«Maquinas y Motores Térmicos» al área de «Ingeniería de los Procesos

Don Francisco Roldán Roldán, Profesor titular de Escuela Universitaria de la Universidad de Cádiz, del área de «Expresión Gráfica en la Ingeniería» al área de «Ingeniería Hidráulica».

Don Ignacio Carol Vilarasau, Profesor titular de la Universidad

Politécnica de Cataluña, del área de «Ingeniería de la Construcción» al area de «Ingeniería del Terreno».

Don Andrés Sahuquillo Herráiz, Catedrático de la Universidad Politécnica de Valencia, del área de «Ingeniería del Terreno» al área de «Ingeniería Hidráulica».

Don Antonio Bernalte Miralles, Catedrático de la Universidad Nacional de Educación a Distancia del área de «Física de la Materia Condensada» al área de «Ciencia de los Materiales e Ingeniería Metalúrgica».

Dona Maria Santos Tomás Belenguer, Profesora titular de la Universidad Politécnica de Cataluna, del área de «Matemática Apli-

Universidad Politecnica de Cataluna, del area de «Matematica Aplicada» al área de «Ciencia de la Computación e Inteligencia Artificial».

Don Jesús María Rodríguez Fernández, Profesor titular de Escuela Universitaria de la Universidad de Cantabria, del área de «Física Aplicada» al área de «Física de la Materia Condensada».

Don Eladio Domínguez Murillo, Profesor titular de la Universidad de Zaragoza, del área de «Geometría y Topología» al área de «Ciencia de la Computación e Inteligencia Artificial».

Don Manuel Zoria Lónez, Profesor titular de la Universidad de

Don Manuel Zorita López, Profesor titular de la Universidad de Salamanca, del área de «Ingeniería de Sistemas y Automática» al área de «Lenguajes y Sistemas Informáticos».

Don Rafael Tapia Martín, Profesor titular de Escuela Universitaria de la Universidad de Cantabria, del área de «Física Aplicada» al área de

«Física de la Materia Condensada».

Doña Amada Rodríguez Gutiérrez, Profesora titular de Escuela Universitaria de la Universidad de Cantabria del área de «Física Aplicada» al área de «Física de la Materia Condensada».

Don Rafael Jesús López Sánchez, Catedrático de Escuela Universitaria de la Universidad de Cantabria, del área de «Física Aplicada» al área

de «Física de la Materia Condensada».

Don José Luis Medina Miranda, Profesor titular de la Universidad de Las Palmas de Gran Canaria, del área de «Ingeniería de la Construcción» al área de «Proyectos de Ingeniería».

Don Rubén Victor Rial Planas, Catedrático de la Universidad de las Islas Baleares, del área de «Biologia Animal» al área de «Fisiologia».

Doña Consuelo Curras Valle, Profesora titular de la Universidad de

Vigo, del área de «Organización de Empresas» al área de «Comercialización e Investigación de Mercados».

cion e investigación de Mercados».

Don José Luis García Pereira, Profesor titular de Escuela Universitaria de la Universidad de Vigo, del Area de «Economía Aplicada» al área de «Economía Financiera y Contabilidad».

Doña Milagros de la Gándara Gómez, Profesora titular de Escuela Universitaria de la Universidad de Zaragoza, del área de «Biología Celular» al área de «Didáctica de las Ciencias Experimentales».

Don Manuel Santamaría Ossorio, Profesor titular de la Universidad de Cárdoba del área de «Bioquímica» y Riología Malegulary al área de

de Córdoba, del área de «Bioquímica y Biología Molecular» al área de «Inmunología».

Don Enrique García Olivares, Profesor titular de la Universidad de Granada, del área de «Fisiología» al área de «Inmunología».

Don Federico Garrido Torres-Puchol, Profesor titular de la Universi-

dad de Granada, del área de «Bioquímica y Biología Molecular» al área

de «Inmunologia». Don José Peña Martínez, Catedrático de la Universidad de Córdoba, del área de «Bioquímica y Biología Molecular» al área de «Inmunologia».

Don Antonio Alonso Ortiz, Profesor titular de la Universidad de Málaga, del área de «Bioquímica y Biología Molecular» al área de

«Inmunología»

Don Rafael Solana Lara, Profesor titular de la Universidad de Córdoba, del área de «Bioquímica y Biología Molecular» al área de «Inmunología».

Lo que se hace público para general conocimiento. Madrid, 5 de diciembre de 1990.-La Secretaria general, Elisa Pérez Vera.

RESOLUCION de 10 de diciembre de 1990, de la Secreta-3992 ria General del Consejo de Universidades, por la que se hace público el acuerdo de la Comisión académica estimatorio del recurso interpuesto sobre modificación de la plaza de Profesora titular de Universidad de doña Guillermina Font Pérez.

La Comisión Académica del Consejo de Universidades, en su cación de 3 de diciembre de 1990, ha acordado lo siguiente:

Examinado el recurso de reposición interpuesto por doña Guiller-crica Font Pérez, Profesora titular de Universidad, contra el acuerdo

desestimatorio de cambio de adscripción de área de conocimiento de

«Nutrición y Bromatología» a «Toxicología y Legislación Sanitaria»; Considerando la información complementaria aportada por la Universidad de Valencia, en relación con la organización departamental de la misma y las características de las plazas de Profesorado convocadas por las Universidades dentro del área de «Toxicología y Legislación» Sanitaria»

Considerando que los nuevos datos aportados por la solicitante en las alegaciones que ha suscrito justifican el cambio de adscripción de

área de conocimiento,

Esta Comisión Académica del Consejo de Universidades, previo informe favorable de la Subcomisión de Areas de Conocimiento, ha resuelto estimar el recurso interpuesto por doña Guillermina Font Pérez, accediendo, en consecuencia, al cambio de adscripción del área de «Nutrición y Bromatología» a la de «Toxicología y Legislación Sanita-

Lo que comunico para su conocimiento y efectos. Madrid, 10 de diciembre de 1990.-La Secretaria general, Elisa Pérez

3993

RESOLUCION de 3 de enero de 1991, de la Universidad de Las Palmas de Gran Canaria, por la que se publica el Plan de Estudios de la Escuela Técnica Superior de Telecomunicación, dependiente de esta Universidad.

De conformidad con lo dispuesto en el artículo 29 de la Ley 11/1983, de 25 de agosto, de Reforma Universitaria, así como el Real Decreto 1497/1987, de 27 de noviembre, una vez homologado por el Consejo de Universidades, por acuerdo de su Comisión académica de fecha 25 de septiembre de 1990, el Plan de Estudios de la Escuela Técnica Superior de Telecomunicación de la Universidad de Las Palmas de Gran Canaria, Este Rectorado, de conformidad con lo dispuesto en el artículo 10.2 del citado Real Decreto 1497/1987, ha resuelto:

Primero.-Publicar el referido Plan de Estudios, conducente a la obtención del título oficial de Ingeniero de Telecomunicación. Segundo.-La estructura del Plan de Estudios a que se refiere la

presente Resolución queda configurada como aparece en el anexo a la

Las Palmas de Gran Canaria, 3 de enero de 1991.-El Rector, Francisco Rubio Rovo.

Plan de Estudios de la E. T. S. de Ingenieros de Telecomunicación

Título oficial: Ingeniero de Telecomunicación de primer ciclo (sin título terminal) y segundo ciclo. (Ya existe en la Universidad de Las Palmas de Gran Canaria la titulación de Ingeniero Técnico de Telecomunicación. También existen primeros ciclos de Ingeniería Industrial y de Informática.)

Duración del segundo ciclo: Dos años. Centro responsable de la organización del Plan: E. T. S. I. T. Carga lectiva global del segundo ciclo, en créditos: 18 créditos libres

(11,2 por 100).

Trabajo fin de carrera: Se exige Trabajo Fin de Carrera (10 créditos). Para completar los estudios de Ingeniero de Telecomunicación se requiere, además, acreditar el suficiente dominio de la lengua inglesa. (Esta acreditación puede hacerse mediante certificación de la Escuela Universitaria de Traductores e Intérpretes de la ULPGC, o bien mediante certificación oficial equivalente.)

Créditos otorgados por equivalencia a prácticas en Empresas: Hasta ocho, dentro de los créditos libres.

Régimen de acceso al segundo ciclo: Se aplican los números 2 y 3 del artículo 5.º del Real Decreto 1497/1987.

a) Acreditar haber completado el primer ciclo de los estudios de: Ingeniero Tecnico de Telecomunicación, o Ingeniero Tecnico Industrial, o Diplomado en Informática,

o la carga docente equivalente a un primer ciclo, convalidable por E. T. S. I. T., de los estudios de:

Ingeniero Industrial, o Licenciado en Informática.

b) Superar los complementos de formación definidos en el Curso

de Acceso, cuantificables en 54 créditos.

A los estudiantes provenientes de Ingeniería Técnica de Telecomunicación le podrán ser convalidadas algunas asignaturas del Curso de Acceso dependiendo del Plan de Estudios que hayan seguido.

c) Los estudiantes provenientes del primer cirlo de Ingeniero de Telecomunicación acceden directamente: Simplemente continúan sus

estudios.

SECUNDO CICLO

ASIGNATURAS OBLIGATORIAS

			CARGA SEMANAL	POR SEMESTRE (HORAS)	_	
JRSQ SEMESTRE	DENOMINACIÓN	CREDITOS ANUALES	TEÓRICOS	PRÁCTICOS	BREVE DESCRIPCION DEL CONTENIDO	ADSCRIPCIÓN AREAS CONOCIMIENTO
40 (1)	Física y modela do de Dispositi vos electróni- cos.	6 + 3 = 9	4	2	Fundamentos físicos, propiedades de fun- cionamiento y limitaciones de los dispo- sitivos electrónicos. Dispositivos unpo- lares y bipolares. Hodelos físicos y mate máticos de procesos tecnológicos, dispo- sitivos y circuitos básicos. Ceracteriza	TECNOLOGÍA ELECTRÓNICA
40 (1)	Tecnología de circuítus	6+3=9	4	2	ción. Materiales y procesos tecnológicos en microelectrónica. Fabricación de circuftos integrados (SiGAS) y circuftos híbridos. Ejemplos de circuftos integrados analógicos y digitales elementales. Tecnologíade fabricación y técnicas de diseño, optimización y comprobación de tarjetas de de circufto impreso.	TECNOLOGÍA ELECTRÓNICA
49 (1)	Sistemas de Te- lecomunicación	6+3*9		2	Efectos del rufdo en las modulaciones and lógicas y digitales. PCM y modulación delta. Servicios de Telecomunicación:Telefonía, radiodifusión, transmisión de datos, etc. Sistemas y redes de comunicación: tipos. Medios de comunicación: lí neas, radio, fibra óptica, satélite. Primera caracterización de medios.	TEORÍA DE LA SEÑAL Y COMUNICACIÓN
49 (2)	Tratamiento Di- gital de Seña - les	6, + 3 = 9	4	2	Algoritmica FFT.Convolución rápida. Inter polación y diezmado:aplicaciones. Enventa nado. Análisis de Fourier localizado. Di seño de filtros FIR.Diseño de filtros IIR.Señales y sistemas multidimensionales	TECKIA DE LA SENAL I COMUNICACION
49 (2)	Circuítos y Su <u>b</u> sistemas de Co- municaciones	6 + 3 = 9	4	2	Bioques funcionales típicos de emisoras- y receptores. Métodos de diseño y célcu- lo de los dispositivos y circuítos que - realizan tales bioques: generación de por tadora y oscilaciones locales, modulación y demodulación, conversión de frecuencia, amplificación de pequeña senal y de poten cia.	TEORÍA DE LA SEÑAL Y COMUNICACIÓN
40 (2)	Diseño de Circuf - tos Integrados Es- pecíficos.	6+3=9	4	2	Técnicas de partición prototipado e implementación de circuítos. Diseño de circuítos específicos y semiespecíficos en PLD, red de puertas y red de células. Herramientas software para específica ción, viabilidad, diseño, simulación.re misión a fábrica y testeo de circuítos-específicos.	TECNOLOGÍA ELECTRÓNICA
5v (1)	Instrumentación - Electrónica.	6+3=9	4	2	Medidas, errores y análisis de específi- caciones. Ruido e interferencias. Trans- ductores. Filtros. Diseño de Instrumen - tos. Analizadores de espectro y analiza- dores lógicos. Interconexión de instru- mentos. Aplicaciones en comunicaciones y control.	TECNOLOGÍA ELECTRÓNICA
59 (1)	Diseño de circuf- tos VLSI	3 + 3 = 6	2	2	Diseño "full Custom" de células elementa les. Caracterización de células, extrac- ción de parámetros y simulación. Herra - mientas de diseño VLSI, testeabilidad, - comprobación de circuítos. Proyecto de - circuítos VLSI.	TECNOLOGÍA ELECTRÓNICA
50 (2)	Sistemas Informáticos.	6 + 3 = 9	4	2	Modelo de referencia OSI de ISO. Codificación de fuente y canal. Cifrado y seguridad en redes de datos. Mivel físico, modems y transceptores de redes. Mivel de enlace de datos. Acceso compartido a canales. Redes locales. SNA, DECNET.ARPA Aplicaciones informáticas distribuídas.	•
5 a (2)	Organización y A <u>d</u> ministración de - Empresas.	3 + 3 = 6	2	2	Técnices y tipologías organizativas Equipamientos industriales. Costes e in versiones, gestión económico-financiera. Producción. Optimización. Control de ca lidad. Economía de la Erpresa, entorno- económico y política económica. Función comercial y marketing. Gestión cuantita tiva. Investigación operativa. Análisis- de sistemas y programación. Recursos hu-	ORGANIZACIÓN DE EMPRESAS, ECONOMÍ/ APLICADA

SEGUNDO CICLO

ASIGNATURAS OPTATIVAS

CURSO	DENOMINACIÓN	CRÉDITOS AMUALES	CARGA SEMANAL TEÓRICOS	POR SEMESTRE (HORAS PRÁCTICOS) BREYE DESCRIPCIÓN DEL CONTENIDO	ADSCRIPCIÓN AREAS CONOCIMIENTO
	Diseño de Software com C y UNIX	3+3=6	2	ž	Lenguaje C. Resolución de problemas. Desarrollo de - aplicaciones. Sistema operativo UNIX. Uso del Shell. Filtros. Llamadas al sistema:manejo de E/S, archivos y procesos. Herramientas de desarrollo:lex, yacc make Aplicaciones.	INGENIERÍA TELEMÁTICA
-) Métodos numéricos en - Electrónica y comunica- ciones.	3 + 3 = 6	2		Algoritmos numéricos y aritmética del ordenador. Ané- lfsis de algoritmos. Convergencia, error, estabilidad Evaluación de métodos. Interpolación y aproximación de funciones. Derivación e integración numéricos. Re- solución de ecuaciones diferenciales. Métodos numéri- cos en Algebra. Elementos finitos. Aplicaciones.	MATEMÁTICA APLICADA, TEORÍA DE LA SEÑAL Y COMUNICACIÓN
	Grafos, Lenguajes y com piladores.		2	2	Teorfa de grafos: conceptos básicos, representación,- aplicaciones.Lenguajes:Conceptos, gramáticas, clasifi caciones. Compiladores:análisis, láxico, sintáctico,- semántico,generación de código, optimización.Portabi- lidad. Lenguajes de descripción, simulación, computa- ción.	INGENIERÍA TELEMÁTICA
	Arquitecturas paralelas y programación concu rrente.	3 + 3 = 6	2	2	Sistemas multimicroprocesadores. Redes sistólicas. Redes de procesadores. Interconexiones, enlaces, tráficos, colas y commutación de accesos. Paralelización de algoritmos. Asignación de tareas. Programación concurrente. Vectorización.	
- 1	Optoelectrónica y fotd- nica aplicada	6 + 3 = 9	. 2	2	Radiación coherente y no coherente. Optica Electron Láseres de semiconductor. Propagación de haces lumino nosos. Fibra óptica. Dispositivos detectores, emiso - res, acopladores. Control de la información óptica Circuitos electrónicos asociados. Aplicaciones en electrónica, comunicaciones, producción industrial e- instrumentación.	TECNOLOGÍA ELECTRÓNICA
59	Electrónica de potencia	6 + 3 = 9	2	2	Semiconductores de potencia. Dispositivos y circuítos electrónicos de potencia. Potencia inteligente. Rectificadores, fuente de alimentación, reguladores de alterna, inversores, cicloconvertidores. Control de máquinas eléctricas. Cuadros. Autómatas programables ymicrocomputadores en control.	TECNOLOGÍA ELECTRÓNICA
59	Integración de equipos	6+3=9	2	2	Estudio de buses normalizados para equipos indus - triales: STD, STE, VME, pc, AT, EISA Núcleo - del sistema operativo DOS y de monitores industria les. Tarjetas industriales de configuración de sia temas PC. Tarjetas de instrumentación, gráficos y- de comunicaciones. Diseño de tarjetas para integra ción de sistemas. Microcontroladores incorporados.	TECNOLOGÍA ELECTRÓNICA
	Circuftos y Subsistemas de Alta Frecuencia	6 + 3 = 9	4	2	Conversión de frecuencia, Ganancia y ruido. CAF.Distorsión no lineal. Sensibilidad. Retardo de fase, grupo y envolvente. Subsistemas. Líneas de transmisión planares. Línea microtira. CAD de circuftos pasivos. Circuftos combinadores. Diseño de amplificadores bipolares y MESFET.Mezcladorés. Oscilado res. Moduladores, limitadores y duplexores.	TEORÍA DE LA SEÑAL Y COMUNIC <u>A</u> CIÓN
59	Integración de Sistema: Analógicos y Sensores	6+3=9	4 .	2	Diseño de CI analógicos. Diseño con redes de tran- sistores y bloques circuitales. Diseño de ASICs en tecnología bipolar y FET. Síntesis de circuitos l <u>i</u> neales y no lineales. Sensores y dispositivos espe ciales. Integración de sistemas y sensores.	TECNOLOGÍA ELECTRÓNICA
1	Proyecto de Microarquite turas y sistemas Integr <u>é</u> dos	h	4	2	Metodología de la concepción de microprocesadores- y microcontroladores. Compromisos hardware/softwa- re soporte al compilador, sistema operativo y en- torno de aplicación. Definición del juego de ins- trucciones. Enulación de microarquitecturas clási- cas.Descripciones RTL. Desarrollo y optimización - del microcódigo. Microarquitecturas RISC. Segmenta lión. Diseño lógico de la parte operativa y de la- parte de control. Modelos de referencia. Proyecto- de sistemas integrados.	TECNOLOGÍA ELECTRÓNICA, ARQUI TECTURA Y TECNOLOGÍA DE COM- PUTADORES.
	Automatización del Dise- o en Microelectrónica	6+3=9	4	2	Herramientas CAD para diseño de hardware. Formatos de intercambio de datos. Ayuda a edición y trazado Herramientas de análisis. Simuladores lógicos y temporalas. Extractores circuitales desde el traza do Verificadores.Herramientas de sintesis.Especificación, descripción y diseño de hardware.Sintesis de Lógica.Compilación de módulos y estructuras básicas. Modelos de fallos. Generación de vectores de test.	TECNOLOGÍA ELECTRÓNICA .

CURSO	DENOMINACIÓN	CRÉDITOS ANUALES	CARGA SEMANAL POR SEMESTRE (HORAS		BREVE DESCRIPCIÓN DEL CONTENIDO	ADSCRIPCIÓN AREAS CONOCIMIEN
			TEÓRICOS	PRÁCTICOS		10
5 9	Aplicaciones del Tra- Lamiento Digital de - Senales	6 + 3 = 9	4	2	Revisión de aplicaciones del TDS. La señal de voz ca- racterísticas, codificación, reconocimiento. TDS en co municaciones: igualeción, cancelación de ecos modul ción.]magen:Codificación, mejora. Otras aplicaciones - del TDS:tratamiento de señales clínicas, radar, estima- y arrays.	
5 2 .	Sistemas Radar	6 + 3 = 9	4	2	Principios del radar. Ecuación radar. Bloques de un sistema radar. Tecnologías radar. Tipos de radar y aná lisis de los mismos. Detección radar. Seguimiento ra - dar. TDS en radar.	TEORÍA DE LA SEÑAL Y CO- MUNICACIÓN
59	Tratamiento Estadís- tico de Señales	6 + 3 * 9	4		Conceptos de estimación, Estimadores de promedio mues- tral. Estimación espectral clásica: promediados. Esti- mación espectral paramétrica. Predicción lineal.Estima	TEORÍA DE LA SEÑAL Y C <u>O</u> MUNICACIÓN.
	Simulación y Evalua - ción de Arquitectura- de Sistemas	6 + 3 = 9	4 .		ción AR, Método de Burg. Estimación ARMA, Otros modelos.— Métodos de Prony y Pisarenku. El filtro Wiener. Introducción a los sistemas adaptativos. El método LMS. Conceptode detección. Análisis operacional. Procesos y cadenas de Markov. Modelos de colas. Redes de colas. Redes de Petri. Simulación y evaluación de sistemas microprocesadores. Caracterización de la carga. Simulación y evaluación de sistemas multiprocesadores. Munitores. Dimensionado y evaluación de redes de ordenadores. Servicios y protocolos orientados a la aplicación. Análisis de sistemas—distribuidos.	INGENIERÍA TELEMÁTICA. ARQUITECTURA Y TECNOL <u>O</u> GÍA DE CUMPUTADORES
59	Redes de ordenadores y software de Comuni- caciones	6+3 = 9	4	2	Transmisión de datos. Protocolos de comunicación. Teo- ría de colas. Configuración, planificación y análisis- de redes. Redes en conmutación de circuitos RTC.Redes- en conmutación de paquetes IBERPAC. Control de encami- namiento, tráfico y congestión. Redes con nodos de ser vicio. Redes virtuales. Anillos digitales. Redes loca- les. Acceso al canal. Servícios integrados, ISDN.	INGENIERÍA TELEMÁTICA

CURSO DE ACCESO COMPLEMENTOS DE FORMACIÓN ASIGNATURAS OBLIGATORIAS

CURSO	DEHOMINAC IÓN	CRÉDITOS AMUALES (T+P)	CARGA SENAN TEÓRICOS	L POR SEMESTRE (HORAS PRÁCTICOS	BREYE DESCRIPCIÓN DEL CONTENIDO	ADSCRIPCIÓN AREAS CONOCIMIENTO
A-391	Matemáticas	3 + 3 = 6	2	2	Análisis de Fourier, teoría variable com- pleja, transformadas, integración sobre - líneas y superfícies, e integración de ecuaciones en derivadas parciales.	MATEMÁTICA APLICADA
A-392	Estadística	3 + 3 = 6	2	2	Teoría de la probabilidad. Variables álea- torías. Teoría de procesos aleatorios.Es - tudio de señales no determinísticas.	TEORÍA DE LA SEÑAL Y COMUN CACIÓN MATEMÁTICA APLICADA
A-393	Redes eléctricas	3 + 3 - 6	2	2	Energía y potencia en redes, Redes con ge- neradores independientes y fuentes contro- ladas. Topología de redes. Régimen transi- torio. Cuadripolos pasivos y activos. Tran sitorios en líneas de transmisión. Sínte- tesis de dipolos, ecualizadores y filtros- introducción al análisis numérico de redes lineales y no lineales.	TEORÍA DE LA SEÑAL Y CU- NUNICACIÓN MATEMÁTICA APLICADA
A-394	Campos electromagnéticos	3 + 3 = 6	2 -	2	Ecuaciones generales. Electrostática Electrodinámica. Campos en conductores Propagación de ondas guiadas. Sistemas ra diantes.	TEORÍA DE LA SEÑAL Y CO- MUNICACIÓN
A- 395	Electrónica Analógica	3 + 3 = 6	2	2	Amplificadores de potencia de baja frecuer cia. Sistemas realimentacus y estabilidad. Osciladores. Fuentes de alimentación. Am- plificadores operacionales. Circuftos espe cíficos. Circuftos de nulsos. Conformado- res no lineales. Circuftos regenerativos.	TECNOLUGÍA ELECTRÓNICA
A-396	Electrónica Digital	3 + 3 = 6	2	2	Diseño lógico. Circuítos combinacionales. Circuítos secuenciales. Autómatas finitos. Diseno de circuítos secuenciales. Memorias Matrices lógicas programables. Circuítos- de muestreo y retención. Convertidores de- datos.	TECNOLOGÍA ELECTRÓNICA
A- 397	Teoría de la Senal	3 + 3 = 6	2		Senal y sistema. Modelos matemáticos con- tinuos y discretos. Método convolucional de análisis en el tiempo. Análisis en domi minos transformados DFT FFI l'eorema de muestreo y relaciones continuo/discreto. Análisis de Fourier yeneralizado. Formula- ción en variables de estado.	TEORÍA DE LA SEÑAL Y COMUN CACIÓN

CURSO	DENOMINACIÓN	CRÉDITOS ANUALES (T+P)	CARGA SEMAMAI TEÓRICOS	PRÁCTICOS PRÁCTICOS	BREVE DESCRIPCIÓN DEL CONTENIDO	ADSCRIPCIÓN AREAS CONOCINIENTO
A-398	Teorfa de la Comuni cación	3 + 3 = 6	2	2	Señales y ruido en los procesos de comunicación. Cuantificación, codificación, multiplexación, modulación. Transmistón recepción de señales digitales. Transmisión/recepción de señales analógicas Demodulación. Detección. Bloques funcionales y circuitales.	TEORÍA DE LA SEÑAL Y COMUNICACIÓN. YINGENIERÍA TELEMÁTICA
A-399	Ordenadores	3 + 3 + 6	2	2	Lógica programada, Parte operativa Parte de control. Arquitectura del jue- go de Instrucciones. Microprogramación. Microprocesadores. Ensamblador. Siste mas de entrada/salida. Buses. Monitor ROM. Sistema operativo DOS. Integración de PCs.	INGENIERÍA TELEMÁTICA, TECNOLOGÍA ELECTRÓNICA.

COMUNIDAD AUTONOMA DE MADRID

3994

ORDEN de 20 de diciembre de 1990, de la Consejeria de Política Territorial, por la que se hace pública la modifica-ción puntual de las normas subsidiarias de Alcalá de Henares, promovida por el Ayuntamiento de Alcalá de

En sesión celebrada el día 20 de diciembre de 1990 y por el Consejo de Gobierno de la Comunidad de Madrid, se ha adoptado, entre otros, acuerdo cuya parte dispositiva, a la letra, dice:

Primero.-Aprobar definitivamente la modificación puntual de las normas subsidiarias de planeamiento del término municipal de Alcalá de Henares, en el ámbito del sector número 46, relativa a límites del mismo, promovida por el Ayuntamiento de la localidad citada. Segundo.-Significar que a la presente modificación le resulta de aplicación lo dispuesto en la Ley 8/1990, de 25 de julio, sobre Reforma del Régimen Urbanistico y Valoraciones del Suelo quedando, en consecuencia, sujeta al cumplimiento de los deberes urbanisticos con el alcance determinado en la misma, en virtud de lo dispuesto en la disposición transitoria primera 2 y séptima, en relación con la disposición adicional primera. ción adicional primera.

Tercero.-Publicar el presente acuerdo en el «Boletín Oficial de la Comunidad de Madrid» y en el «Boletín Oficial del Estado» en cumplimiento de lo establecido en el artículo 15 del Decreto comunitario 69/1983, de 30 de junio, artículo 44 en relación con el 56 de la vigente Ley del Suelo y artículo 151 del Reglamento de Planeamiento.

Lo que se hace público para general conocimiento, significándose que el transcrito acuerdo agota la vía administrativa pudiendo interponerse contra el mismo recurso de reposición, previo al contencioso-administrativo, para ante el Consejo de Gobierno de la Comunidad de Madrid, en el plazo de un mes a contar desde el día siguiente a la fecha de inserción de la presente Orden, de conformidad con lo dispuesto en el artículo 14. 1 del Decreto 69/1983, de 30 de junio antes citado, significándose que el mismo deberá ser presentado por conducto de esta Consejeria de Política Territorial.

Madrid, 20 de diciembre de 1990.—El Consejero de Política Territorial, Eduardo Mangada Samaín.

3995

ORDEN de 20 de diciembre de 1990, de la Consejería de Política Territorial, por la que se hacen públicas las normas subsidiarias de Robledo de Chavela y el catálogo de bienes a proteger.

En sesión celebrada el día 20 de diciembre de 1990 y por el Consejo de Gobierno de la Comunidad de Madrid, se ha adoptado, entre otros, acuerdo cuya parte dispositiva, a la letra, dice:

Primero.-Aprobar definitivamente la revisión de las normas subsidiarias de planeamiento del término municipal de Robledo de Chavela, y el catálogo de bienes a proteger, formulada por la Consejería de Política Territorial. Segundo.-Significar que a la presente modificación le resulta de aplicación lo dispuesto en la Ley 8/1990, de 25 de julio sobre reformas del Régimen Urbanístico y Valoraciones del Suelo quedando en conse-

del Régimen Urbanístico y Valoraciones del Suelo quedando en consecuencia sujeta al cumplimiento de los deberes urbanísticos con el alcance determinado en la misma, en virtud de lo dispuesto en la disposición adicional primera tres.

Tercero.-Publicar el presente acuerdo en el «Boletín Oficial de la Comunidad de Madrid» y en el «Boletín Oficial del Estado» en cumplimiento de lo establecido en el artículo 15 del Decreto 69/1983, de 30 de junio, artículo 44 en relación con el 56 de la vigente Ley del Suelo y artículo 151 del Reglamento de Planeamiento.

Lo que se hace público para general conocimiento, significándose que el transcrito acuerdo agota la vía administrativa pudiendo interponerse contra el mismo recurso de reposición, previo al contencioso-administrativo, para ante el Consejo de Gobierno de la Comunidad de Madrid, en el plazo de un mes a contar desde el día siguiente a la fecha de inserción de la presente Orden, de conformidad con lo dispuesto en el artículo 14. 1 del Decreto 69/1983, de 30 de junio antes citado, significándose que el mismo deberá ser presentado por conducto de esta Consejería de Política Territorial.

Madrid, 20 de diciembre de 1990.-El Consejero de Política Territorial. Eduardo Maneada Samain.

rial, Eduardo Mangada Samain.

BANCO DE ESPAÑA

3996

Mercado de Divisas

Cambios oficiales del día 13 de febrero de 1991

Divisas convertibles	Cambios		
Divisas conventines	Comprador	Vendedor	
1 dólar USA	91,272	91,500	
1 ECU	128,700	129,022	
l marco alemán	62,628	62,784	
1 franco francés	18,377	18,423	
l libra esterlina	181,713	182,167	
00 liras italianas	8,322	8,342	
00 francos belgas y luxemburgueses	304,259	305,021	
1 florin holandês	55,582	55,722	
I corona danesa	16,277	16,317	
I libra irlandesa	166,791	167,209	
00 escudos portugueses	70,931	71,109	
00 dracmas griegas	58,437	58.583	
1 dólar canadiense	79,201	79.399	
1 franco suizo	73.143	73,327	
00 yens japoneses	70.854	71,032	
1 corona sueca	16,679	16,721	
1 corona noruega	15,995	16,035	
1 marco finlandés	25,698	25,762	
00 chelines austriacos	890,685	892,915	
l dólar australiano	71.860	72,040	