene contar con locales separados para preparación de muestras (cocina experimental si se prevén ensayos culinarios u otros), estanterías para la colocación de vasos o utensilios y salas de reunión para las discusiones previas o posteriores a los ensayos. En estos casos dichos locales se mantendrán limpios y en ningún caso podrán molestar el trabajo de los jueces, en la sala de cata, con sus olores, ruidos, o con la conversación de los reunidos.

Véase en la figura 4 un ejemplo de sala de cata e instalaciones complementarias.

Nota: Las condiciones descritas son las ideales; pero si no fuese posible disponer de una instalación semejante reservada únicamente para el análisis sensorial, los ensayos podrían realizarse en un local que reúna las condiciones mínimas descritas (luz, temperatura, ruido, olores), instalando cabinas móviles a partir de elementos plegables de tal forma que permitan, como mínimo aislar entre sí a los catadores.

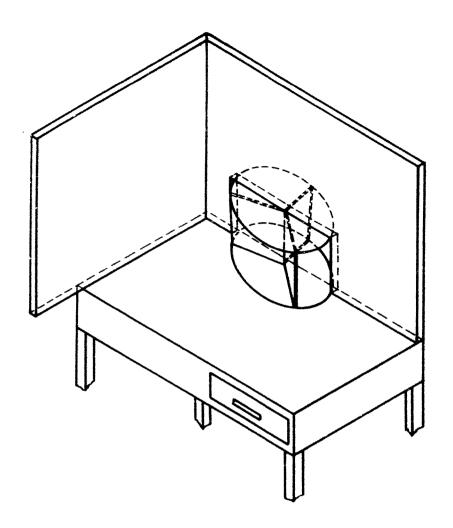

DISPOSICIÓN DE LA CABINA

Figura 1

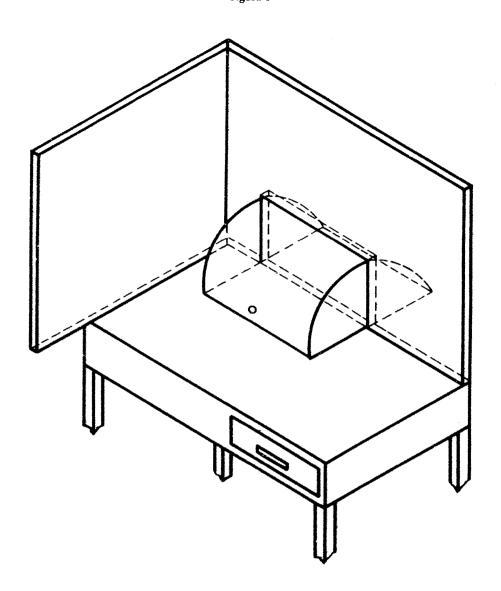

TORNO DE PRESENTACIÓN DE LAS MUESTRAS

Figura 2

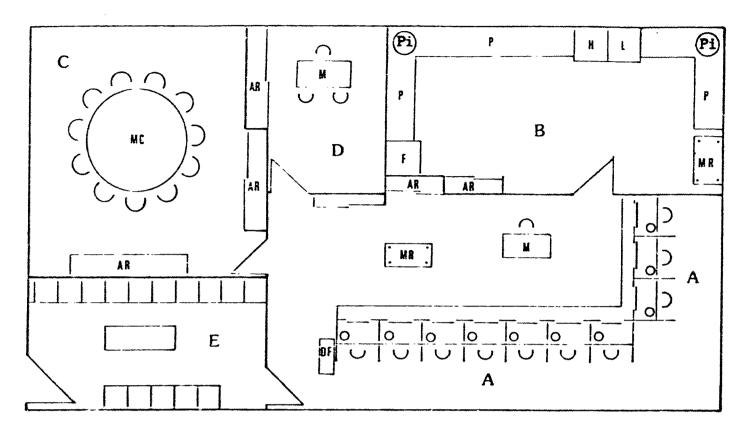

TRAMPILLA DE PRESENTACIÓN DE LAS MUESTRAS

Figura 3

LABORATORIO DE ANÁLISIS SENSORIAL

Figura 4 — Ejemplo de sala de cata

- Cabina de degustación

Sala de limpieza de material y preparación de muestra
 Panel abierto

DespachoSala espera D

E

- Frigorífico

H - Horno

- Lavaplatos

Pi - Pileta vertedero

Ar — Armario Mr — Mesa auxiliar rodante

Df — Distribución formularios

Mc — Mesa circular
M — Mesa
P — Poyata

ANEXO XIII

PRUEBA DE REFINACIÓN

NEUTRALIZACIÓN Y DECOLORACIÓN DEL ACEITE DE OLIVA EN LABORATORIO

1.1. Neutralización del aceite

1.1.1. Equipo

- vaso de 300 ml de forma alta,
- centrífuga con tubos de 100 ml,
- vaso de 250 ml.
- matraces de 100 ml,
- ampolla de decantación de 1 litro.

1.1.2. Reactivos

- solución acuosa de hidróxido de sodio al 12%,
- solución etanólica al 1 % de fenolftaleina,
- hexano para análisis,
- alcohol isopropílico puro para análisis.

1.1.3. Modo de operar

a) Aceites de acidez expresada en ácido oleico inferior al 30%

Introducir en un vaso de 300 ml de forma alta, 50 g de aceite bruto y calentar a 65 °C al baño María. Agitar lentamente, y añadir una cantidad de solución de hidróxido de sodio al 12% que corresponda a la acidez libre del aceite con un exceso del 5%. Continuar agitando durante cinco minutos, manteniendo la temperatura a 65 °C.

Trasladar el total a unos tubos de centrífuga de 100 ml, separar la masa jabonosa por centrifugación. Verter el aceite decantado en un vaso de 250 ml y lavar con 50-60 ml de agua destilada hirviendo eliminando durante este proceso la capa acuosa con la ayuda de un sifón. Repetir los lavados hasta eliminar completamente los restos de jabon residual (desaparición de la coloración rosa en la fenolítaleína).

Centrifugar el aceite para eliminar las pequeñas cantidades de agua residual.

b) Aceites de acidez expresada en ácido oleico superior al 30%

Introducir en una ampolla de decantación de un litro, 50 g de aceite bruto, 200 ml de hexano, 100 ml de alcohol isopropílico y una cantidad de solución de hidróxido de sodio al 12% que corresponda a la acidez libre del aceite, con un exceso del 0,3%. Agitar enérgicamente durante un minuto. Añadir 100 ml de agua destilada, agitar de nuevo y dejar reposar.

Después de la separación de las capas, dejar salir la capa inferior que contiene los jabones. Entre ambas capas (aceitosa por encima y acuosa por debajo) se forma frecuentemente una capa intermedia constituida por mucilagos y sustancias insolubles que deberá eliminarse igualmente

Proceder a continuación al lavado de la solución hexánica de aceite neutro con porciones de 50-60 ml de una solución de alcohol isopropílico/agua destilada 1/1 (v/v) hasta la desaparición de la coloración rosa en la fenolftaleína. Proceder a continuación a la eliminación completa del hexano por destilación en vacío (por ejemplo, en el rotavapor).

1.2. Decoloración del aceite neutro

1.2.1. Equipo

- matraz de 250 ml con 3 bocas que permitan la inserción de:
 - a) un termómetro graduado en grados que permita hacer lecturas hasta 90 °C,
 - b) un agitador mecánico que gire a 250-300 vueltas por minuto equipado para el funcionamiento en vacio,
 - c) un rácor hacia la bomba de vacío,
- bomba de vacio, provista de un manómetro, capaz de lograr presiones residuales de 15-30 milibares.

ANEXO XIV

NOTAS COMPLEMENTARIAS 2, 3 Y 4 DEL CAPÍTULO 15 DE LA NOMENCLATURA COMBINADA

«Nota 2A: Sólo se considerará "aceite de oliva", para la aplicación de los códigos NC 1509 y 1510, el aceite
que proceda exclusivamente del tratamiento de aceitunas, con exclusión del aceite de oliva
reesterificado y de cualquier mezcla de aceite de oliva con aceites de otra naturaleza.

La presencia de aceite de oliva reesterificado o de aceites de otra naturaleza se comprobará con los métodos recogidos en los Anexos V, VII, IX, X y XII. En el cuadro siguiente figuran las características analíticas del contenido de esteroles y ácidos grasos común a todos los aceites de oliva pertenecientes a los códigos NC 1509 y 1510.

Cuadro I: contenido de ácidos en %		Cuadro II: Contenido de esteroles en %	
Âcido mirístico	M 0,1	Colesterol	M 0,5
Ácido linolénico	M 0,9	Brasicasterol	M 0,2
Ácido araquídico	M 0,7	Campesterol	M 4,0
Ácido eicosánico	M 0,5	Estigmasterol	< Campesterol
Ácido behénico	M 0,3	β-sitosterol (¹)	m 93,0
Ácido lignocérico	M 0,5	Δ-7-estigmasterol	M 0,5

m = mínimo.

- Nota 2B: Se considerarán "aceites de oliva vírgenes" los obtenidos a partir del fruto del olivo únicamente por procedimientos mecánicos u otros procedimientos físicos, en condiciones, sobre todo térmicas, que no impliquen la alteración del aceite, y que no hayan sufrido tratamiento alguno distinto del lavado, la decantación, el centrifugado y el filtrado, con exclusión de los aceites obtenidos mediante disolventes (código NC 1510) que se definen a continuación en los puntos I y II.
 - Se considerará "aceite de oliva virgen lampante", para la aplicación del código NC 1509 10 10, cualquiera que sea su acidez, el aceite que presente las siguientes características:
 - a) un contenido de alcoholes alifáticos de 400 mg/kg como máximo;
 - b) un contenido de eritrodiol y uvaol del 4,5% como máximo;
 - c) un contenido de ácidos grasos saturados en la posición 2 de los triglicéridos del 1,3 % como máximo;
 - d) o una de las características siguientes:
 - d1) un índice de peróxidos superior a 20 meq 02/kg;
 - d2) un contenido total de solventes halogenados volátiles superior a 0,2 mg/kg y/o que alguno de ellos sea superior a 0,1 mg/kg;
 - d3) un coeficiente de extinción K₂₇₀ superior a 0,25 y, después de tratar el aceite con alúmina activada, no superior a 0,11. Algunos aceites con un contenido de ácidos grasos libres, expresado en ácido oleico, superior a 3,3 g por cada 100, pueden tener, después de pasar sobre la alúmina activada, de acuerdo con el método recogido en el Anexo XV, un coeficiente de extinción K₂₇₀ superior a 0,11. En tal caso, después de neutralizarlos y decolorarlos en el laboratorio, deberán presentar las siguientes características:

M = máximo.

⁽¹⁾ Δ -5,23-Estigmasterol + Colesterol + β -sitosterol + Sitostanol + Δ -5-Avenasterol + Δ -5-24-Estigmastadienol.

- un coeficiente de extinción K₂₇₀ inferior o igual a 1,20,
- una variación (ΔK) del coeficiente de extinción en un entorno de 270 nanómetros superio: a 0,01 e inferior o igual a 0,16;
 siendo:

$$\Delta K = K_m - 0.5 (K_m - 4 + K_m + 4)$$

- K_m = coeficiente de extinción con la longitud de onda del vértice máximo de la curva de absorción en un entorno de 270 nm,
- $K_{m^-4}yK_{m^-4} = coeficientes de extinción con longitudes de onda inferiores y superiores en 4 nm a la de <math>K_{m^+}$
- d4) características organolépticas con defectos que puedan percibirse con una intensidad superior a la aceptable medida con una puntuación inferior a 3,5 en la cata.
- II. Se considerará «aceite de oliva virgen», para la aplicación del código NC 1509 10 90, el aceite de oliva que presente las siguientes características:
 - a) una acidez máxima, expresada en ácido oleico, de 3,3 g por cada 100;
 - b) un indice de peróxidos de 20 meq 02/kg como máximo;
 - c) un contenido de alcoholes alifaticos de 300 mg/kg como máximo;
 - d) un contenido total de solventes halogenados volátiles que no exceda de 0,2 mg/kg, y siempre que no exceda de 0,1 mg/kg en cada uno de ellos;
 - e) un coeficiente de extinción K₂₇₀ de 0,250 como máximo y, después de tratar el aceite con alumina activada, de 0,10 como máximo (1);
 - f) una variación del coeficiente de extinción (ΔK) en la zona de 270 nanómetros de 0,010 como máximo;
 - g) características organolépticas con defectos que puedan percibirse con una intensidad inferior a la aceptable medida con una puntuación superior a 3,5 en la cata;
 - h) un contenido de eritrodiol y uvaol del 4,5 % como máximo;
 - i) un contenido de ácidos grasos saturados en la posición 2 de los triglicéridos del 1,3 % como máximo.
- Nota 2C: Se incluirá en el código NC 1509 10 90 el aceite de oliva obtenido por tratamiento de los aceites de los códigos NC 1509 10 10 o 1509 10 90, incluso con adición de aceite de oliva virgen, que presente las siguientes características:
 - a) una acidez máxima, expresada en ácido oleico, de 3,3 g por cada 100;
 - b) un contenido de alcoholes alifáticos de 350 mg/kg como máximo;
 - c) un coeficiente de extinción K₂₇₀ superior a 0,25 pero no a 1,20 y, después de pasar la muestra de aceite sobre la alúmina activada, superior a 0,10;
 - d) una variación del coeficiente de extinción (ΔK) en la zona de 270 nanómetros superior a 0,01 pero no a 0,16;
 - e) un contenido de eritrodiol y uvaol del 4,5 % como máximo;
 - f) un contenido de ácidos grasos saturados en la posición 2 de los triglicéridos del 1,5 % como máximo.
- Nota 2D: Se considerarán "aceites crudos" del código NC 1510 00 10 los aceites, principalmente los aceites de orujo, que presenten las siguientes características:
 - a) una acidez, expresada en ácido oleico, superior a 2 gr por cada 100;
 - b) un contenido de eritrodiol y uvaol superior al 12%;
 - c) un contenido de ácidos grasos saturados en la posición 2 del triglicérido del 1,8% como máximo.
- Nota 2E: Se considerarán aceites del código NC 1510 00 90 los aceites obtenidos por tratamiento de los aceites del código NC 1510 00 10, incluso con adicion de aceites de oliva virgenes, que no posean las características de los aceites que figuran en los puntos I y II y siempre que presenten un contenido de ácidos grasos saturados en la posición 2 de los triglicéridos del 2% como máximo.».

⁽¹⁾ Cuando el K₂₇₉ sea superior a 0.25 se procederá a una mieva determinación unitizando el tratamiento con alumina; el K₂₇₉ no deberá sobrepasar 0,10.

- 2. «Nota 3: Se excluirán de los códigos NC 1522 00 31 y 1522 00 39:
 - a) los residuos procedentes del tratamiento de grasas que contengan aceite cuyo índice de yodo, determinado por el método que figura en el Anexo XVI, sea inferior a 70 o superior a 100;
 - b) los residuos procedentes del tratamiento de grasas que contengan aceite cuyo indice de yodo esté comprendido entre 70 y 100, pero en los que la superficie del pico correspondiente al volumen de retención de beta-sitosterol, determinada de acuerdo con las disposiciones del Anexo V del Reglamento mencionado en la nota complementaria 4 siguiente, represente menos del 93 % de la superficie total de los picos de los esteroles.».
- 3. «Nota 4: Los métodos de análisis para determinar las características de los productos contemplados anteriormente son los previstos en los Anexos del Reglamento (CEE) nº 2568/91.».

ANEXO XV

1. CONTENIDO EN ACEITE DE LOS ORUJOS DE ACEITUNA

1.1. Material

- aparato de extracción apropiado tipo suxhlet, provisto de un matraz de 200 a 250 ml,
- baño por calefacción eléctrica (baño de arena, baño de agua, etc.) o placa calefactora,
- balanza analítica,
- estufa regulada a 80 °C como máximo,
- estufa de calefacción eléctrica provista de un dispositivo de termorregulación regulada a 103 °C ± 2 °C y que permita realizar una insuffación de aire o una presión reducida,
- triturador mecánico fácil de limpiar y que permita el triturado del orujo sin calentamiento y sin disminución sensible de su contenido en agua y en aceite,
- cartucho de extracción y algodón hidrófilo o papel filtro, exentos de productos extraibles por el hexano,
- desecador.
- criba con agujeros de 1 mm de diámetro,
- piedra pómez en pequeños granos, previamente secada.

1.2. Reactivo

n-hexano técnico cuyo residuo en evaporación completa deberá ser inferior a 0,002 g para 100 ml.

MODO DE OPERAR

2.1. Preparación de la muestra para ensayo

Triturar la muestra para laboratorio, si fuera necesario, en el triturador mecánico, previamente bien limpio, para reducirla a partículas que puedan atravesar completamente la criba.

Utilizar aproximadamente una vigésima parte de la muestra para completar la limpieza del triturador, tirar dicha mezcla, triturar el resto, recogerlo, mezclarlo con cuidado y analizarlo sin demora.

2.2. Toma de muestra

Pesar inmediatamente después del triturado, alrededor de 10 g de la muestra para ensayo con una aproximación de 0,01 g.

2.3. Preparación del cartucho de extracción

kolocar la toma de muestra en el cartucho y taparlo con el tampón de algodón hidrófilo. En caso de haber utilizado papel de filtro, envolver la muestra molida en dicho papel.

2.4. Presecado

Cuando el orujo esté muy húmedo (contenido en agua y en materias volátiles superior al 10%), efectuar un presecado colocando durante un tiempo conveniente el cartucho lleno (o el papel de filtro) en la estufa calentada a 80 °C como máximo, para llevar el contenido en agua y en materias volátiles por debajo del 10%.

2.5. Preparación del matraz

Pesar con aproximación, de 1 g el matraz que contenga 1 a 2 granos de piedra pómez, previamente secado en la estufa a $103~^{\circ}\text{C}~\pm~2~^{\circ}\text{C}$ y después enfriado durante al menos una hora en el desecador.

2.6. Primera extracción

Colocar en el aparato de extracción el cartucho (o el papel de filtro) que contenga la muestra. Verter en el matraz la cantidad necesaria de hexano. Adopear el matraz al aparato de extracción y colocario todo sobre la placa calefactora. Llevar la calefacción a tal estado que el caudal de reflujo sea al menos de tres gotas por segundo (ebullición moderada, no tumpiquosa).

Después de cuatro horas de extracción, dejar enfriar. Quitar el cartucho del aparato de extracción y colocado en una contiente de aire para eliminar la mayor parte del disolvente que lo impregna.

2.7. Segunda extracción

Vaciar el cartucho en el microtriturador y triturar tan finamente como sea posible. Colocar de nuevo cuantitativamente la mezcla en el cartucho y esta en el aparato de extracción.

Empezar de nuevo la extracción durante dos horas más, utilizando el mismo matraz conteniendo la primera extracción.

La solución obtenida en el matraz de extracción debera ser limpida. Si no fuere asa, filtrarla sobre un papel de filtro lavando varias veces el primer matraz y el papel de filtro con bexano. Recoger el filtrado y el disolvente en un segundo matraz previamente secado y tarado aproximadamente a 1 mg.

2.8. Eliminación del disolvente y pesada del extracto

Eliminar en el equipo de extracción la mayor parte del disolvente. Eliminar los últimos restos de este calentando el matraz en la estufa a $103~^{\circ}\text{C} \pm 2~^{\circ}\text{C}$ durante 20~minutos. Facilitar dicha eliminación, ya sea insuflando aire de vez en cuando o preferiblemente un gas inerte, o actuando bajo una presión reducida.

Dejar enfriar el matraz en un desecador durante al menos una hora, y pesarlo con una precisión de 1 mg aproximadamente.

Calentar de nuevo 10 minutos en las mismas condiciones, dejar enfriar en el desecador y pesar.

La diferencia entre los resultados de estas dos pesadas debera ser inferior o igual a 10 mg, si no, calentar de nuevo durante periodos de diez minutos seguidos de enfriamento y pesada, hasta que la diferencia de peso sea, a lo sumo, de 10 mg. Seleccionar la última pesada del matraz.

Efectuar dos determinaciones.

EXPRESIÓN DE LOS RESULTADOS

3.1. Modo de cálculo y fórmula

a) El extracto expresado en peso del producto tal cual será igual a:

$$S = m_1 \times \frac{100}{m_0}$$

donde: 5 es el porcentaje en peso del extracto del producto tal cual,

me es el peso, en gramos, de la muestra,

m, es el peso, en gramos, del extracto seco.

Tomar como resultado la media aritmérica de las dos determinaciones, si las condiciones de repetitividad se cumplen.

Expresar el resultado con un solo decimal.

b) El extracto se relacionará con la materia seca utilizando la siguiente formula:

$$5 \times \frac{100}{100 - U} = \%$$
 grasa sobre extracto seco

donde: S es el procentaje en peso de extracto del producto tal cual ver al.

U es su comenido en agua y en maxenas volunles.

3.2. Repensividad

La diferencia entre los resultados de las dos determinaciones, efectuadas simultáneamente o rápidamente la una a continuación de la otra mediante el mismo análisis, no deberá ser superior a 0,2 g de extracto de hexano por cada 100 g de muestra.

En caso contrario, repetir sobre otras dos romas de muestra. Si esta vez la diderencia es de noevo superior a 0,2 g tomar como resultado la media arismetica de las cuatro determinaciones efectuadas.

ANEXO XVI

DETERMINACIÓN DEL INDICE DE YODO

1. OBIETO

La presente norma internacional especifica un metodo para la determinación del indice de yodo de las grazas y aceites animales y vegetales, en lo sucesivo denominados grasas.

DEFINICIÓN

A los fines de la presente norma interrectional, se aplicara la definicion siguiente:

2.1. Indice de vodo: el peso de vodo absorbido por la muestra en las condiciones de trabajo que se especifican en la presente norma internacional.

El indice de yodo se expresa en gramos de yodo por 100 gr de muestra.

3. PRINCIPIO

Disolución de la muestra problema y adición de reactivo de Wijs. Una vez transcurrido el tiempo que se específica, adición de solución acuosa de yoduro potásico y valoración del yodo liberado con solución de tiosulfato sódico.

4. REACTIVOS

Todos los reactivos serán de calidad analinca reconocida,

- 4.1. Yoduro potasico, si lución de 100 g/l, exento de yodatos o de yodo libre.
- 4.2. Engrudo de almadon.

Mezclar 5 g de almidón soluble con 30 ml de agua, añadir esta mezcla a 1 000 ml de agua en ebullición, hervir durante 3 minutos y dejar enfriar.

Solución volumérnica patrón de tiosulfato sódico.

c (Na₂S₂O₃, 5H₂O₃ = 0,1 mol/1, valorada como máximo 7 dias antes de su uso.

- 4.4. Disolvente, preparado mezclando volúmenes iguales de ciclohexano y ácido acérico.
- 4.5. Reactivo de Wijs, que contenga monocioruro de yodo en ácido acérico. Se utilizara reactivo de Wijs comercializado.

Nota: El reactivo contiene 9 g de ICI, + 9 g de I en ácido acenco.

MATERIAL

Material ordinario de laboratorio y, en particular, lo seguiente

- Navecillas de vidrio, apropiadas para la muestra problema y que puedan introducirse en los matraces (5.2).
- 5.2. Matraces erlenmever de 500 ml de capacidad con boca esmerilada, provistos de sus correspondientes tapones de vidrio y perfectamente secos.

6. PREPARACIÓN DE LA MUESTRA QUE DEBERA ANALIZARSE.

Secar la muestra homogenerzada con sul 10 sódico y fibrarla.

7. PROCEDIMIENTO

7.1. Yamaño de la muestra

El peso de la muestra vana en función del máse de vodo previsto, como se indica en el cuadro 1.

Cuadro 1

Índice de yodo previsto	Peso de la muestra problema
menos de 5	3,00 g
5— 20	1,00 g
21— 50	0,40 g
51-100	0.20 g
101—150	0,13 g
151—200	0,10 g

Pesar la muestra problema con precisión de 0,1 mg en una navecilla capsula de pesadas de vidrio 5.1.

7.2. Determinación

Introducir la muestra problema en un matraz de 500 ml (5.2). Añadir 20 ml del disolvente (4.4) para disolver la grasa. Agregar exactamente 25 ml del reactivo de Wijs (4.5), tapar el matraz, agitar el contenido y colocar el matraz al abrigo de la luz. No deberá utilizarse la boca para pipetear el reactivo de Wijs.

Preparar del mismo modo un ensayo en blanco con el disolvente y el reactivo, pero sin la muestra problema.

Para las muestras con un índice de yodo inferior a 150, mantener los matraces en la oscuridad durante 1 hora; para las muestras con un índice de yodo superior a 150, así como en el caso de productos polimerizados o considerablemente oxidados, mantener en la oscuridad durante 2 horas.

Una vez transcurrido el tiempo correspondiente, agregar a cada uno de los matraces 20 ml de solución de yoduro potásico (4.1) y 150 ml de agua.

Valorar con la disolucion de tiosulfato sódico (4.3) hasta que haya desaparecido casi totalmente el color amarillo producido por el yodo. Añadir unas gotas de engrudo de almidón (4.2) y continuar la valoración hasta el momento preciso en que desaparezca el color azul después de una agitación muy intensa.

Nota: Se permite la determinación potenciométrica del punto final.

7.3. Número de determinaciones

Efectuar 2 determinaciones de la muestra problema.

8. EXPRESIÓN DE LOS RESULTADOS

El indice de yodo se expresa del siguiente modo:

$$\frac{12,69 c \left(V_1 - V_2\right)}{p}$$

siendo:

- valor numérico de la concentración exacta, expresada en moles por litro, de la solución volumétrica patrón de tiosulfato sódico (4.3) utilizada;
- V₁: valor numérico del volumen, expresado en mililitros, de la solución de tiosulfato sódico (4.3) utilizada para el ensayo en blanco;
- V₂: valor numérico del volumen, expresado en mililitros, de la solución de riosulfato sódico (4.3) utilizada para la determinación;
- p: valor numérico del peso, expresado en gramos, de la muestra problema (7.1).

Se tomará como resultado la media ariumética de las dos determinaciones, siempre que se cumpla el requisito establecido con respecto a la repetibilidad.