II

(Actos no legislativos)

ACTOS ADOPTADOS POR ÓRGANOS CREADOS MEDIANTE ACUERDOS INTERNACIONALES

Solo los textos originales de la CEPE surten efectos jurídicos con arreglo al Derecho internacional público. La situación y la fecha de entrada en vigor del presente Reglamento deben consultarse en la última versión del documento de situación CEPE TRANS/WP.29/343, disponible en:

http://www.unece.org/trans/main/wp29/wp29wgs/wp29gen/wp29fdocstts.html

Reglamento nº 83 de la Comisión Económica de las Naciones Unidas para Europa (CEPE): Disposiciones uniformes relativas a la homologación de vehículos por lo que respecta a la emisión de contaminantes según las necesidades del motor en materia de combustible [2015/1038]

Incluye todos los textos válidos hasta:

la serie 07 de modificaciones del Reglamento; fecha de entrada en vigor: 22 de enero de 2015

ÍNDICE

REGLAMENTO

- 1. Ámbito de aplicación
- 2. Definiciones
- 3. Solicitud de homologación
- 4. Homologación
- 5. Especificaciones y ensayos
- 6. Modificaciones de tipo de vehículo
- 7. Extensión de las homologaciones de tipo
- 8. Conformidad de la producción
- 9. Conformidad en circulación
- 10. Sanciones por disconformidad de la producción
- 11. Cese definitivo de la producción
- 12. Disposiciones transitorias
- 13. Nombres y direcciones de los servicios técnicos encargados de realizar los ensayos de homologación y de las autoridades de homologación de tipo
 - Apéndice 1: Procedimiento para verificar la conformidad de los requisitos de producción si la desviación estándar de la producción facilitada por el fabricante es satisfactoria
 - Apéndice 2: Procedimiento para verificar la conformidad de los requisitos de producción si la desviación estándar de la producción facilitada por el fabricante no es satisfactoria o no está disponible

- Apéndice 3: Verificación de la conformidad en circulación
- Apéndice 4: Procedimiento estadístico utilizado en los ensayos de conformidad en circulación de las emisiones de escape
- Apéndice 5: Responsabilidades de la conformidad en circulación
- Apéndice 6: Requisitos para los vehículos que utilizan un reactivo para el sistema de postratamiento de gases de escape

Anexos

- Anexo 1: Características del motor y del vehículo e información relativa a la realización de los ensayos
- Anexo 2: Comunicación relativa a la concesión, la extensión, la denegación o la retirada de la homologación, o al cese definitivo de la producción, de un tipo de vehículo por lo que respecta a la emisión de gases contaminantes procedentes del motor con arreglo al Reglamento nº 83
- Anexo 3: Disposición de la marca de homologación
- Anexo 4 bis: Ensayo de tipo I
- Anexo 5: Ensayo de tipo II (ensayo de emisiones de monóxido de carbono en régimen de ralentí)
- Anexo 6: Ensayo de tipo III (verificación de las emisiones de gases del cárter)
- Anexo 7: Ensayo de tipo IV (determinación de las emisiones de evaporación de los vehículos con motor de encendido por chispa)
- Anexo 8: Ensayo de tipo VI (verificación del promedio de las emisiones de escape de monóxido de carbono e hidrocarburos a baja temperatura ambiente después de un arranque en frío)
- Anexo 9: Ensayo de tipo V (descripción del ensayo de resistencia para verificar la durabilidad de los dispositivos anticontaminantes)
- Anexo 10: Especificaciones de los combustibles de referencia
- Anexo 10 bis: Especificaciones de los combustibles gaseosos de referencia
- Anexo 11: Diagnóstico a bordo para vehículos de motor
- Anexo 12: Concesión de una homologación de tipo CEPE de un vehículo alimentado con gas licuado de petróleo (GLP) o gas natural/biometano
- Anexo 13: Procedimiento de ensayo de emisiones para un vehículo equipado con sistema de regeneración periódica
- Anexo 14: Procedimiento de ensayo de emisiones para vehículos eléctricos híbridos

1. ÁMBITO DE APLICACIÓN

En el presente Reglamento se establecen requisitos técnicos para la homologación de tipo de vehículos de motor.

Se establecen, asimismo, normas sobre la conformidad en circulación, la durabilidad de los dispositivos anticontaminantes y los sistemas de diagnóstico a bordo.

1.1. El presente Reglamento se aplicará a los vehículos de las categorías M₁, M₂, N₁ y N₂ cuya masa de referencia no exceda de 2 610 kg (¹).

A petición del fabricante, la homologación de tipo concedida con arreglo al presente Reglamento podrá extenderse de los vehículos mencionados a los vehículos M_1 , M_2 , N_1 y N_2 cuya masa de referencia no exceda de 2 840 kg y que cumplan las condiciones establecidas en el presente Reglamento.

⁽¹) Con arreglo a la definición que figura en la Resolución consolidada sobre la construcción de vehículos (R.E.3), documento ECE/TRANS/WP.29/78/Rev.3, apartado 2, www.unece.org/trans/main/wp29/wp29wgs/wp29gen/wp29resolutions.html

2. DEFINICIONES

A efectos del presente Reglamento, se entenderá por:

- 2.1. «Tipo de vehículo», el grupo de vehículos que no difiere en los siguientes aspectos:
- 2.1.1. la inercia equivalente, determinada en relación con la masa de referencia, como se indica en el cuadro A4a/3 del anexo 4 bis del presente Reglamento, y
- 2.1.2. las características del motor y del vehículo, con arreglo a la definición del anexo 1 del presente Reglamento.
- 2.2. «Masa de referencia», la «tara» del vehículo incrementada en un valor uniforme de 100 kg en los ensayos de conformidad con los anexos 4 bis y 8 del presente Reglamento.
- 2.2.1. «Tara», la masa del vehículo en orden de marcha, sin la masa uniforme de 75 kg del conductor, viajeros ni carga, pero con el depósito de combustible lleno al 90 % de su capacidad y con el juego habitual de herramientas y la rueda de repuesto a bordo, en su caso.
- 2.2.2. «Masa en orden de marcha», la masa descrita en el punto 2.6 del anexo 1 del presente Reglamento y, en el caso de los vehículos diseñados y fabricados para el transporte de más de nueve personas (además del conductor), la masa del acompañante (75 kg) si de los nueve asientos o más uno es para este.
- 2.3. «Masa máxima», la masa máxima técnicamente admisible declarada por el fabricante del vehículo (esta masa puede ser superior a la masa máxima autorizada por la administración nacional).
- 2.4. «Gases contaminantes», las emisiones de gases de escape de monóxido de carbono, óxidos de nitrógeno expresados en equivalentes de dióxido de nitrógeno (NO₂) e hidrocarburos, en una proporción de:
 - a) C₁H_{2,525} en el caso del gas licuado de petróleo (GLP);
 - b) C₁H₄ en el caso del gas natural y el biometano;
 - c) $C_1H_{1.89}O_{0.016}$ en el caso de la gasolina (E5);
 - d) $C_1H_{1,93}O_{0,033}$ en el caso de la gasolina (E10);
 - e) C₁H_{1.86}O_{0.005} en el caso del gasóleo (B5);
 - f) $C_1H_{1.86}O_{0.007}$ en el caso del gasóleo (B7);
 - g) $C_1H_{2,74}O_{0,385}$ en el caso del etanol (E85);
 - h) $C_1H_{2,61}O_{0,329}$ en el caso del etanol (E75).
- 2.5. «Partículas contaminantes», los componentes de los gases de escape que se separan de los gases de escape diluidos a una temperatura máxima de 325 K (52 °C) mediante los filtros descritos en el anexo 4 bis, apéndice 4, del presente Reglamento.
- 2.5.1. «Número de partículas», el número total de partículas de diámetro superior a 23 nm presentes en los gases de escape diluidos una vez acondicionados para separar el material volátil, como se describe en el anexo 4 bis, apéndice 5, del presente Reglamento.
- 2.6. «Emisiones de escape»:
 - a) en el caso de los motores de encendido por chispa, las emisiones de gases y partículas contaminantes;
 - b) en el caso de los motores de encendido por compresión, las emisiones de gases contaminantes, partículas contaminantes y número de partículas.

- 2.7. «Emisiones de evaporación», los vapores de hidrocarburos procedentes del sistema de combustible de un vehículo de motor distintos de los procedentes de las emisiones de escape.
- 2.7.1. «Pérdidas por respiración del depósito de combustible», las emisiones de hidrocarburos producidas por cambios de temperatura en el depósito de combustible (suponiendo una relación de C₁H_{2,33}).
- 2.7.2. «Pérdidas por parada en caliente», las emisiones de hidrocarburos procedentes del sistema de combustible de un vehículo que se detiene tras un período de conducción (suponiendo una relación de C₁ H, 20).
- 2.8. «Cárter del motor», los espacios existentes dentro o fuera del motor, que están unidos al cárter de aceite por conductos internos o externos por los que pueden escapar gases y vapores.
- 2.9. «Sistema de arranque en frío», el dispositivo que enriquece temporalmente la mezcla aire/combustible del motor para facilitar su puesta en marcha.
- 2.10. «Dispositivo auxiliar de arranque», el dispositivo que facilita el arranque del motor sin enriquecimiento de la mezcla aire/combustible; por ejemplo, bujías de precalentamiento, cambio en el avance de inyección, etc.
- 2.11. «Cilindrada»:
- 2.11.1. en los motores de émbolos alternativos, el volumen nominal de los cilindros;
- 2.11.2. en los motores de émbolos rotativos (Wankel), dos veces el volumen nominal de los cilindros de una cámara de combustión por émbolo.
- 2.12. «Dispositivos anticontaminantes», los componentes del vehículo que controlan o limitan las emisiones de escape y las de evaporación.
- 2.13. «Diagnóstico a bordo», el sistema de diagnóstico a bordo para el control de emisiones que puede determinar la zona probable de mal funcionamiento por medio de códigos de fallo almacenados en la memoria del ordenador.
- 2.14. «Ensayos en circulación», la prueba y el examen de conformidad realizados con arreglo al apartado 9.2.1 del presente Reglamento.
- 2.15. «Adecuadamente conservado y utilizado», a efectos de un vehículo de ensayo, que dicho vehículo cumple los criterios de admisión de un vehículo seleccionado establecidos en el punto 2 del apéndice 3 del presente Reglamento.
- 2.16. «Dispositivo de manipulación», todo elemento de diseño que detecta la temperatura, la velocidad del vehículo, las revoluciones por minuto del motor, el engranaje de transmisión, la depresión de admisión o cualquier otro parámetro con el fin de activar, modular, aplazar o desactivar el funcionamiento de cualquier parte del sistema de control de emisiones, reduciendo la eficacia de dicho sistema en condiciones que puede esperarse razonablemente que se produzcan en la conducción y utilización normales del vehículo. Dichos elementos de diseño podrán no considerarse dispositivos de manipulación cuando:
- 2.16.1. la necesidad del dispositivo se justifique como protección del motor contra averías, accidentes y manejo seguro del vehículo, o
- 2.16.2. el dispositivo no funcione por encima de las exigencias de arranque del motor, o
- 2.16.3. las condiciones estén incluidas sustancialmente en los procedimientos de ensayo de tipo I o VI.
- 2.17. «Familia de vehículos», el grupo de tipos de vehículos identificados mediante un vehículo de origen a efectos del anexo 12 del presente Reglamento.
- 2.18. «Biocombustible», el combustible líquido o gaseoso para transporte, producido a partir de biomasa.

- 2.19. «Homologación de un vehículo», la homologación de un tipo de vehículo por lo que respecta a la limitación de las condiciones siguientes (²):
- 2.19.1. limitación de las emisiones de escape del vehículo, las emisiones de evaporación, las emisiones del cárter, la durabilidad de los dispositivos anticontaminantes, las emisiones de contaminantes después de un arranque en frío y los sistemas de diagnóstico a bordo de los vehículos alimentados con gasolina sin plomo o que pueden ser alimentados, bien con gasolina sin plomo y GLP, bien con gas natural/biometano o biocombustible (homologación B);
- 2.19.2. limitación de las emisiones de gases y partículas contaminantes, durabilidad de los dispositivos anticontaminantes y sistemas de diagnóstico a bordo de los vehículos alimentados con gasóleo (homologación C) o que pueden ser alimentados, bien con gasóleo y biocombustible o con biocombustible;
- 2.19.3. limitación de las emisiones de gases contaminantes del motor, las emisiones del cárter, la durabilidad de los dispositivos anticontaminantes, las emisiones después de un arranque en frío y los sistemas de diagnóstico a bordo de los vehículos alimentados con GLP o gas natural/biometano (homologación D).
- 2.20. «Sistema de regeneración periódica», el dispositivo anticontaminante (por ejemplo, un convertidor catalítico o un filtro de partículas) que necesita someterse a un proceso de regeneración periódica a intervalos de menos de 4 000 km de funcionamiento normal del vehículo. Durante los ciclos en los que se produce la regeneración, se pueden superar los niveles de emisión. En caso de que la regeneración de un dispositivo anticontaminante tenga lugar como mínimo una vez por ensayo de tipo I, si ya se ha regenerado al menos una vez a lo largo del ciclo de preparación del vehículo, el sistema se considerará de regeneración continua, por lo que no será necesario un procedimiento de ensayo especial. El anexo 13 del presente Reglamento no será aplicable a los sistemas de regeneración continua.

A petición del fabricante, y previo consentimiento del servicio técnico, el procedimiento de ensayo específico para los sistemas de regeneración periódica no se aplicará a un dispositivo de regeneración cuando dicho fabricante facilite a la autoridad de homologación de tipo datos que muestren que, a lo largo de los ciclos en los que tiene lugar la regeneración, las emisiones se mantienen por debajo de los niveles que figuran en el apartado 5.3.1.4 para la categoría del vehículo en cuestión.

- 2.21. Vehículos híbridos
- 2.21.1. Definición general de vehículo híbrido:

Se entenderá por «vehículo híbrido» el vehículo dotado de al menos dos convertidores de energía diferentes y dos sistemas diferentes de acumulación de energía (instalados en el vehículo) para su propulsión.

2.21.2. Definición de vehículo eléctrico híbrido:

Se entenderá por «vehículo eléctrico híbrido» el vehículo que obtiene energía de un combustible consumible únicamente para recargar el dispositivo de acumulación de energía/potencia eléctrica y que, para su propulsión mecánica, toma la energía de las dos fuentes de energía/potencia eléctrica acumulada (instaladas en el vehículo) siguientes:

- a) un combustible consumible;
- b) una batería, un condensador, un volante de inercia/un generador u otro dispositivo de acumulación de energía/potencia eléctrica.
- 2.22. «Vehículo monocombustible», el vehículo diseñado para funcionar básicamente con un tipo de combustible.
- 2.22.1. «Vehículo monocombustible de gas», el vehículo diseñado básicamente para funcionar de manera permanente con GLP, gas natural/biometano o hidrógeno, pero que puede disponer también de un sistema de gasolina para casos de emergencia o solo para el arranque, siempre que la capacidad del depósito de gasolina no supere los quince litros.
- 2.23. «Vehículo bicombustible», el vehículo equipado con dos sistemas independientes de almacenamiento de combustible que está diseñado para funcionar con solo un combustible a la vez. La utilización simultánea de ambos combustibles está limitada en cantidad y en duración.
- 2.23.1. «Vehículo bicombustible de gas», el vehículo bicombustible que puede funcionar con gasolina (modo de gasolina) y también con GLP, gas natural/biometano o hidrógeno (modo de gas).

⁽²⁾ Anulada la homologación A. La serie de modificaciones 05 del presente Reglamento prohíbe el uso de gasolina con plomo.

- 2.24. «Vehículo de combustible alternativo», el vehículo diseñado para poder funcionar con al menos un tipo de combustible, bien gaseoso a temperatura y presión atmosféricas, bien derivado sustancialmente de aceites no minerales.
- 2.25. «Vehículo flexifuel», el vehículo equipado con un sistema de almacenamiento de combustible, que puede funcionar con diferentes mezclas de dos o más combustibles.
- 2.25.1. «Vehículo flexifuel de etanol», el vehículo de combustible flexible que puede funcionar con gasolina o con una mezcla de gasolina y etanol cuyo contenido máximo de etanol sea del 85 % (E85).
- 2.25.2. «Vehículo flexifuel biodiésel», el vehículo flexifuel que puede funcionar con diésel mineral o con una mezcla de diésel mineral y biodiésel.
- 2.26. «Vehículos destinados a satisfacer necesidades sociales específicas», los vehículos diésel de la categoría M₁ siguientes:
 - a) vehículos con fines específicos cuya masa de referencia sea superior a 2 000 kg (3);
 - b) vehículos cuya masa de referencia sea superior a 2 000 kg y que estén diseñados para transportar siete ocupantes o más, incluido el conductor, excepto los vehículos de la categoría M₁ (³);
 - c) vehículos cuya masa de referencia sea superior a 1 760 kg y que estén fabricados específicamente para fines comerciales y diseñados para albergar una silla de ruedas en su interior.
- 2.27. En el contexto de la supervisión de la relación de rendimiento en uso ($IUPR_M$), se entiende por «arranque en frío» una temperatura del refrigerante del motor (o temperatura equivalente) inferior o igual a 35 °C e inferior o igual a 7 K por encima de la temperatura ambiente (en su caso) en el momento del arranque del motor.
- 2.28. «Motor de inyección directa», motor que puede funcionar en un modo en el cual el carburante se inyecta en el aire de admisión después de que el aire haya pasado a través de las válvulas de admisión.
- 2.29. «Cadena de tracción eléctrica», un sistema formado por uno o varios dispositivos de acumulación de energía eléctrica, uno o varios dispositivos de acondicionamiento de la energía eléctrica y uno o varios aparatos eléctricos que convierten la energía eléctrica acumulada en energía mecánica que se transmite a las ruedas para la propulsión del vehículo.
- 2.30. «Vehículo eléctrico puro», un vehículo propulsado exclusivamente por una cadena de tracción eléctrica.
- 2.31. «Vehículo con pila de combustible de hidrógeno», vehículo propulsado mediante una célula de combustible que convierte la energía química del hidrógeno en energía eléctrica para la propulsión del vehículo;
- 2.32. «Potencia neta», la potencia obtenida en un banco de ensayo en el extremo del cigüeñal o su equivalente al régimen del motor correspondiente con los elementos auxiliares, sometida a ensayo conforme al Reglamento nº 85 de la CEPE y determinada en las condiciones atmosféricas de referencia.
- 2.33. «Potencia neta máxima», el valor máximo de la potencia neta medida a plena carga del motor.
- 2.34. «Potencia máxima durante 30 minutos», la potencia neta máxima de una cadena de tracción eléctrica alimentada con tensión de corriente continua con arreglo a lo dispuesto en el apartado 5.3.2 del Reglamento nº 85.
- 2.35. «Arranque en frío», una temperatura del refrigerante del motor (o temperatura equivalente) inferior o igual a 35 °C e inferior o igual a 7 K por encima de la temperatura ambiente (en su caso) en el momento del arranque del motor.

⁽³⁾ Véase la nota a pie de página 1.

3. SOLICITUD DE HOMOLOGACIÓN

- 3.1. Corresponderá al fabricante del vehículo o a su representante autorizado presentar a la autoridad de homologación de tipo la solicitud de homologación de un tipo de vehículo por lo que respecta a las emisiones de escape, las emisiones del cárter, las emisiones de evaporación y la durabilidad de los dispositivos anticontaminantes, así como al sistema de diagnóstico a bordo.
- 3.1.1. Además, el fabricante presentará la siguiente información:
 - a) en el caso de los vehículos equipados con motor de encendido por chispa, una declaración del fabricante indicando el porcentaje mínimo de fallos de encendido, sobre un número total de arranques, a consecuencia de los cuales o bien las emisiones superan los límites señalados en el punto 3.3.2 del anexo 11 del presente Reglamento, cuando dicho porcentaje se haya producido desde el inicio del ensayo de tipo I que se describe en el anexo 4 bis del presente Reglamento, o bien se puede producir el sobrecalentamiento del catalizador o los catalizadores de escape y ocasionar daños irreversibles;
 - b) información detallada por escrito con una descripción completa de las características de funcionamiento del sistema de diagnóstico a bordo, incluida una lista de todas las partes pertinentes del sistema de control de emisiones del vehículo que están supervisadas por el sistema de diagnóstico a bordo;
 - c) una descripción del indicador de mal funcionamiento utilizado por el sistema de diagnóstico a bordo para señalar la existencia de un problema al conductor del vehículo;
 - d) una declaración del fabricante indicando que el sistema de diagnóstico a bordo cumple lo dispuesto en el punto 7 del apéndice 1 del anexo 11 del presente Reglamento con respecto al rendimiento en uso en todas las condiciones de conducción razonablemente previsibles;
 - e) un plan con la descripción detallada de los criterios técnicos y la justificación para incrementar el numerador y el denominador de cada monitor, que deberán cumplir los requisitos de los puntos 7.2 y 7.3 del apéndice 1 del anexo 11 del presente Reglamento, así como para desactivar los numeradores, denominadores y el denominador general con arreglo a las condiciones establecidas en el punto 7.7 del apéndice 1 del anexo 11 del presente Reglamento;
 - f) una descripción de las medidas adoptadas para evitar la manipulación y la modificación del ordenador de control de emisiones;
 - g) cuando proceda, los datos de la familia de vehículos a los que se refiere el apéndice 2 del anexo 11 del presente Reglamento;
 - h) cuando proceda, las copias de otras homologaciones de tipo con los datos pertinentes para permitir la extensión de las homologaciones y el establecimiento de los factores de deterioro.
- 3.1.2. Para los ensayos que se describen en el punto 3 del anexo 11 del presente Reglamento, deberá ponerse a disposición del servicio técnico encargado de realizar el ensayo de homologación de tipo un vehículo representativo de tipo de vehículo o de la familia de vehículos, equipado con el sistema de diagnóstico a bordo que se quiere homologar. Si el servicio técnico determina que el vehículo facilitado no representa plenamente el tipo o la familia de vehículos descritos en el apéndice 2 del anexo 11 del presente Reglamento, se pondrá a su disposición otro vehículo y, en su caso, un vehículo adicional para proceder al ensayo de acuerdo con el punto 3 del anexo 11 del presente Reglamento.
- 3.2. En el anexo 1 del presente Reglamento figura el modelo de ficha de características correspondiente a las emisiones de escape, las emisiones de evaporación, la durabilidad y el sistema de diagnóstico a bordo. La información a que se refiere el punto 3.2.12.2.7.6 del anexo 1 del presente Reglamento se incluirá en el apéndice 1, «Información relativa al diagnóstico a bordo», del formulario de comunicación de homologación de tipo que figura en el anexo 2 del presente Reglamento.
- 3.2.1. Cuando proceda, también se presentará copia de otros certificados de homologación de tipo con los datos pertinentes para permitir la extensión de las homologaciones y el establecimiento de los factores de deterioro.

- 3.3. Para los ensayos descritos en el apartado 5 del presente Reglamento, deberá ponerse a disposición del servicio técnico encargado de realizar los ensayos de homologación un vehículo representativo de tipo de vehículo que se quiere homologar.
- 3.3.1. La solicitud a la que se refiere el apartado 3.1 del presente Reglamento se elaborará de conformidad con el modelo de ficha de características que figura en el anexo I, apéndice 1, del presente Reglamento.
- 3.3.2. A efectos del punto 3.1.1, letra d), el fabricante utilizará el modelo de certificado de conformidad con los requisitos de rendimiento en uso del diagnóstico a bordo que figura en el apéndice 2 del anexo 2 del presente Reglamento.
- 3.3.3. A efectos del punto 3.1.1, letra e), la autoridad de homologación de tipo que conceda la homologación pondrá a disposición de las autoridades de homologación de tipo, previa petición, la información a que se refiere dicha letra.
- 3.3.4. A efectos del punto 3.1.1, letras d) y e), del presente Reglamento, las autoridades de homologación de tipo no homologarán un vehículo cuando la información presentada por el fabricante sea inadecuada para cumplir los requisitos del punto 7 del apéndice 1 del anexo 11 del presente Reglamento. Lo establecido en los puntos 7.2, 7.3 y 7.7 del apéndice 1 del anexo 11 del presente Reglamento se aplicará en todas las condiciones de conducción razonablemente previsibles. Para llevar a cabo la evaluación de la aplicación de los requisitos establecidos en los párrafos primero y segundo, las autoridades de homologación de tipo tendrán en cuenta el estado de la tecnología.
- 3.3.5. A efectos del punto 3.1.1, letra f), del presente Reglamento, las medidas adoptadas para evitar la manipulación y la modificación del ordenador de control de emisiones incluirán un método de actualización mediante un programa o calibración autorizados por el fabricante.
- 3.3.6. Por lo que se refiere a los ensayos que se incluyen en el cuadro A, el fabricante presentará al servicio técnico responsable de los ensayos de homologación de tipo un vehículo representativo de tipo que se pretende homologar.
- 3.3.7. La solicitud de homologación de tipo de los vehículos flexifuel deberá cumplir los requisitos adicionales establecidos en los apartados 4.9.1 y 4.9.2 del presente Reglamento.
- 3.3.8. Los cambios en la fabricación de un sistema, componente o unidad técnica independiente que tengan lugar después de una homologación de tipo no invalidarán automáticamente dicha homologación, a menos que se modifiquen las características originales o los parámetros técnicos de tal manera que el funcionamiento del motor o el sistema anticontaminante se vean afectados.
- 4. HOMOLOGACIÓN
- 4.1. Si el tipo de vehículo presentado para homologación con arreglo a la presente modificación cumple los requisitos del apartado 5 del presente Reglamento, deberá concederse la homologación de dicho tipo de vehículo.
- 4.2. Se asignará un número de homologación a cada tipo homologado.
 - Los dos primeros dígitos indicarán la serie de modificaciones con arreglo a la cual se ha concedido la homologación. Una misma Parte en el Acuerdo no podrá atribuir el mismo número a otro tipo de vehículo.
- 4.3. La concesión, extensión o denegación de la homologación de un tipo de vehículo con arreglo al presente Reglamento se comunicará a las Partes en el Acuerdo que apliquen dicho Reglamento por medio de un formulario que deberá ajustarse al modelo que figura en el anexo 2 del mismo.
- 4.3.1. En caso de modificaciones del presente documento (por ejemplo, si se establecen nuevos valores límite), se notificarán a las Partes en el Acuerdo los tipos de vehículos ya homologados que cumplen las nuevas disposiciones.

- 4.4. Se colocará, en un lugar bien visible y de fácil acceso (que se especificará en el impreso de homologación) de todo vehículo que se ajuste al tipo de vehículo homologado con arreglo al presente Reglamento, una marca internacional de homologación compuesta por:
- 4.4.1. la letra mayúscula «E» dentro de un círculo, seguida del número que identifica al país que ha concedido la homologación (4);
- 4.4.2. el número del presente Reglamento, seguido de la letra «R», un guion y el número de homologación a la derecha del círculo descrito en el punto 4.4.1 del presente Reglamento;
- 4.4.3. tras el número de homologación de tipo, la marca de homologación contendrá un carácter adicional cuya finalidad será distinguir los valores límite de las emisiones en relación con los cuales se ha concedido la homologación; dicho carácter se elegirá con arreglo al cuadro A3/1 del anexo 3 del presente Reglamento.
- 4.5. Si el vehículo es conforme a un tipo de vehículo homologado en aplicación de uno o varios Reglamentos anexos al Acuerdo en el mismo país que haya concedido la homologación en aplicación del presente Reglamento, no es necesario repetir el símbolo indicado en el punto 4.4.1; en ese caso, los números de Reglamento y los de homologación y los símbolos adicionales para todos los Reglamentos para los cuales la homologación haya sido concedida en el país que ha concedido la homologación en aplicación del presente Reglamento, se colocarán en columnas verticales a la derecha del símbolo prescrito en el punto 4.4.1 del presente Reglamento.
- 4.6. La marca de homologación deberá ser claramente legible e indeleble.
- 4.7. La marca de homologación se colocará cerca de la placa de identificación del vehículo o en la misma.
- 4.7.1. En el anexo 3 del presente Reglamento se proporcionan ejemplos de disposición de la marca de homologación.
- 4.8. Requisitos adicionales para los vehículos alimentados con GLP o gas natural/biometano
- 4.8.1. Los requisitos adicionales para los vehículos alimentados con GLP o gas natural/biometano figuran en el anexo 12 del presente Reglamento.
- 4.9. Requisitos adicionales para la homologación de vehículos flexifuel
- 4.9.1. Para la homologación de tipo de un vehículo flexifuel de etanol o biodiésel, el fabricante deberá describir la capacidad de adaptación del vehículo a cualquier mezcla de gasolina y etanol (hasta un 85 % de contenido de etanol) o diésel y biodiésel que pueda existir en el mercado.
- 4.9.2. En el caso de los vehículos flexifuel, la transición de un combustible de referencia a otro entre ensayos tendrá lugar sin ajuste manual de los parámetros del motor.
- 4.10. Requisitos de homologación con respecto al sistema de diagnóstico a bordo
- 4.10.1. El fabricante se asegurará de que todos los vehículos estén equipados con un sistema de diagnóstico a bordo
- 4.10.2. El sistema de diagnóstico a bordo estará diseñado, fabricado e instalado en el vehículo de manera que pueda identificar los tipos de deterioro o mal funcionamiento a lo largo de toda la vida del vehículo.

⁽⁴⁾ Los números distintivos de las Partes en el Acuerdo de 1958 figuran en el anexo 3 de la Resolución consolidada sobre la construcción de vehículos (R.E.3), documento ECE/TRANS/WP.29/78/Rev.3, anexo 3, www.unece.org/trans/main/wp29/wp29wgs/wp29gen/wp29resolutions.html

- 4.10.3. El sistema de diagnóstico a bordo cumplirá los requisitos del presente Reglamento en condiciones normales de uso.
- 4.10.4. El indicador de mal funcionamiento del sistema de diagnóstico a bordo se activará cuando sea sometido a ensayo con un componente defectuoso de conformidad con el apéndice 1 del anexo 11 del presente Reglamento. El indicador de mal funcionamiento del sistema de diagnóstico a bordo también podrá activarse durante dicho ensayo cuando los niveles de emisión estén por debajo de los umbrales de diagnóstico a bordo especificados en el anexo 11 del presente Reglamento.
- 4.10.5. El fabricante se asegurará de que el sistema de diagnóstico a bordo cumple los requisitos de rendimiento en uso establecidos en el punto 7 del apéndice 1 del anexo 11 del presente Reglamento en todas las condiciones de conducción razonablemente previsibles.
- 4.10.6. El fabricante pondrá a disposición de las autoridades nacionales y los operadores independientes los datos, sin codificar, relativos al rendimiento en uso que el sistema de diagnóstico a bordo del vehículo ha de almacenar y transmitir de conformidad con lo dispuesto en el punto 7.6 del apéndice 1 del anexo 11 del presente Reglamento de manera que puedan acceder a ellos fácilmente.

ESPECIFICACIONES Y ENSAYOS

Pequeños fabricantes

Como alternativa a los requisitos del presente apartado, los fabricantes de vehículos cuya producción anual mundial sea inferior a diez mil unidades podrán obtener la homologación con arreglo a los requisitos técnicos correspondientes especificados en el cuadro siguiente:

Acto legislativo	Requisitos

Los ensayos de emisiones con vistas a la inspección técnica del anexo 5 del presente Reglamento y los requisitos de acceso a la información relativa al diagnóstico a bordo del vehículo establecidos en el punto 5 del anexo 11 del presente Reglamento seguirán exigiéndose para obtener la homologación de tipo con respecto a las emisiones con arreglo al presente apartado.

La autoridad de homologación de tipo Informará a las demás autoridades de homologación de tipo de las Partes en el Acuerdo de las circunstancias de cada homologación de tipo concedida con arreglo al presente apartado.

5.1. Generalidades

- 5.1.1. Los componentes que puedan afectar a las emisiones de contaminantes estarán diseñados, fabricados e instalados de manera que, en condiciones normales de utilización y a pesar de las vibraciones a las que puedan estar sometidos, el vehículo se ajuste a lo dispuesto en el presente Reglamento.
- 5.1.2. Las medidas técnicas adoptadas por el fabricante deberán garantizar que, de conformidad con lo dispuesto en el presente Reglamento, los gases de escape y las emisiones de evaporación se limitan efectivamente a lo largo de la vida normal del vehículo y en condiciones normales de utilización. Ello incluirá la seguridad de los tubos, sus juntas y conexiones, empleados en los sistemas de control de las emisiones, que deberán fabricarse conforme a los objetivos del diseño original. En el caso de las emisiones de escape, se consideran cumplidas estas condiciones si se cumple lo dispuesto en los puntos 5.3.1 y 8.2 del presente Reglamento. En el caso de las emisiones de evaporación, se consideran cumplidas estas condiciones si se cumple lo dispuesto en los puntos 5.3.4 y 8.4 del presente Reglamento.
- 5.1.2.1. Queda prohibido el uso de dispositivos de manipulación.

- 5.1.3. Orificio de entrada de los depósitos de gasolina
- 5.1.3.1. Sin perjuicio de lo dispuesto en el punto 5.1.3.2 del presente Reglamento, la boca del depósito de gasolina o etanol deberá estar diseñada de manera que impida que el depósito pueda aprovisionarse con una boquilla cuyo diámetro exterior sea igual o superior a 23,6 mm.
- 5.1.3.2. El punto 5.1.3.1 del presente Reglamento no será aplicable a los vehículos que cumplan las dos condiciones siguientes:
- 5.1.3.2.1. haber sido diseñados y fabricados de manera que la gasolina con plomo no dañe el dispositivo de control de la emisión de gases contaminantes, y
- 5.1.3.2.2. llevar inscrita de manera clara, legible e indeleble la marca relativa a la gasolina sin plomo, recogida en la norma ISO 2575:1982, en un lugar visible directamente por la persona que proceda al llenado del depósito; se admite la utilización de marcas adicionales.
- 5.1.4. Se adoptarán medidas para evitar emisiones de evaporación excesivas y el derrame de combustible provocados por la ausencia de tapón del depósito de combustible. Este objetivo podrá alcanzarse empleando uno de los métodos siguientes:
- 5.1.4.1. un tapón de apertura y cierre automáticos no extraíble;
- 5.1.4.2. unas características de diseño que eviten las emisiones de evaporación excesivas en caso de ausencia de tapón del depósito de combustible, o
- 5.1.4.3. cualquier otra disposición que permita obtener estos resultados; Entre otras medidas, podrá utilizarse un tapón sujeto con cuerda, un tapón sujeto con cadena o un tapón que se bloquee con la llave de encendido del vehículo. En este caso, para retirar la llave de la cerradura del tapón será necesario que este esté en posición de cerrado.
- 5.1.5. Disposiciones relativas a la seguridad del sistema electrónico
- 5.1.5.1. Todo vehículo equipado con un ordenador de control de emisiones deberá incluir funciones que impidan cualquier modificación que no haya sido autorizada por el fabricante. El fabricante autorizará las modificaciones siempre que sean necesarias para fines de diagnóstico, mantenimiento, inspección, instalación de accesorios o reparación del vehículo. Los códigos y parámetros de funcionamiento reprogramables del ordenador deberán ser resistentes a las manipulaciones y permitir un nivel de protección al menos tan elevado como las disposiciones de la norma ISO DIS 15031-7 de 15 de marzo de 2001 (SAE J2186 de octubre de 1996). Todos los chips de memoria de calibración extraíbles deberán ir encapsulados, alojados en una caja sellada o protegidos mediante algoritmos electrónicos y no podrán sustituirse sin herramientas o procedimientos especializados. Solo las funciones directamente relacionadas con la calibración de emisiones o la prevención del robo del vehículo podrán estar protegidas de este modo.
- 5.1.5.2. Los parámetros de funcionamiento del motor controlados por códigos informáticos no deberán poder modificarse sin herramientas o procedimientos especializados (por ejemplo, componentes de ordenador soldados o encapsulados o carcasas de ordenador selladas o soldadas).
- 5.1.5.3. En el caso de las bombas mecánicas de inyección de combustible instaladas en motores de encendido por compresión, los fabricantes tomarán medidas adecuadas para proteger el ajuste de máxima alimentación de combustible contra cualquier manipulación mientras el vehículo esté en servicio.
- 5.1.5.4. Los fabricantes podrán solicitar a la autoridad de homologación de tipo la exención de cualquiera de estos requisitos para aquellos vehículos que sea improbable que necesiten protección. Los criterios que tendrá en cuenta la autoridad de homologación de tipo al estudiar la exención serán, entre otros, la disponibilidad en ese momento de chips de control de prestaciones, la capacidad de altas prestaciones del vehículo y el volumen de ventas previsto.

- 5.1.5.5. Los fabricantes que utilicen sistemas programables de códigos de ordenador (por ejemplo, memoria solo de lectura, programable y eléctricamente borrable, EEPROM) deberán impedir la reprogramación no autorizada. Incluirán estrategias avanzadas de protección contra manipulaciones y medidas de protección contra escritura que requieran el acceso electrónico a un ordenador externo mantenido por ellos. La autoridad de homologación de tipo aprobará los métodos que ofrezcan un nivel adecuado de protección contra la manipulación.
- 5.1.6. Deberá ser posible inspeccionar el vehículo de cara al ensayo de aptitud para la circulación a fin de determinar su rendimiento en relación con los datos recogidos de acuerdo con el apartado 5.3.7 del presente Reglamento. Cuando dicha inspección requiera un procedimiento especial, este se detallará en el manual de servicio (o en un medio equivalente). El procedimiento especial no requerirá el uso de equipos especiales diferentes de los suministrados con el vehículo.
- 5.2. Procedimiento de ensayo

En el cuadro A se ilustran las diferentes posibilidades de homologación de tipo de un vehículo.

5.2.1. Los vehículos propulsados con motor de encendido por chispa y los vehículos eléctricos híbridos equipados con motor de encendido por chispa se someterán a los ensayos siguientes:

tipo I (verificación del promedio de emisiones de escape después de un arranque en frío),

tipo II (emisiones de monóxido de carbono en régimen de ralentí),

tipo III (emisiones de gases del cárter),

tipo IV (emisiones de evaporación),

tipo V (durabilidad de los dispositivos anticontaminantes),

tipo VI (verificación del promedio de emisiones de escape de monóxido de carbono e hidrocarburos a baja temperatura ambiente después de un arranque en frío),

ensayo de diagnóstico a bordo,

ensayo de potencia del motor.

5.2.2. Los vehículos propulsados con motor de encendido por chispa y los vehículos eléctricos híbridos equipados con motor de encendido por chispa alimentados con GLP o gas natural/biometano (monocombustible o bicombustible) se someterán a los ensayos siguientes (de acuerdo con el cuadro A):

tipo I (verificación del promedio de emisiones de escape después de un arranque en frío),

tipo II (emisiones de monóxido de carbono en régimen de ralentí),

tipo III (emisiones de gases del cárter),

tipo IV (emisiones de evaporación), en su caso,

tipo V (durabilidad de los dispositivos anticontaminantes),

tipo VI (verificación del promedio de emisiones de escape de monóxido de carbono e hidrocarburos a baja temperatura ambiente después de un arranque en frío), en su caso,

ensayo de diagnóstico a bordo,

ensayo de potencia del motor.

5.2.3. Los vehículos propulsados con motor de encendido por compresión y los vehículos eléctricos híbridos equipados con motor de encendido por compresión se someterán a los ensayos siguientes:

tipo I (verificación del promedio de emisiones de escape después de un arranque en frío),

tipo V (durabilidad de los dispositivos anticontaminantes),

ensayo de diagnóstico a bordo.

Cuadro A Requisitos Aplicación de los requisitos de ensayo para homologaciones de tipo y extensiones

Vehículos con motor de encendido por chispa, incluidos los híbridos Categoría de ve- hículo								Vehículos con motor de encendido por compre- sión, incluidos los híbridos		
inculo	Monocombustible				В	icombustible	(1)	Flexifuel (1)	Flexifuel	Mono- combus- tible
Comboscible 1	Gasolina		Gas	Hidró-	Gasolina (E5/E10) (⁷)	Gasolina (E5/E10) (⁷)	Gasolina (E5/E10) (⁷)	Gasolina (E5/E10) (⁷)	Gasóleo (B5/B7) (⁷)	C. Alex
Combustible de referencia	(E5/ E10) (⁷)	GLP	natural/ biome- tano	geno (ICE) (⁵)	GLP	Gas natural/ biome- tano	Hidró- geno (ICE) (⁵)	Etanol (E85)	Biodiésel	Gasóleo (B5/B7) (⁷)
Contaminantes ga- seosos (ensayo de tipo I)	Sí	Sí	Sí	Sí (4)	Sí (ambos combus- tibles)	Sí (ambos combus- tibles)	Sí (ambos combus- tibles) (4)	Sí (ambos combusti- bles)	Sí (solo B5/ B7) (²) (⁷)	Sí
Masa de partículas y número de partí- culas (ensayo de tipo I)	Sí (6)		_		Sí (solo ga- solina) (6)	Sí (sol (°) gasolina)	Sí (solo ga- solina) (6)	Sí (ambos combusti- bles) (6)	Sí (solo B5/ B7) (²) (⁷)	Sí
Emisiones al ra- lentí (ensayo de tipo II)	Sí	Sí	Sí	_	Sí (ambos combus- tibles)	Sí (ambos combus- tibles)	Sí (solo ga- solina)	Sí (ambos combusti- bles)	_	_
Emisiones del cár- ter (ensayo de tipo III)	Sí	Sí	Sí	_	Sí (solo ga- solina)	Sí (solo ga- solina)	Sí (solo ga- solina)	Sí (solo ga- solina)	_	_
Emisiones de eva- poración (ensayo de tipo IV)	Sí	_	_	_	Sí (solo ga- solina)	Sí (solo ga- solina)	Sí (solo ga- solina)	Sí (solo ga- solina)	_	_
Durabilidad (ensayo de tipo V)	Sí	Sí	Sí	Sí	Sí (solo ga- solina)	Sí (solo ga- solina)	Sí (solo ga- solina)	Sí (solo ga- solina)	Sí (solo B5/B7) (²) (7)	Sí
Emisiones a tem- peratura baja (ensayo de tipo VI)	Sí	_	_	_	Sí (solo ga- solina)	Sí (solo ga- solina)	Sí (solo ga- solina)	Sí (³) (ambos combusti- bles)	_	_

Categoría de ve- hículo									Vehículos con motor de encendido por compre- sión, incluidos los híbridos					
niculo	Monocombustible Bicombustible (¹)				Flexifuel (1)	Flexifuel	Mono- combus- tible							
Combustible de	Gasolina		Gas natural/	Hidró-	Gasolina (E5/E10) (⁷)	Gasolina (E5/E10) (⁷)	Gasolina (E5/E10) (⁷)	Gasolina (E5/E10) (⁷)	Gasóleo (B5/B7) (⁷)	Gasóleo				
referencia	(E5/ E10) (⁷)	biome- tano (ICE) (5) GLP Gas natural/ geno geno	biome- geno	biome- geno	biome- geno	biome- geno (ICF) (5)	me- geno	re- geno (ICE) (5)	ne- geno	oiome- geno	Hidró- geno (ICE) (5)	Etanol (E85)	Biodiésel	(B5/B7) (⁷)
Conformidad en circulación	Sí	Sí	Sí	Sí	Sí (ambos combus- tibles)	Sí (ambos combus- tibles)	Sí (ambos combus- tibles)	Sí (ambos combusti- bles)	Sí (solo B5/B7) (²) (7)	Sí				
Diagnóstico a bordo	Sí	Sí	Sí	Sí	Sí	Sí	Sí	Sí	Sí	Sí				

- Cuando un vehículo bicombustible se combina con un vehículo flexifuel, son aplicables los dos requisitos de ensayo.
- Esta disposición es temporal, posteriormente se propondrán otros requisitos para el biodiésel.
- (3) El ensayo se realizará con ambos combustibles. Se utilizará el combustible de referencia para ensayo E75 especificado en el anexo 10.
- (*) Cuandó el vehículo funcione con hidrógeno, solo se determinarán las emisiones de NO_x.
 (5) El combustible de referencia es «hidrógeno para motores de combustión interna», especificado en el anexo 10 bis.
- (º) Los límites relativos a la masa y al número de partículas correspondientes al encendido por chispa de vehículos con motores de encendido por chispa, incluidos los híbridos, se aplicarán únicamente a los vehículos equipados con motores de inyección directa.
- A elección del fabricante, para los ensayos de vehículos con motores de encendido por chispa o por compresión se podrán utilizar combustibles E5 o E10 o combustibles bien B5 o B7, respectivamente. Sin embargo:
 - en un plazo máximo de dieciséis meses después de las fechas establecidas en el punto 12.2.1, las nuevas homologaciones de tipo solo se realizarán con los combustibles E10 y B7;
 - en un plazo que expirará en las fechas establecidas en el punto 12.2.4, todos los vehículos nuevos estarán homologados con los combustibles E10 y B7.
 - 5.3. Descripción de los ensayos
 - 5.3.1. Ensayo de tipo I (verificación de las emisiones de escape después de un arranque en frío)
 - 5.3.1.1. La figura 1 ilustra las vías de ensayo de tipo I. Este ensayo se realizará en todos los vehículos contemplados en el apartado 1 del presente Reglamento.
 - 5.3.1.2. El vehículo se colocará sobre un banco dinamométrico equipado con dispositivos de simulación de carga e
 - 5.3.1.2.1. Se llevará a cabo, sin interrupción, un ensayo cuya duración total será de 19 minutos y 40 segundos y que constará de dos partes: 1 y 2; entre el final de la parte 1 y el comienzo de la 2, podrá introducirse, previo acuerdo del fabricante, un período sin muestreo no superior a veinte segundos destinado a regular el equipo de ensayo.
 - 5.3.1.2.1.1. Los vehículos alimentados con GLP o gas natural/biometano se someterán al ensayo de tipo I para comprobar las variaciones en la composición del GLP o gas natural/biometano, según lo establecido en el anexo 12 del presente Reglamento. Los vehículos que pueden alimentarse, bien con gasolina, bien con GLP o gas natural/biometano se someterán a ensayo con los dos tipos de combustible, mientras que los ensayos con GLP o gas natural/biometano se realizarán para comprobar las variaciones en la composición de estos, según lo establecido en el anexo 12 del presente Reglamento.
 - 5.3.1.2.1.2. No obstante lo dispuesto en el punto 5.3.1.2.1.1 del presente Reglamento, los vehículos que puedan alimentarse tanto con gasolina como con un combustible gaseoso, pero en los cuales el sistema de gasolina esté instalado para emergencias o únicamente para el arranque y cuyo depósito no pueda contener más de 15 litros de gasolina, se considerarán, a efectos del ensayo de tipo I, vehículos que únicamente pueden utilizar combustible gaseoso.
 - 5.3.1.2.2. La parte 1 del ensayo constará de cuatro ciclos urbanos elementales; cada uno de ellos constará de quince fases (ralentí, aceleración, velocidad constante, deceleración, etc.).
 - 5.3.1.2.3. La parte 2 del ensayo constará de un ciclo extraurbano, compuesto por 13 fases (ralentí, aceleración, velocidad constante, desaceleración, etc.).

- 5.3.1.2.4. Durante el ensayo, se diluirán los gases de escape y se recogerá una muestra proporcional en una o varias bolsas. Los gases de escape del vehículo sometido a ensayo se diluirán y serán sometidos a muestreo y análisis según el procedimiento que se describe más adelante; se medirá, además, el volumen total de los gases de escape diluidos. En el caso de los vehículos equipados con motor de encendido por compresión, se registrarán no solo las emisiones de monóxido de carbono, hidrocarburos y óxidos de nitrógeno, sino también las emisiones de partículas contaminantes.
- 5.3.1.3. Para la realización del ensayo se seguirá el procedimiento del ensayo de tipo I descrito en el anexo 4 bis del presente Reglamento. El método utilizado para recoger y analizar los gases se establece en los apéndices 2 y 3 del anexo 4 bis del presente Reglamento, y el método de muestreo y análisis de partículas, en los apéndices 4 y 5 de ese mismo anexo.
- 5.3.1.4. El ensayo, que estará sujeto a los requisitos del punto 5.3.1.5 del presente Reglamento, se repetirá tres veces. Los resultados se multiplicarán por los factores de deterioro adecuados que figuran en el cuadro 3 del punto 5.3.6 del presente Reglamento y, en el caso de los sistemas de regeneración periódica definidos en el punto 2.20, también por los factores K_i establecidos en el anexo 13 presente Reglamento. Las masas resultantes de las emisiones gaseosas y la masa de partículas y el número de estas obtenidos en cada uno de los ensayos deberán ser inferiores a los límites establecidos a continuación en el cuadro 1:

Diario Oficial de la Unión Europea

Cuadro 1

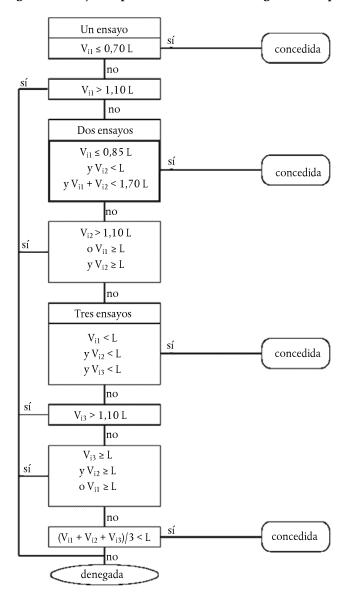
Límites de emisión

			Valores límite													
		Masa de referencia (MR) (kg)	Masa de r de carbo		buros	hidrocar- totales CT)	C	hidrocar- o metáni- os NM)	nitró	óxidos de ogeno O _x)	óxidos o	arburos y le nitró- no	Masa de partic (M	ulada	Número de (N	e partículas IP)
			L (mg/			/km)		/km)	I (mg	/km)	L ₂ (mg	+ L ₄ /km)	L (mg/		I (nº/	-6 km)
Cate- goría	Clase		ECH	ECM	ECH	ECM	ЕСН	ECM	ECH	ECM	ECH	ECM	ECH) (1)	ECM	ECH (1) (2)	ECM
M	_	Todos	1 000	500	100	_	68	_	60	80	_	170	4,5	4,5	6,0 × 10 ¹¹	6,0 × 10 ¹¹
N_1	I	MR ≤ 1 305	1 000	500	100	_	68		60	80		170	4,5	4,5	6,0 × 10 ¹¹	6,0 × 10 ¹¹
	II	1 305 < MR ≤ 1 760	1 810	630	130	_	90	_	75	105	_	195	4,5	4,5	6,0 × 10 ¹¹	6,0 × 10 ¹¹
	III	1 760 < MR	2 270	740	160	_	108	_	82	125	_	215	4,5	4,5	6,0 × 10 ¹¹	6,0 × 10 ¹¹
N ₂	-	Todos	2 270	740	160	_	108	_	82	125	_	215	4,5	4,5	6,0 × 10 ¹¹	6,0 × 10 ¹¹

ECH Encendido por chispa

ECM Encendido por compresión

- (¹) Los límites relativos a la masa y al número de partículas correspondientes al encendido por chispa se aplicarán únicamente a los vehículos equipados con motores de inyección directa.


 (²) Hasta tres años después de las fechas indicadas en los puntos 12.2.1 y 12.2.2 del presente Reglamento, para las nuevas homologaciones de tipo y los vehículos nuevos, respectivamente, se aplicará un límite de emisiones de número de partículas de 6,0 × 10¹² nº/km a los vehículos de encendido por chispa de inyección directa, a elección del fabricante.

- 5.3.1.4.1. No obstante lo dispuesto en el punto 5.3.1.4 del presente Reglamento, en relación con cada contaminante o combinación de contaminantes, una de las tres masas obtenidas podrá superar en no más de un 10 % el límite establecido siempre que la media aritmética de los resultados sea inferior a dicho límite. En caso de que más de un contaminante supere los límites establecidos, será irrelevante que esto ocurra en un mismo ensayo o en ensayos diferentes.
- 5.3.1.4.2. Cuando los ensayos se realicen con combustibles gaseosos, la masa de emisiones gaseosas resultante será inferior a los límites para vehículos de gasolina que figuran en el cuadro 1.
- 5.3.1.5. El número de ensayos establecido en el punto 5.3.1.4 del presente Reglamento se reducirá en las condiciones que a continuación se enumeran, donde V_1 es el resultado del primer ensayo y V_2 el del segundo ensayo para cada contaminante o para la emisión combinada de dos contaminantes sujetos a límites.
- 5.3.1.5.1. Solo se efectuará un ensayo si el resultado obtenido para cada contaminante o para la emisión combinada de dos contaminantes sujetos a límites es menor o igual a 0,70 L (es decir, $V_1 \le 0,70$ L).
- 5.3.1.5.2. En caso de que no se cumplan las condiciones establecidas en el punto 5.3.1.5.1 del presente Reglamento, solo se efectuarán dos ensayos si para cada contaminante o para la emisión combinada de dos contaminantes sujetos a límites se cumplen los siguientes requisitos:

$$V_{\scriptscriptstyle 1} \leq 0.85 \text{ L y } V_{\scriptscriptstyle 1+} V_{\scriptscriptstyle 2} \leq 1.70 \text{ L y } V_{\scriptscriptstyle 2} \leq \text{L}.$$

Figura 1

Diagrama de flujo del procedimiento de homologación de tipo I

- 5.3.2. Ensayo de tipo II (ensayo de emisiones de monóxido de carbono en régimen de ralentí)
- 5.3.2.1. Este ensayo se realizará en todos los vehículos propulsados con motor de encendido por chispa como a continuación se indica:
- 5.3.2.1.1. Los vehículos que puedan alimentarse bien con gasolina, bien con GLP o gas natural/biometano se someterán al ensayo de tipo II con ambos combustibles.
- 5.3.2.1.2. No obstante lo dispuesto en el punto 5.3.2.1.1 del presente Reglamento, los vehículos que puedan alimentarse tanto con gasolina como con un combustible gaseoso, pero en los cuales el sistema de gasolina esté instalado para emergencias o únicamente para el arranque y cuyo depósito no pueda contener más de 15 litros de gasolina, se considerarán, a efectos del ensayo de tipo II, vehículos que únicamente pueden utilizar combustible gaseoso.
- 5.3.2.2. Por lo que se refiere al ensayo de tipo II que figura en el anexo 5 del presente Reglamento, en régimen normal de ralentí del motor el contenido máximo permitido de monóxido de carbono en los gases de escape será el establecido por el fabricante del vehículo. No obstante, el contenido máximo de monóxido de carbono no deberá exceder del 0,3 % en volumen.

En régimen de ralentí elevado, el contenido de monóxido de carbono, en volumen, de los gases de escape no excederá del 0.2 %, con un régimen del motor, como mínimo, de $2 000 \text{ min}^{-1} \text{ y}$ un valor lambda de 1 ± 0.03 , o de conformidad con las especificaciones del fabricante.

- 5.3.3. Ensayo de tipo III (verificación de las emisiones de gases del cárter)
- 5.3.3.1. Este ensayo se realizará en todos los vehículos contemplados en el apartado 1, excepto en los equipados con motor de encendido por compresión.
- 5.3.3.1.1. Los vehículos que puedan alimentarse bien con gasolina, bien con GLP o gas natural se someterán al ensayo de tipo III únicamente con gasolina.
- 5.3.3.1.2. No obstante lo dispuesto en el punto 5.3.3.1.1 del presente Reglamento, los vehículos que puedan alimentarse tanto con gasolina como con un combustible gaseoso, pero en los cuales el sistema de gasolina esté instalado para emergencias o únicamente para el arranque y cuyo depósito no pueda contener más de 15 litros de gasolina, se considerarán, a efectos del ensayo de tipo III, vehículos que únicamente pueden utilizar combustible gaseoso.
- 5.3.3.2. Cuando un ensayo se realice con arreglo al anexo 6 del presente Reglamento, el sistema de ventilación del cárter del motor no deberá permitir que ningún gas del cárter salga a la atmósfera.
- 5.3.4. Ensayo de tipo IV (determinación de las emisiones de evaporación de los vehículos con motores de encendido por chispa)
- 5.3.4.1. Este ensayo se realizará en todos los vehículos contemplados en el apartado 1, excepto en los equipados con motor de encendido por compresión y en los alimentados por GLP o gas natural/biometano.
- 5.3.4.1.1. Los vehículos que puedan alimentarse bien con gasolina, bien con GLP o gas natural/biometano deben someterse al ensayo de tipo IV únicamente con gasolina.
- 5.3.4.2. Cuando un ensayo se realice con arreglo al anexo 7 del presente Reglamento, las emisiones de evaporación deberán ser inferiores a 2 g por ensayo.
- 5.3.5. Ensayo de tipo VI (verificación del promedio de emisiones de escape de monóxido de carbono e hidrocarburos después de un arranque en frío a baja temperatura ambiente)
- 5.3.5.1. Este ensayo se realizará en todos los vehículos contemplados en el apartado 1 del presente Reglamento, excepto en los equipados con motor de encendido por compresión.

No obstante, en el caso de los vehículos de encendido por compresión, al solicitar la homologación de tipo, los fabricantes presentarán ante la autoridad de homologación de tipo Información que demuestre que el dispositivo de postratamiento de NO_x alcanza una temperatura suficientemente elevada para lograr un funcionamiento eficaz dentro de los 400 segundos a partir de un arranque en frío a - 7 °C, como se describe en el ensayo de tipo VI.

Asimismo, el fabricante facilitará a la autoridad de homologación de tipo Información sobre la estrategia de funcionamiento del sistema de recirculación de los gases de escape (EGR), incluida información sobre su funcionamiento a baja temperatura.

Esta información también incluirá la descripción de cualquier impacto en las emisiones.

La autoridad de homologación de tipo no concederá la homologación de tipo si la información facilitada no es suficiente para demostrar que el dispositivo de postratamiento alcanza realmente una temperatura suficientemente elevada para lograr un funcionamiento eficaz en el período de tiempo designado.

- 5.3.5.1.1. El vehículo se colocará sobre un banco dinamométrico equipado con dispositivos de simulación de carga e inercia.
- 5.3.5.1.2. El ensayo consistirá en los cuatro ciclos urbanos elementales de conducción correspondientes a la parte 1 del ensayo de tipo I. La parte 1 del ensayo se describe en el punto 6.1.1 del anexo 4 bis del presente Reglamento y se ilustra en la figura A4a/1 de ese mismo anexo. El ensayo a baja temperatura ambiente, cuya duración total es de 780 segundos, se efectuará sin interrupción y comenzará con el arranque del motor.
- 5.3.5.1.3. El ensayo a baja temperatura ambiente se efectuará a una temperatura ambiente de ensayo de 266 K (– 7 ° C). Antes de realizar el ensayo, se acondicionarán los vehículos de manera uniforme para garantizar que se puedan reproducir los resultados. El acondicionamiento y los demás procedimientos de ensayo se llevarán a cabo con arreglo a la descripción del anexo 8 del presente Reglamento.
- 5.3.5.1.4. Durante el ensayo, se diluirán los gases de escape y se recogerá una muestra proporcional. Los gases de escape del vehículo sometido a ensayo se diluirán y serán sometidos a muestreo y análisis según el procedimiento que se describe en el anexo 8 del presente Reglamento, y se medirá el volumen total de los gases de escape diluidos. Se analizarán los gases de escape diluidos para determinar su contenido en monóxido de carbono e hidrocarburos totales.
- 5.3.5.2. El ensayo, que estará sujeto a los requisitos de los puntos 5.3.5.2.2 y 5.3.5.3 del presente Reglamento, se repetirá tres veces. La masa resultante de las emisiones de monóxido de carbono e hidrocarburos deberá ser inferior a los límites que figuran en el cuadro 2.

Cuadro 2

Límite de las emisiones de monóxido de carbono e hidrocarburos del tubo de escape tras un ensayo de arranque en frío

	Temperatura de ensayo 266 K (- 7 °C)							
Categoría de vehículo	Clase	Masa de monóxido de carbono (CO) L ₁ (g/km)	Masa de hidrocarburos (HC) L ₂ (g/km)					
M	_	15	1,8					
N ₁	I	15	1,8					
	II	24	2,7					
	III	30	3,2					
N ₂	_	30	3,2					

- 5.3.5.2.1. Sin perjuicio de los requisitos del punto 5.3.5.2 del presente Reglamento, en relación con cada contaminante, solo uno de los tres resultados obtenidos podrá superar el límite establecido en no más de un 10 %, siempre que la media aritmética de los tres resultados sea inferior a dicho límite. En caso de que más de un contaminante supere los límites establecidos, será irrelevante que esto ocurra en un mismo ensayo o en ensayos diferentes.
- 5.3.5.2.2. A petición del fabricante, podrá aumentarse a 10 el número de ensayos establecidos en el punto 5.3.5.2 del presente Reglamento, siempre que la media aritmética de los tres primeros resultados sea inferior al 110 % del límite. En tal caso, el único requisito después del ensayo consistirá en que la media aritmética de los diez resultados sea inferior al valor límite.

- 5.3.5.3. El número de ensayos establecidos en el punto 5.3.5.2 del presente Reglamento podrá reducirse de acuerdo con los puntos 5.3.5.3.1 y 5.3.5.3.2 del mismo.
- 5.3.5.3.1. Solo se efectuará un ensayo si el resultado obtenido en relación con cada contaminante del primer ensayo es inferior o igual a 0,70 L.
- 5.3.5.3.2. En caso de que no se cumpla el requisito del punto 5.3.5.3.1 del presente Reglamento, se efectuarán únicamente dos ensayos si en relación con cada contaminante el resultado del primer ensayo es inferior o igual a 0,85 L, la suma de los dos primeros resultados es inferior o igual a 1,70 L y el resultado del segundo ensayo es inferior o igual a L.

$$(V_1 \le 0.85 \text{ L y } V_1 + V_2 \le 1.70 \text{ L y } V_2 \le L).$$

- 5.3.6. Ensayo de tipo V (descripción del ensayo de resistencia destinado a verificar la durabilidad de los dispositivos anticontaminantes)
- 5.3.6.1. Este ensayo se realizará en todos los vehículos contemplados en el apartado 1 a los que se aplica el ensayo especificado en el punto 5.3.1 del presente Reglamento. El ensayo consiste en una prueba de envejecimiento de 160 000 km, efectuada de acuerdo con el programa descrito en el anexo 9 del presente Reglamento, en pista de ensayo, en carretera o en banco dinamométrico.
- 5.3.6.1.1. Los vehículos que puedan alimentarse bien con gasolina, bien con GLP o gas natural deben someterse al ensayo de tipo V únicamente con gasolina. En ese caso, el factor de deterioro obtenido con gasolina sin plomo se utilizará también con GLP o gas natural.
- 5.3.6.2. No obstante lo dispuesto en el apartado 5.3.6.1 del presente Reglamento, el fabricante podrá optar, como alternativa al ensayo del apartado 5.3.6.1 del mismo, por la utilización de los factores de deterioro que recoge el cuadro 3.

Cuadro 3

Factores de deterioro

	Factores de deterioro asignados								
Categoría del motor	СО	НСТ	HCNM	NO _x	HC + NO _x	Materia particulada (MP)			
Encendido por chispa	1,5	1,3	1,3	1,6	_	1,0			
Encendido por compresión									

- 5.3.6.3. A petición del fabricante, el servicio técnico podrá realizar el ensayo de tipo I antes de que se haya completado el ensayo de tipo V, mediante la utilización de los factores de deterioro recogidos en el cuadro anterior. Al finalizar el ensayo de tipo V, el servicio técnico podrá modificar los resultados de la homologación de tipo Indicados en el anexo 2 del presente Reglamento mediante la sustitución de los factores de deterioro que figuran en el cuadro anterior por los medidos durante dicho ensayo.
- 5.3.6.4. En ausencia de factores de deterioro asignados a los vehículos de encendido por compresión, los fabricantes utilizarán los procedimientos de ensayo de durabilidad del vehículo completo o de envejecimiento en banco para establecer los factores de deterioro.
- 5.3.6.5. Los factores de deterioro se determinan bien siguiendo el procedimiento del apartado 5.3.6.1 del presente Reglamento, bien utilizando los valores que figuran en el cuadro 3 del apartado 5.3.6.2 del mismo. Dichos factores se utilizan para establecer si se cumplen los requisitos de los puntos 5.3.1 y 8.2 del presente Reglamento.
- 5.3.7. Datos de emisiones exigidos en el ensayo de aptitud para la circulación
- 5.3.7.1. Este requisito se aplica a todos los vehículos propulsados con motor de encendido por chispa cuya homologación de tipo se solicite con arreglo al presente Reglamento.

- 5.3.7.2. Cuando un ensayo se realice con arreglo al anexo 5 del presente Reglamento (ensayo de tipo II) en régimen de ralentí normal:
 - a) se registrará el contenido de monóxido de carbono en volumen de los gases de escape emitidos, y
 - b) se registrará el régimen del motor durante el ensayo, incluida cualquier tolerancia.
- 5.3.7.3. Cuando un ensayo se realice en régimen de ralentí elevado (es decir, > 2 000 min⁻¹):
 - a) se registrará el contenido de monóxido de carbono en volumen de los gases de escape emitidos;
 - b) se registrará el valor lambda, y
 - c) se registrará el régimen del motor durante el ensayo, incluida cualquier tolerancia.

Se calculará el valor lambda mediante la ecuación de Brettschneider simplificada, de la forma siguiente:

$$\frac{\left[\text{CO}_{2}\right] + \frac{\left[\text{CO}\right]}{2} + \left[\text{O}_{2}\right] + \left(\frac{\text{H}_{\text{CV}}}{4} \cdot \frac{3,5}{3,5 + \frac{\left[\text{CO}\right]}{\left[\text{CO}_{2}\right]}} - \frac{\text{O}_{\text{CV}}}{2}\right) \cdot \left(\left[\text{CO}_{2}\right] + \left[\text{CO}\right]\right)}{\left(1 + \frac{\text{H}_{\text{CV}}}{4} - \frac{\text{O}_{\text{CV}}}{2}\right) \cdot \left(\left[\text{CO}_{2}\right] + \left[\text{CO}\right] + \text{K1[HC]}\right)}$$

Donde:

[] = concentración en porcentaje de volumen.

K1 = factor de conversión de la medida del analizador de infrarrojos no dispersivo a la medida del detector de ionización de llama (facilitado por el fabricante del equipo de medición).

H_{cv} = relación atómica hidrógeno/carbono:

a) para gasolina (E5): 1,89;

b) para gasolina (E10): 1,93;

c) para GLP: 2,53;

d) para gas natural/biometano: 4,0;

e) para etanol (E85): 2,74;

f) para etanol (E75): 2,61.

O_{cv} = relación atómica oxígeno/carbono:

a) para gasolina (E5): 0,016;

b) para gasolina (E10): 0,033;

c) para GLP: 0,0;

d) para gas natural/biometano: 0,0;

e) para etanol (E85): 0,39;

f) para etanol (E75): 0,329.

- 5.3.7.4. Se medirá y registrará la temperatura del aceite del motor en el momento del ensayo.
- 5.3.7.5. Se completará el cuadro que figura en el punto 2.2 de la adenda del anexo 2 del presente Reglamento.
- 5.3.7.6. El fabricante confirmará la precisión del valor lambda registrado en el momento de la homologación de tipo del punto 5.3.7.3 del presente Reglamento como representativa de los vehículos de producción en serie en un plazo de 24 meses a partir de la fecha de concesión de la homologación por parte de la autoridad de homologación de tipo. Se procederá a una evaluación a partir de encuestas y estudios de los vehículos de producción.

5.3.8. Sistemas de diagnóstico a bordo: ensayo

Este ensayo se realizará en todos los vehículos contemplados en el apartado 1 del presente Reglamento. Se seguirá el procedimiento de ensayo descrito en el anexo 3, punto 11, del presente Reglamento.

- 6. MODIFICACIONES DEL TIPO DE VEHÍCULO
- 6.1. Toda modificación de tipo de vehículo se notificará a la autoridad de homologación de tipo que haya concedido la homologación de tipo. Esta podrá:
- 6.1.1. considerar que no es probable que las modificaciones realizadas tengan consecuencias negativas apreciables y que, en cualquier caso, el vehículo sigue cumpliendo los requisitos, o
- 6.1.2. exigir un nuevo informe de ensayo al servicio técnico encargado de realizar los ensayos.
- 6.2. La confirmación o la denegación de la homologación se comunicará a las Partes en el Acuerdo que apliquen el presente Reglamento mediante el procedimiento indicado en el punto 4.3 del presente Reglamento, especificando las modificaciones.
- 6.3. La autoridad de homologación de tipo que expida la extensión de la homologación asignará un número de serie a la misma e informará de ello a las demás Partes en el Acuerdo que apliquen el presente Reglamento por medio de un formulario de comunicación conforme al modelo que figura en el anexo 2 del presente Reglamento.
- 7. EXTENSIÓN DE LAS HOMOLOGACIONES DE TIPO
- 7.1. Extensiones con respecto a las emisiones de escape (ensayos de tipo I, II y VI)
- 7.1.1. Vehículos con diferentes masas de referencia
- 7.1.1.1 La homologación de tipo solo podrá hacerse extensiva a los vehículos cuya masa de referencia requiera la utilización de las dos inercias equivalentes inmediatamente superiores o cualquier inercia equivalente inferior.
- 7.1.1.2. Por lo que se refiere a los vehículos de la categoría N, la homologación solo podrá hacerse extensiva a los vehículos cuya masa de referencia sea inferior, siempre y cuando las emisiones del vehículo ya homologado se mantengan dentro de los límites prescritos para el vehículo para el que se solicita la extensión de la homologación.
- 7.1.2. Vehículos con relaciones globales de transmisión diferentes
- 7.1.2.1. La homologación de tipo solo se extenderá a los vehículos con relaciones de transmisión diferentes en determinadas condiciones.
- 7.1.2.2. Para determinar si es posible extender una homologación de tipo, en relación con cada una de las relaciones de transmisión utilizadas en los ensayos de tipo I y VI, se determinará la proporción:

$$E = |(V_2 - V_1)|/V_1$$

donde, a un régimen del motor de 1 000 min $^{-1}$, V_1 y V_2 designarán, respectivamente, la velocidad de tipo de vehículo homologado y la de tipo de vehículo para el que se solicite la extensión de homologación.

- 7.1.2.3. Si, para cada relación de transmisión, E ≤ 8 %, se concederá la extensión sin necesidad de repetir los ensayos de tipo I y VI.
- 7.1.2.4. Si, para al menos una relación de transmisión, E > 8 %, y para cada relación de transmisión E ≤ 13 %, se repetirán los ensayos de tipo I y VI. Los ensayos podrán realizarse en un laboratorio elegido por el fabricante, previa autorización del servicio técnico. El informe de los ensayos se enviará al servicio técnico encargado de realizar los ensayos de homologación de tipo.
- 7.1.3. Vehículos con masas de referencia y relaciones de transmisión diferentes

La homologación de tipo se extenderá a los vehículos con masas de referencia y relaciones de transmisión diferentes, siempre y cuando se cumplan todas las condiciones establecidas en los apartados 7.1.1 y 7.1.2 del presente Reglamento.

7.1.4. Vehículos con sistemas de regeneración periódica

La homologación de tipo de un tipo de vehículo equipado con un sistema de regeneración periódica se extenderá a otros vehículos con sistemas de regeneración periódica cuyos parámetros descritos a continuación sean idénticos o se sitúen dentro de las tolerancias establecidas. La extensión solo se referirá a las mediciones específicas de los sistemas de regeneración periódica definidos.

- 7.1.4.1. Serán parámetros idénticos para la extensión de la homologación:
 - a) motor;
 - b) proceso de combustión;
 - c) sistema de regeneración periódica (catalizador y filtro de partículas);
 - d) configuración (tipo de cámara, tipo de metal precioso, tipo de sustrato y densidad celular);
 - e) tipo de funcionamiento y principio;
 - f) dosificación y sistema de adición;
 - g) volumen (± 10 %), y
 - h) emplazamiento (temperatura ± 50 °C a 120 km/h o 5 % de diferencia de temperatura/presión máximas).
- 7.1.4.2. Utilización de factores K, para vehículos con masas de referencia diferentes

Los factores K, desarrollados mediante los procedimientos del punto 3 del anexo 13 del presente Reglamento para la homologación de un tipo de vehículo con sistema de regeneración periódica pueden ser utilizados por otros vehículos que cumplan los criterios a que se refiere el punto 7.1.4.1 del presente Reglamento y cuya masa de referencia se sitúe en alguna de las dos categorías de inercia equivalente inmediatamente superiores o en cualquier inercia equivalente inferior.

7.1.5. Aplicación de las extensiones a otros vehículos

Cuando una extensión se ha concedido con arreglo a lo dispuesto en los puntos 7.1.1 a 7.1.4.2 del presente Reglamento, la homologación de tipo correspondiente no podrá hacerse extensible a otros vehículos.

- 7.2. Extensiones con respecto a las emisiones de evaporación (ensayo de tipo IV)
- 7.2.1. La homologación de tipo se extenderá a los vehículos equipados con un sistema de control de las emisiones de evaporación que cumplan las condiciones que figuran a continuación:
- 7.2.1.1. el principio básico de medición del combustible/aire (por ejemplo, inyección monopunto) es el mismo;
- 7.2.1.2. el depósito y los conductos de combustible por lo que respecta al material y a su configuración son idénticos;
- 7.2.1.3. se someterá a ensayo el vehículo que presente las peores condiciones en cuanto a sección y longitud aproximada de los conductos. El servicio técnico encargado de realizar los ensayos de homologación de tipo decidirá si se pueden aceptar separadores vapor/líquido que no sean idénticos;
- 7.2.1.4. el volumen del depósito de combustible se sitúa en un rango de ± 10 %;
- 7.2.1.5. la posición de la válvula de descarga del depósito de combustible es idéntica;
- 7.2.1.6. el método de almacenamiento del vapor de combustible es idéntico por lo que se refiere a la forma y el volumen del filtro, el método de almacenamiento, el purificador de aire (si se utiliza para el control de las emisiones de evaporación), etc.;

- 7.2.1.7. el método de purgación del vapor almacenado es idéntico (por ejemplo, flujo de aire, arranque o volumen purgado durante el ciclo de preacondicionamiento), y
- 7.2.1.8. el método de sellado y ventilación del sistema de medición del combustible es idéntico.
- 7.2.2. La homologación de tipo se extenderá a los vehículos con:
- 7.2.2.1. motores de tamaño diferente;
- 7.2.2.2. motores de potencia diferente;
- 7.2.2.3. cajas de cambio automáticas o manuales;
- 7.2.2.4. transmisión en dos o en las cuatro ruedas;
- 7.2.2.5. diferentes estilos de carrocería, y
- 7.2.2.6. diferentes tamaños de ruedas y neumáticos.
- 7.3. Extensión con respecto a la durabilidad de los dispositivos anticontaminantes (ensayo de tipo V)
- 7.3.1. La homologación de tipo se extenderá a tipos de vehículos diferentes siempre y cuando los parámetros del vehículo, motor o sistema anticontaminante especificados a continuación sean idénticos o se mantengan dentro de las tolerancias prescritas.
- 7.3.1.1. Vehículo

Categoría de inercia: las dos categorías de inercia inmediatamente superiores y cualquier categoría de inercia inferior.

Resistencia total al avance a 80 km/h: + 5 % por encima y cualquier valor por debajo.

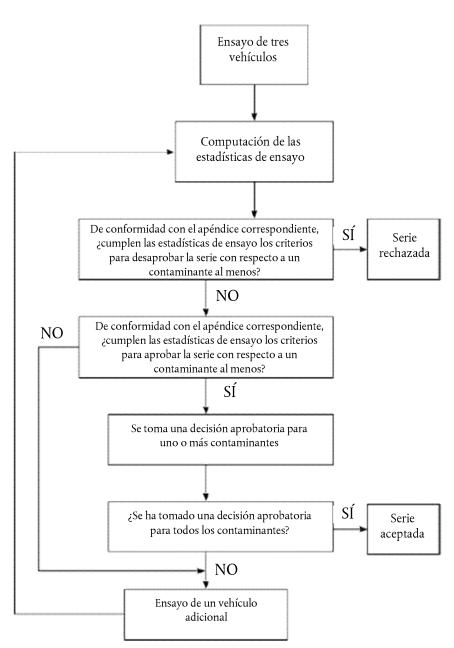
7.3.1.2. Motor:

- a) cilindrada del motor (± 15 %);
- b) número y control de válvulas;
- c) sistema de combustible;
- d) tipo de sistema de refrigeración, y
- e) proceso de combustión.

7.3.1.3. Parámetros del sistema anticontaminante:

- a) convertidores catalíticos y filtros de partículas:
 - i) número de convertidores, filtros y elementos catalíticos,
 - ii) tamaño de los convertidores y filtros catalíticos (volumen del monolito ± 10 %),
 - iii) tipo de actividad catalítica (oxidación, tres vías, filtro de reducción de NO_x, reducción catalítica selectiva, catalizador de reducción de NO_x, etc.),
 - iv) contenido en metales preciosos (idéntico o mayor),
 - v) tipo y proporción de metales preciosos (± 15 %),
 - vi) sustrato (estructura y material),
 - vii) densidad celular, y
 - viii) variación de la temperatura inferior o igual a 50 K en la entrada del convertidor o filtro catalítico; esta variación de la temperatura se comprobará en condiciones estables a una velocidad de 120 km/h y en las condiciones de carga del ensayo de tipo I;

- b) inyección de aire:
 - i) con o sin,
 - ii) tipo (aire impulsado, bombas de aire, etc.);
- c) EGR:
 - i) con o sin,
 - ii) tipo (refrigerado o sin refrigerar, control activo o pasivo, presión alta o baja).
- 7.3.1.4. El ensayo de durabilidad puede realizarse utilizando un vehículo cuya carrocería, caja de cambios (automática o manual) y tamaño de las ruedas o neumáticos sean distintos de los de tipo de vehículo para el que se solicita la homologación de tipo.
- 7.4. Extensión con respecto a los sistemas de diagnóstico a bordo
- 7.4.1. La homologación de tipo se extenderá a vehículos diferentes cuyo motor y sistema de control de las emisiones sean idénticos con arreglo a la definición del apéndice 2 del anexo 11 del presente Reglamento. La homologación de tipo se extenderá independientemente de las características siguientes del vehículo:
 - a) accesorios del motor;
 - b) neumáticos;
 - c) inercia equivalente;
 - d) sistema de refrigeración;
 - e) relación global de transmisión;
 - f) tipo de transmisión, y
 - g) tipo de carrocería.
- 8. CONFORMIDAD DE LA PRODUCCIÓN
- 8.1. Todo vehículo que lleve la marca de homologación establecida con arreglo al presente Reglamento deberá ser conforme al tipo de vehículo homologado en lo que se refiere a los componentes que afectan a la emisión de gases y partículas contaminantes procedentes del motor, a las emisiones procedentes del cárter y a las emisiones de evaporación. Los procedimientos de conformidad de la producción se ajustarán a los establecidos en el apéndice 2 del Acuerdo de 1958 (E/ECE/324-E/ECE/TRANS/505/Rev.2) y cumplirán los requisitos que figuran a continuación.
- 8.1.1. Cuando sean de aplicación, los ensayos de los tipos I, II, III y IV y el ensayo del diagnóstico a bordo se realizarán con arreglo a la descripción del cuadro A del presente Reglamento. Los procedimientos específicos de conformidad de la producción se establecen en los apartados 8.2 a 8.6 del presente Reglamento.
- 8.2. Verificación de la conformidad del vehículo para un ensayo de tipo I
- 8.2.1. El ensayo de tipo I se realizará en un vehículo cuya especificación coincida con la del certificado de homologación de tipo. En caso de que haya que efectuar un ensayo de tipo I para la homologación de un tipo de vehículo que cuente con una o más extensiones, dicho ensayo se realizará o bien en el vehículo descrito en el expediente de información original, o bien en el vehículo descrito en el expediente de información relativo a la extensión correspondiente.
- 8.2.2. Una vez que la autoridad de homologación de tipo haya realizado la selección, el fabricante no podrá efectuar ningún ajuste en los vehículos seleccionados.
- 8.2.2.1. Se seleccionarán al azar tres vehículos de la serie y se someterán a ensayo con arreglo a lo descrito en el apartado 5.3.1 del presente Reglamento. Se aplicarán de la misma forma los factores de deterioro. Los valores límite figuran en el cuadro 1 del punto 5.3.1.4 del presente Reglamento.


- 8.2.2.2. Si la autoridad de homologación de tipo está satisfecha con la desviación estándar de la producción facilitada por el fabricante, los ensayos se realizarán de conformidad con el apéndice 1 del presente Reglamento. Si la autoridad de homologación de tipo no está satisfecha con la desviación estándar de la producción facilitada por el fabricante, los ensayos se realizarán de conformidad con el apéndice 2 del presente Reglamento.
- 8.2.2.3. La producción de una serie se considerará conforme o no conforme sobre la base de un ensayo de los vehículos realizado mediante muestreo, una vez que se ha tomado una decisión aprobatoria con respecto a todos los contaminantes o una decisión desaprobatoria con respecto a un contaminante, de acuerdo con los criterios de ensayo aplicados en el apéndice adecuado.

Cuando se tome una decisión aprobatoria con respecto a un contaminante, esta no se modificará en virtud de ningún otro ensayo realizado para adoptar una decisión con respecto a los demás contaminantes.

Si no se toma una decisión aprobatoria con respecto a todos los contaminantes ni una decisión desaprobatoria con respecto a un contaminante, se efectuará un ensayo en otro vehículo (véase la figura 2).

Figura 2

Verificación de la conformidad del vehículo

- 8.2.3. No obstante lo dispuesto en el apartado 5.3.1 del presente Reglamento, los ensayos se efectuarán en vehículos recién salidos de fábrica.
- 8.2.3.1. Sin embargo, a petición del fabricante, los ensayos podrán efectuarse en vehículos que hayan recorrido:
 - a) un máximo de 3 000 km, en el caso de los vehículos equipados con motor de encendido por chispa;
 - b) un máximo de 15 000 km, en el caso de los vehículos equipados con motor de encendido por compresión.

El rodaje lo efectuará el fabricante, quien se comprometerá a no realizar ningún ajuste en el vehículo.

- 8.2.3.2. Si el fabricante desea realizar un rodaje («x» km, donde $x \le 3\,000$ km en el caso de los vehículos equipados con motor de encendido por chispa y $x \le 15\,000$ km en el caso de los vehículos equipados con motor de encendido por compresión), dicho rodaje se realizará de la siguiente forma:
 - a) las emisiones de contaminantes (tipo I) se medirán a cero y a «x» km en el primer vehículo sometido a ensayo;
 - b) se calculará para cada contaminante el coeficiente de evolución de las emisiones entre cero y «x» km:

emisiones a «x» km/emisiones a 0 km

que puede ser inferior a 1, y

c) los demás vehículos no estarán sujetos a rodaje, pero sus emisiones a 0 km se multiplicarán por el coeficiente de evolución.

En este caso, se tomarán los siguientes valores:

- i) los valores correspondientes a «x» km en el caso del primer vehículo,
- ii) los valores a 0 km multiplicados por el coeficiente de evolución para los demás vehículos.
- 8.2.3.3. Todos estos ensayos se realizarán con combustible comercial. No obstante, a petición del fabricante, podrán utilizarse los combustibles de referencia descritos en el anexo 10 o en el anexo 10 bis del presente Reglamento.
- 8.3. Verificación de la conformidad del vehículo para un ensayo de tipo III
- 8.3.1. Cuando sea necesario realizar un ensayo de tipo III, este se llevará a cabo en todos los vehículos seleccionados para el ensayo de conformidad de la producción de tipo I establecido en el punto 8.2 del presente Reglamento. Serán de aplicación las condiciones establecidas en el anexo 6 del presente Reglamento.
- 8.4. Verificación de la conformidad del vehículo para un ensayo de tipo IV
- 8.4.1. Cuando sea necesario realizar un ensayo de tipo IV, este se llevará a cabo de acuerdo con el anexo 7 del presente Reglamento.
- 8.5. Verificación de la conformidad del vehículo con respecto al diagnóstico a bordo
- 8.5.1. Cuando sea necesario verificar el funcionamiento del sistema de diagnóstico a bordo, se hará con arreglo a los siguientes requisitos:
- 8.5.1.1. Cuando la autoridad de homologación de tipo determine que la calidad de la producción no parece satisfactoria, se seleccionará al azar un vehículo de la serie y se someterá a los ensayos descritos en el apéndice 1 del anexo 11 del presente Reglamento.
- 8.5.1.2. Se considerará que la producción es conforme si el vehículo en cuestión cumple los requisitos de los ensayos descritos en el apéndice 1 del anexo 11 del presente Reglamento.
- 8.5.1.3. Si el vehículo elegido de la serie no cumple los requisitos del punto 8.5.1.1 del presente Reglamento, se tomará una nueva muestra aleatoria de cuatro vehículos de la serie, que se someterán a los ensayos descritos en el apéndice 1 del anexo 11. Los ensayos podrán realizarse con vehículos que hayan tenido un rodaje máximo de 15 000 km.

- 8.5.1.4. Se considerará que la producción es conforme si al menos tres vehículos cumplen los requisitos de los ensayos descritos en el apéndice 1 del anexo 11 del presente Reglamento.
- 8.6. Verificación de la conformidad de un vehículo alimentado con GLP o gas natural/biometano
- 8.6.1. Los ensayos de conformidad de la producción podrán llevarse a cabo con un combustible comercial cuya relación C3/C4 se encuentre entre las de los combustibles de referencia, en el caso del GLP, o cuyo índice de Wobbe se encuentre entre los de los combustibles de referencia extremos, en el caso del gas natural. En este caso, se presentará un análisis del combustible a la autoridad de homologación de tipo.
- CONFORMIDAD EN CIRCULACIÓN
- 9.1. Introducción

En el presente punto se establecen los requisitos de conformidad en circulación de las emisiones de escape y el OBD (incluida la $IUPR_M$) aplicables a los vehículos que han recibido la homologación de tipo con arreglo al presente Reglamento.

- 9.2. Comprobación de la conformidad en circulación
- 9.2.1. La autoridad de homologación de tipo procederá al control de la conformidad en circulación basándose en cualquier información pertinente de que disponga el fabricante, con arreglo a los mismos procedimientos para la conformidad de la producción definidos en el apéndice 2 del Acuerdo de 1958 (E/ECE/324-E/ECE/TRANS/505/Rev.2). Los informes de seguimiento en circulación suministrados por el fabricante pueden complementarse con información de la autoridad de homologación de tipo y ensayos de vigilancia efectuados por las Partes en el Acuerdo.
- 9.2.2. Las figuras Ap4/1 y Ap4/2 del apéndice 4 del presente Reglamento ilustran el procedimiento de verificación de la conformidad en circulación. En el apéndice 5 del presente Reglamento se describe el proceso para la conformidad en circulación.
- 9.2.3. En el contexto de la información aportada para el control de la conformidad en circulación, a petición de la autoridad de homologación de tipo, el fabricante informará a esta sobre las reclamaciones de garantía, las reparaciones relacionadas con la garantía y los defectos del diagnóstico a bordo registrados durante el mantenimiento, en el formato acordado durante la homologación de tipo. En el caso de los componentes y sistemas relacionados con las emisiones, la información deberá detallar la frecuencia y la naturaleza de los defectos. Los informes relativos a cada modelo de vehículo se presentarán al menos una vez al año y corresponderán a un período de hasta 5 años o a una distancia de 100 000 km, dependiendo de lo que se produzca antes.
- 9.2.4. Parámetros que definen la familia de vehículos en circulación

La familia de vehículos en circulación puede definirse mediante parámetros básicos de diseño que serán comunes a los vehículos de una misma familia. Por consiguiente, podrá considerarse que los tipos de vehículos que tengan en común los parámetros descritos a continuación, o que se encuentren dentro de las tolerancias establecidas, pertenecen a la misma familia de vehículos en circulación:

- 9.2.4.1. proceso de combustión (dos tiempos, cuatro tiempos, rotativo);
- 9.2.4.2. número de cilindros;
- 9.2.4.3. configuración del bloque de cilindros (en línea, en V, radial, opuestos horizontalmente, etc.). La inclinación u orientación de los cilindros no es un criterio;
- 9.2.4.4. método de alimentación del motor (por ejemplo, inyección directa o indirecta);
- 9.2.4.5. tipo de sistema de refrigeración (aire, agua o aceite);
- 9.2.4.6. método de aspiración (aspiración natural o sobrealimentado);
- 9.2.4.7. combustible para el que está diseñado el motor (gasolina, gasóleo, gas natural/biometano, GLP, etc.). Los vehículos bicombustible podrán agruparse con los de combustible específico siempre y cuando uno de los dos combustibles sea común;
- 9.2.4.8. tipo de convertidor catalítico (catalizador de tres vías, filtro de reducción de NO_x, reducción catalítica selectiva, catalizador de reducción de NO_x, etc.);

- 9.2.4.9. tipo de filtro de partículas (con o sin);
- 9.2.4.10. recirculación de gases de escape (con o sin, enfriada o sin enfriar), y
- 9.2.4.11. cilindrada del motor más potente de la familia menos el 30 %.
- 9.2.5. Requisitos de información

La autoridad de homologación procederá al control de la conformidad en circulación basándose en la información facilitada por el fabricante. Dicha información incluirá, en particular, lo siguiente:

- 9.2.5.1. el nombre y la dirección del fabricante;
- 9.2.5.2. el nombre, la dirección, los números de teléfono y fax, y la dirección de correo electrónico de su representante autorizado en las zonas a las que se refiera la información del fabricante;
- 9.2.5.3. la denominación o denominaciones de los modelos de los vehículos a los que se refiera la información del fabricante;
- 9.2.5.4. cuando proceda, la lista de los tipos de vehículos a los que se refiere la información del fabricante, es decir, en el caso de las emisiones de escape, el grupo de familias de vehículos en circulación de conformidad con el punto 9.2.4 del presente Reglamento y, en el caso del OBD y la IUPR_M, la familia de OBD, con arreglo al apéndice 2 del anexo 11 del presente Reglamento;
- 9.2.5.5. los códigos del número de identificación del vehículo (NIV) correspondientes a estos tipos de vehículos dentro de la familia (prefijo NIV);
- 9.2.5.6. los números de homologación de tipo correspondientes a estos tipos de vehículos dentro de la familia, incluidos, en su caso, los números de todas las extensiones y rectificaciones sobre el terreno/recuperaciones (modificaciones);
- 9.2.5.7. información sobre las extensiones y rectificaciones sobre el terreno/recuperaciones que afecten a las homologaciones de tipo de los vehículos a los que se refiera la información del fabricante (si así lo exige la autoridad de homologación de tipo);
- 9.2.5.8. el período de tiempo durante el cual se recogió la información del fabricante;
- 9.2.5.9. el período de fabricación del vehículo al que se refiera la información del fabricante (por ejemplo, vehículos fabricados durante el año civil 2014);
- 9.2.5.10. el procedimiento de verificación de la conformidad en circulación del fabricante, incluidos:
 - a) el método de localización del vehículo;
 - b) los criterios de selección y rechazo de los vehículos;
 - c) los tipos y procedimientos de ensayo utilizados en el programa;
 - d) los criterios del fabricante para aceptar/rechazar el grupo de familias de vehículos en circulación;
 - e) la zona o zonas geográficas en las que el fabricante ha recogido la información, y
 - f) el tamaño de la muestra y el plan de muestreo utilizados;
- 9.2.5.11. los resultados del procedimiento de verificación de la conformidad en circulación del fabricante, incluidos:
 - a) la identificación de los vehículos que se incluyen en el programa (sometidos a ensayo o no). Dicha identificación incluirá lo siguiente:
 - i) la denominación del modelo,
 - ii) el número de identificación del vehículo (NIV),
 - iii) el número de matrícula del vehículo,
 - iv) la fecha de fabricación,
 - v) la región de utilización (cuando se conozca), y
 - vi) los neumáticos montados (únicamente emisiones de escape);

- b) el motivo o motivos del rechazo de un vehículo de la muestra;
- c) el historial de servicio de cada vehículo de la muestra (incluida cualquier modificación);
- d) el historial de reparaciones de cada vehículo de la muestra (cuando se conozca), y
- e) los datos del ensayo, incluidos los siguientes:
 - i) la fecha del ensayo/descarga,
 - ii) el lugar del ensayo/descarga, y
 - iii) la distancia indicada en el cuentakilómetros, únicamente para las emisiones de escape:
 - iv) las especificaciones del combustible de ensayo (por ejemplo, combustible de referencia para el ensayo o combustible de mercado),
 - v) las condiciones del ensayo (temperatura, humedad y masa de inercia del dinamómetro),
 - vi) el reglaje del dinamómetro (por ejemplo, reglaje de la potencia), y
 - vii) los resultados del ensayo (de, al menos, tres vehículos diferentes por familia),
 - y solo para IUPR_M:
 - viii) todos los datos requeridos descargados del vehículo, y
 - ix) para cada monitor sobre el que debe informarse, la relación de rendimiento en uso IUPR_M;
- 9.2.5.12. los registros de indicación procedentes del sistema de diagnóstico a bordo;
- 9.2.5.13. para el muestreo de la IUPR_M, lo siguiente:
 - a) la media de las relaciones del rendimiento en uso de la $IUPR_M$ de todos los vehículos seleccionados para cada monitor con arreglo a los puntos 7.1.4 y 7.1.5 del apéndice 1 del anexo 11 del presente Reglamento;
 - b) el porcentaje de vehículos seleccionados, que tenga una IUPR_M superior o igual al valor mínimo aplicable al monitor con arreglo a los puntos 7.1.4 y 7.1.5 del apéndice 1 del anexo 11 del presente Reglamento.
- 9.3. Selección de vehículos para la conformidad en circulación
- 9.3.1. La información recabada por el fabricante deberá ser lo suficientemente completa como para garantizar que se pueda evaluar la conformidad en circulación en las condiciones normales de utilización. La muestra del fabricante se extraerá de al menos dos Partes en el Acuerdo cuyas condiciones de funcionamiento del vehículo sean sustancialmente diferentes. En la selección de las Partes en el Acuerdo se tomarán en consideración factores tales como las diferencias en los combustibles, las condiciones ambientales, las velocidades medias en carretera y la proporción de la conducción urbana y la conducción por carretera.

En el caso de únicamente ensayos de la $IUPR_M$ de la OBD, se incluirán en la muestra los vehículos que cumplen los criterios del punto 2.2.1 del apéndice 3 del presente Reglamento.

- 9.3.2. Al seleccionar las Partes en el Acuerdo para el muestreo de los vehículos, el fabricante podrá seleccionar vehículos de una Parte que se considere especialmente representativa. En este caso, el fabricante deberá demostrar a la autoridad de homologación que concedió la homologación de tipo que la selección es representativa (por ejemplo, por tratarse del mercado con mayores ventas anuales de una familia de vehículos en el territorio de la Parte en el Acuerdo en cuestión). Cuando sea necesario someter a ensayo más de un lote de muestras de una familia, como se especifica en el punto 9.3.5 del presente Reglamento, las condiciones de funcionamiento de los vehículos del segundo y tercer lote de muestras deberán ser distintas de las de los vehículos seleccionados para el primer lote.
- 9.3.3. Los ensayos de emisiones podrán efectuarse en una instalación de ensayo que esté situada en una región o un mercado distintos de aquellos en los que se hayan seleccionado los vehículos.
- 9.3.4. Los ensayos de conformidad de las emisiones de escape en circulación efectuados por el fabricante se llevarán a cabo de manera continuada, a fin de que reflejen el ciclo de producción de los tipos de vehículos aplicables dentro de una determinada familia de vehículos en circulación. El plazo máximo transcurrido entre el inicio de dos comprobaciones de conformidad en circulación no deberá exceder de 18 meses. En el caso de los tipos de vehículos amparados por una extensión de la homologación de tipo que no exija la realización de un ensayo de emisiones, el plazo podrá ampliarse hasta 24 meses.

9.3.5. Tamaño de la muestra

9.3.5.1. Al aplicar el procedimiento estadístico definido en el apéndice 4 del presente Reglamento (es decir, para las emisiones de escape), el número de lotes de muestras dependerá del volumen de ventas anual de una familia de vehículos en circulación en el territorio de una organización regional (por ejemplo, la Unión Europea), según se define en el cuadro 4.

Cuadro 4

Tamaño de la muestra

Matriculaciones: — por año civil (para ensayos de emisiones de escape), — de vehículos de una familia de OBD con IUPR en el período de muestreo	Número de lotes de muestras
Hasta 100 000	1
100 001 a 200 000	2
Más de 200 000	3

9.3.5.2. Para la IUPR, el número de lotes de muestras que debe tomarse se describe en el cuadro 4 y se basa en el número de vehículos de una familia de OBD homologados con la IUPR (objeto de muestreo).

Para el primer período de muestreo de una familia OBD, se considerarán objeto de muestreo todos los tipos de vehículo de la familia que estén homologados con IUPR. Para los períodos de muestreo siguientes, solamente se considerarán objeto de muestreo los tipos de vehículo que no hayan sido sometidos previamente a ensayo o que cuenten con homologaciones de las emisiones que hayan sido ampliadas desde el anterior período de muestreo.

En el caso de las familias formadas por menos de 5 000 matriculaciones y que sean objeto de muestreo dentro del período de muestreo, el número mínimo de vehículos en un lote de muestras es de seis. Para todas las demás familias, el número mínimo de vehículos en un lote de muestras que vaya a someterse a muestreo es de quince.

Cada lote de muestras representará adecuadamente la pauta de ventas, es decir, al menos estarán representados los tipos de vehículos con un gran volumen (≥ 20 % del total de la familia).

- 9.4. Atendiendo a los resultados de la comprobación a que se refiere el punto 9.2 del presente Reglamento, la autoridad de homologación de tipo adoptará una de las decisiones o medidas siguientes:
 - a) decidirá que la conformidad en circulación de un tipo de vehículo, una familia de vehículos en circulación o una familia OBD de vehículos es satisfactoria y no tomará ninguna medida;
 - b) decidirá que los datos suministrados por el fabricante no bastan para tomar una decisión y solicitará más información o datos del ensayo al fabricante;
 - c) decidirá que, basándose en los datos de la autoridad de homologación de tipo o de los programas de ensayos de vigilancia de la Parte en el Acuerdo, la información suministrada por el fabricante no basta para tomar una decisión y solicitará más información o datos del ensayo al fabricante, o
 - d) decidirá que la conformidad en circulación de un tipo de vehículo que forma parte de una familia en circulación, o de una familia OBD, no es satisfactoria y ordenará que esos tipos de vehículos o de familia OBD sean sometidos a ensayo con arreglo al apéndice 3 del presente Reglamento.

Si, según la comprobación de la $IUPR_M$, los vehículos de un lote de muestras cumplen los criterios de ensayo del punto 6.1.2, letras a) o b), del apéndice 3 del presente Reglamento, la autoridad de homologación de tipo adoptará las medidas descritas en la letra d) del presente apartado.

- 9.4.1. Cuando se consideren necesarios los ensayos de tipo I para verificar la conformidad de los dispositivos de control de emisiones con los requisitos de rendimiento en circulación, dichos ensayos se realizarán mediante un procedimiento que cumpla los criterios estadísticos establecidos en el apéndice 4 del presente Reglamento.
- 9.4.2. La autoridad de homologación seleccionará, en colaboración con el fabricante, una muestra de vehículos con suficiente kilometraje cuyo uso en condiciones normales se pueda garantizar razonablemente. Se consultará al fabricante sobre la selección de los vehículos de la muestra y se le permitirá asistir a los controles de confirmación de los vehículos.
- 9.4.3. Se autorizará al fabricante, bajo la supervisión de la autoridad de homologación de tipo, a realizar controles, incluso de carácter destructivo, en los vehículos cuyos niveles de emisión sobrepasen los valores límite, a fin de determinar las posibles causas de deterioro que no puedan atribuirse al fabricante (por ejemplo, el uso de gasolina con plomo antes de la fecha del ensayo). Cuando los resultados de los controles confirmen dichas causas, estos resultados se excluirán del proceso de verificación de la conformidad.
- 10. SANCIONES POR DISCONFORMIDAD DE LA PRODUCCIÓN
- 10.1. Si no se cumplen los requisitos establecidos en el punto 8.1 del presente Reglamento o si el vehículo o vehículos seleccionados no superan los ensayos establecidos en el punto 8.1.1 del mismo, podrá retirarse la homologación concedida con respecto a un tipo de vehículo con arreglo al presente Reglamento.
- 10.2. Cuando una Parte en el Acuerdo que aplique el presente Reglamento retire una homologación que había concedido anteriormente, informará de ello inmediatamente a las demás Partes que apliquen el presente Reglamento mediante un formulario de comunicación conforme al modelo recogido en el anexo 2 del presente Reglamento.
- 11. CESE DEFINITIVO DE LA PRODUCCIÓN

Si el titular de una homologación cesa por completo de fabricar un tipo de vehículo homologado con arreglo al presente Reglamento, informará de ello a la autoridad de homologación de tipo que concedió la homologación. Una vez recibida la correspondiente comunicación, dicha autoridad informará a las demás Partes en el Acuerdo de 1958 que apliquen el presente Reglamento mediante copias del formulario de comunicación conforme al modelo que figura en el anexo 2 del presente Reglamento.

- 12. DISPOSICIONES TRANSITORIAS
- 12.1. Disposiciones generales
- 12.1.1. A partir de la fecha oficial de entrada en vigor de la serie 07 de modificaciones, ninguna Parte en el Acuerdo que aplique el presente Reglamento denegará la concesión de una homologación con arreglo a este en su versión modificada por la serie 07 de modificaciones.
- 12.1.2. Las disposiciones relativas a la homologación de tipo y a la verificación de la conformidad de la producción establecidas en el presente Reglamento en su versión modificada por la serie 06 de modificaciones seguirán siendo de aplicación hasta las fechas a las que se hace referencia en los puntos 12.2.1 y 12.2.2 del presente Reglamento.
- 12.2. Nuevas homologaciones de tipo
- 12.2.1. A partir del 1 de septiembre de 2014 en el caso de los vehículos de categorías M o N₁ (clase I), y a partir del 1 de septiembre de 2015 en el caso de los vehículos de las categorías N₁ (clases II o III) y N₂, las Partes en el Acuerdo que apliquen el presente Reglamento concederán la homologación CEPE a los nuevos tipos de vehículo solo si cumplen las condiciones siguientes:
 - a) los límites para el ensayo de tipo I en el cuadro 1 del punto 5.3.1.4 del presente Reglamento, y
 - b) los límites umbral preliminares del OBD del cuadro A11/2 del punto 3.3.2.2 del anexo 11 del presente Reglamento.
- 12.2.2. A partir del 1 de septiembre de 2015 en el caso de los vehículos de categorías M o N_1 (clase I), y a partir del 1 de septiembre de 2016 en el caso de los vehículos de las categorías N_1 (clases II o III) y N_2 , las Partes en el Acuerdo que apliquen el presente Reglamento concederán la homologación CEPE a los nuevos vehículos solo si cumplen las condiciones siguientes:
 - a) los límites para el ensayo de tipo I en el cuadro 1 del punto 5.3.1.4 del presente Reglamento, y
 - b) los límites umbral preliminares del OBD del cuadro A11/2 del punto 3.3.2.2 del anexo 11 del presente Reglamento.

- 12.2.3. A partir del 1 de septiembre de 2017 en el caso de los vehículos de categorías M o N_1 (clase I), y a partir del 1 de septiembre de 2018 en el caso de los vehículos de las categorías N_1 (clases II o III) y N_2 , las Partes en el Acuerdo que apliquen el presente Reglamento concederán la homologación CEPE a los nuevos tipos de vehículo solo si cumplen las condiciones siguientes:
 - a) los límites para el ensayo de tipo I en el cuadro 1 del punto 5.3.1.4 del presente Reglamento, y
 - b) los límites umbral finales del OBD del cuadro A11/1 del punto 3.3.2.1 del anexo 11 del presente Reglamento.
- 12.2.4. A partir del 1 de septiembre de 2018 en el caso de los vehículos de categorías M o N_1 (clase I), y a partir del 1 de septiembre de 2019 en el caso de los vehículos de las categorías N_1 (clases II o III) y N_2 , las Partes en el Acuerdo que apliquen el presente Reglamento concederán la homologación CEPE a los nuevos vehículos solo si cumplen las condiciones siguientes:
 - a) los límites para el ensayo de tipo I en el cuadro 1 del punto 5.3.1.4 del presente Reglamento, y
 - b) los límites umbral finales del OBD del cuadro A11/1 del punto 3.3.2.1 del anexo 11 del presente Reglamento.
- 12.3. Disposiciones particulares
- 12.3.1. Las Partes en el Acuerdo que apliquen el presente Reglamento podrán seguir concediendo homologaciones a aquellos vehículos que cumplan alguna de las series anteriores de modificaciones y el presente Reglamento, siempre y cuando dichos vehículos estén destinados a la venta o a la exportación a países que apliquen los requisitos correspondientes en su legislación nacional.
- 13. NOMBRES Y DIRECCIONES DE LOS SERVICIOS TÉCNICOS ENCARGADOS DE REALIZAR LOS ENSAYOS DE HOMOLOGACIÓN Y DE LAS AUTORIDADES DE HOMOLOGACIÓN DE TIPO

Las Partes en el Acuerdo de 1958 que aplican el presente Reglamento comunicarán a la Secretaría General de las Naciones Unidas los nombres y direcciones de los servicios técnicos responsables de realizar los ensayos de homologación y de las autoridades de homologación de tipo que conceden la homologación y a las cuales deban remitirse los formularios de certificación de la concesión, extensión, denegación o retirada de la homologación expedidos en otros países.

Apéndice 1

Procedimiento para verificar la conformidad de los requisitos de producción si la desviación estándar de la producción facilitada por el fabricante es satisfactoria

- 1. En el presente apéndice se describe el procedimiento que debe seguirse para verificar la conformidad de la producción en el ensayo de tipo I cuando la desviación estándar de la producción del fabricante es satisfactoria.
- 2. Con un tamaño mínimo de muestra de 3, se establecerá el procedimiento de muestreo de manera que la probabilidad de que un lote supere un ensayo con el 40 % de la producción defectuosa sea del 0,95 (riesgo para el productor = 5 %) y la probabilidad de que un lote sea aceptado con el 65 % de la producción defectuosa sea del 0,1 (riesgo para el consumidor = 10 %).
- 3. Para cada uno de los contaminantes que figuran en el cuadro 1 del apartado 5.3.1.4 del presente Reglamento, se utilizará el siguiente procedimiento (véase la figura 2 del punto 8.2 del presente Reglamento).

Teniendo en cuenta que:

L = el logaritmo natural del valor límite del contaminante,

x_i = el logaritmo natural de la medición del vehículo i de la muestra,

s = un cálculo de la desviación tipo de la producción (tras tomar el logaritmo natural de las mediciones),

n = el número de la muestra considerada.

 Se calcula para la muestra la estadística del ensayo por la que se cuantifica la suma de las desviaciones estándar a partir del límite y que se define como:

$$\frac{1}{s} \sum_{i=1}^{n} (L - x_i)$$

- 5. A partir de ahí:
- 5.1. si la estadística del ensayo es superior al número correspondiente a la decisión de aprobado para el tamaño de la muestra que figura en el cuadro Ap1/1, se adoptará una decisión de aprobado con respecto al contaminante;
- 5.2. si la estadística del ensayo es inferior al número correspondiente a la decisión de suspenso para el tamaño de la muestra que figura en el cuadro Ap1/1, se adoptará una decisión de suspenso con respecto al contaminante; de lo contrario, se someterá a ensayo otro vehículo y se aplicará de nuevo el cálculo a la muestra aumentando el tamaño en una unidad.

Cuadro Ap1/1

Número correspondiente a la decisión de aprobado para el tamaño de la muestra

Número acumulado de vehículos some- tidos a ensayo (tamaño de la muestra considerada)	Umbral de decisión de aprobado	Umbral de decisión de suspenso
3	3,327	- 4,724
4	3,261	- 4,79
5	3,195	- 4,856
6	3,129	- 4,922
7	3,063	- 4,988
8	2,997	- 5,054

Número acumulado de vehículos some- tidos a ensayo (tamaño de la muestra considerada)	Umbral de decisión de aprobado	Umbral de decisión de suspenso
9	2,931	- 5,12
10	2,865	- 5,185
11	2,799	- 5,251
12	2,733	- 5,317
13	2,667	- 5,383
14	2,601	- 5,449
15	2,535	- 5,515
16	2,469	- 5,581
17	2,403	- 5,647
18	2,337	- 5,713
19	2,271	- 5,779
20	2,205	- 5,845
21	2,139	- 5,911
22	2,073	- 5,977
23	2,007	- 6,043
24	1,941	- 6,109
25	1,875	- 6,175
26	1,809	- 6,241
27	1,743	- 6,307
28	1,677	- 6,373
29	1,611	- 6,439
30	1,545	- 6,505
31	1,479	- 6,571
32	- 2,112	- 2,112

Apéndice 2

Procedimiento para verificar la conformidad de los requisitos de producción si la desviación estándar de la producción facilitada por el fabricante no es satisfactoria o no está disponible

- En el presente apéndice se describe el procedimiento que debe seguirse para verificar la conformidad de la producción en el ensayo de tipo I cuando los datos de la desviación estándar de la producción del fabricante no son satisfactorios o no están disponibles.
- 2. Con un tamaño de muestra mínimo de 3, se establecerá el procedimiento de muestreo de manera que la probabilidad de que un lote supere un ensayo con el 40 % de la producción defectuosa sea del 0,95 (riesgo para el productor = 5 %) y la probabilidad de que un lote sea aceptado con el 65 % de la producción defectuosa sea del 0,1 (riesgo para el consumidor = 10 %).
- 3. Se considera que las mediciones de los contaminantes que figuran en el cuadro 1 del apartado 5.3.1.4 del presente Reglamento presentan una distribución logarítmica normal y se transformarán previamente tomando sus logaritmos naturales. Se partirá de la base de que m₀ y m indican el tamaño mínimo y máximo de la muestra, respectivamente (m₀ = 3 y m = 32), y n indica el número de la muestra considerada.
- 4. Si los logaritmos naturales de las mediciones de la serie son x_1 , x_2 ..., x_i y L es el logaritmo natural del valor límite del contaminante, se definirán entonces:

$$d_1 = x_1 - L$$

$$\overline{d}_n = \frac{1}{n} \sum_{i=1}^n d_i$$

y

$$V_n^2 = \frac{1}{n} \sum_{i=1}^n (d_i - \overline{d}_n)^2$$

5. El cuadro Ap2/1 muestra los números correspondientes a la decisión de aprobación (A_n) y de rechazo (B_n) respecto al número de la muestra utilizada. La estadística del ensayo es la relación \overline{d}_n/V_n y se utilizará para determinar si la serie ha superado o no el ensayo de la manera siguiente:

Siendo $m_0 \le n \le m$:

- i) $\;\;$ la serie supera el ensayo si $\frac{\overline{d}_n}{V_n} \leq A_n$
- ii) la serie no supera el ensayo si $\frac{\overline{d}_n}{V_-} \geq B_n$
- iii) se toma otra medición si $A_n < \frac{\overline{d}_n}{V_n} < B_n$
- 6. Observaciones

Las fórmulas de recurrencia siguientes son útiles para calcular los valores sucesivos de la estadística del ensayo:

$$\overline{d}_n = \left(1 - \frac{1}{n}\right) \overline{d}_{n-1} + \frac{1}{n} d_n$$

$$V_n^2 = \left(1 - \frac{1}{n}\right) V_{n-1}^2 + \left\lceil \overline{\underline{d}_n - d_n} \right\rceil^2$$

$$(n = 2,3,...; \overline{d}_1 = d_1; V_1 = 0)$$

Cuadro Ap2/1 Tamaño mínimo de la muestra = 3

Tamaño de la muestra (n)	Umbral de decisión de aprobado (A _n)	Umbral de decisión de suspenso (B _n)
3	- 0,80381	16,64743
4	- 0,76339	7,68627
5	- 0,72982	4,67136
6	- 0,69962	3,25573
7	- 0,67129	2,45431
8	- 0,64406	1,94369
9	- 0,61750	1,59105
10	- 0,59135	1,33295
11	- 0,56542	1,13566
12	- 0,53960	0,97970
13	- 0,51379	0,85307
14	- 0,48791	0,74801
15	- 0,46191	0,65928
16	- 0,43573	0,58321
17	- 0,40933	0,51718
18	- 0,38266	0,45922
19	- 0,35570	0,40788
20	- 0,32840	0,36203
21	- 0,30072	0,32078
22	- 0,27263	0,28343
23	- 0,24410	0,24943
24	- 0,21509	0,21831
25	- 0,18557	0,18970
26	- 0,15550	0,16328
27	- 0,12483	0,13880
28	- 0,09354	0,11603
29	- 0,06159	0,09480
30	- 0,02892	0,07493
31	0,00449	0,05629
32	0,03876	0,03876

Verificación de la conformidad en circulación

1. INTRODUCCIÓN

En el presente apéndice se establecen los criterios a los que se refieren los puntos 9.3 y 9.4 del presente Reglamento relativos a la selección de vehículos que van a someterse a ensayo y los procedimientos para el control de la conformidad en circulación.

2. CRITERIOS DE SELECCIÓN

Los criterios para aceptar un vehículo seleccionado, en el caso de las emisiones de escape, se definen en los puntos 2.1 a 2.8 del presente apéndice y, en el caso de la IUPR_M, en los puntos 2.1 a 2.5 del presente apéndice. Se recogerá la información mediante el examen del vehículo y a través de una entrevista con el propietario/conductor.

- 2.1. El vehículo deberá pertenecer a un tipo homologado con arreglo al presente Reglamento y ser objeto de un certificado de conformidad con arreglo a lo dispuesto en el Acuerdo de 1958. Deberá estar matriculado y utilizarse en un país que sea Parte en el Acuerdo.
- 2.2. El vehículo deberá presentar un kilometraje mínimo de 15 000 km o haber circulado al menos durante 6 meses (prevalecerá la circunstancia que se produzca en último lugar) y un kilometraje no superior a 100 000 km o haber circulado como máximo durante 5 años (prevalecerá la circunstancia que se produzca en primer lugar).
- 2.2.1. Para la verificación de la IUPR_M, la muestra de ensayo solamente incluirá vehículos que:
 - a) hayan recogido suficientes datos de funcionamiento del vehículo para someter a ensayo el monitor.

En el caso de los monitores que deben cumplir la relación del rendimiento en uso del monitor, así como localizar y comunicar datos sobre relaciones de conformidad con el punto 7.6.1 del apéndice 1 del anexo 11 del presente Reglamento, se entenderá por suficientes datos de funcionamiento del vehículo que el denominador cumpla los criterios que se presentan a continuación. El denominador, definido en los puntos 7.3 y 7.5 del apéndice 1 del anexo 11 del presente Reglamento, correspondiente al monitor que vaya a someterse a ensayo, tendrá un valor igual o superior a uno de los valores siguientes:

- i) 75 para monitores del sistema de evaporación, monitores del sistema de aire secundario y monitores que utilicen un denominador incrementado de conformidad con el punto 7.3.2, letras a), b) o c), del apéndice 1 del anexo 11 del presente Reglamento (por ejemplo, monitores del arranque en frío, monitores del sistema de aire acondicionado, etc.), o
- ii) 25 para monitores del filtro de partículas y monitores del catalizador de oxidación que utilicen un denominador incrementado de conformidad con el punto 7.3.2, letra d), del apéndice 1 del anexo 11 del presente Reglamento, o
- iii) 150 para monitores del catalizador, sensor de oxígeno, EGR, VVT y todos los otros componentes;
- b) no han sido manipulados ni están equipados con piezas modificadas o añadidas que pudieran provocar que el sistema OBD incumpliera los requisitos del anexo 11 del presente Reglamento.
- 2.3. Deberá estar provisto de un registro de mantenimiento que atestigüe que ha sido objeto de un mantenimiento correcto, es decir, que las revisiones se han realizado de conformidad con las recomendaciones del fabricante.
- 2.4. El vehículo no deberá presentar señales de uso abusivo (por ejemplo, participación en carreras, exceso de carga, uso de carburante inadecuado u otro uso inapropiado) ni de otros factores (manipulación, etc.) que puedan afectar a su nivel de emisiones. Se tendrá en cuenta el código de fallo, así como la información sobre el kilometraje almacenada en el ordenador. No se seleccionará para ensayo un vehículo cuando la información almacenada en el ordenador muestre que ha sido utilizado después de registrarse un código de fallo y que la reparación no se ha llevado a cabo en un plazo razonable.
- 2.5. No deberá haberse efectuado ninguna reparación importante del motor o del vehículo sin autorización.
- 2.6. El contenido en plomo y azufre de la muestra de combustible procedente del depósito del vehículo deberá cumplir las normas aplicables y no habrá indicios de que se ha utilizado un combustible inadecuado. Podrán realizarse controles del sistema de escape, etc.

- 2.7. No habrá indicios de ningún problema que pueda poner en peligro la seguridad del personal de laboratorio.
- 2.8. Todos los componentes del sistema anticontaminante del vehículo deberán ser conformes a la homologación de tipo aplicable.

3. DIAGNÓSTICO Y MANTENIMIENTO

Antes de proceder a la medición de las emisiones de escape, se realizará un diagnóstico, así como cualquier operación necesaria de mantenimiento normal, en los vehículos aceptados para el ensayo, de conformidad con el procedimiento establecido en los puntos 3.1 a 3.8 del presente apéndice.

- 3.1. Se llevarán a cabo los siguientes controles: se verificará la integridad del filtro de aire, las correas de transmisión, los niveles de los líquidos, la tapa del radiador, los tubos de vacío y los cables eléctricos relacionados con el sistema anticontaminante; se comprobará, además, el desajuste o el reglaje fraudulentos de los componentes del encendido, la medición del combustible y los dispositivos anticontaminantes, y se anotarán todas las discrepancias.
- 3.2. Se verificará el correcto funcionamiento del sistema de diagnóstico a bordo. Se registrarán todas las indicaciones de mal funcionamiento que contenga la memoria y se procederá a las reparaciones necesarias. Si el indicador de mal funcionamiento del diagnóstico a bordo registra un fallo durante el ciclo de preacondicionamiento, podrá identificarse y remediarse dicho fallo. Podrá repetirse el ensayo y utilizarse los resultados del vehículo reparado.
- 3.3. Se verificará el sistema de encendido y se sustituirán los componentes defectuosos, como las bujías, los cables, etc.
- 3.4. Se verificará la compresión; si los resultados no son satisfactorios, se rechazará el vehículo.
- 3.5. Se verificarán los parámetros del motor cotejándolos con las especificaciones del fabricante y, si es necesario, se procederá a su ajuste.
- 3.6. Si el vehículo presenta un kilometraje inferior en 800 km al previsto para la siguiente revisión de mantenimiento, dicha revisión se efectuará de acuerdo con las instrucciones del fabricante. A petición del fabricante y con independencia del kilometraje, podrá realizarse el cambio de aceite y de filtro de aire.
- 3.7. Previa aceptación del vehículo, se sustituirá el combustible por un combustible de referencia apropiado para el ensayo de emisiones, a menos que el fabricante acepte la utilización de combustible disponible en el mercado.
- 3.8. En el caso de los vehículos equipados con sistemas de regeneración periódica, definidos en el punto 2.20 del presente Reglamento, se determinará que el vehículo no se acerca a un período de regeneración. (Se dará la oportunidad de confirmarlo al fabricante).
- 3.8.1. Si no es así, se conducirá el vehículo hasta que finalice la regeneración. Si durante la medición de las emisiones tiene lugar una regeneración, se realizará un nuevo ensayo para asegurarse que esta se ha completado. A continuación, se realizará un nuevo ensayo completo y no se tendrán en cuenta los resultados de los dos primeros.
- 3.8.2. A modo de alternativa al punto 3.8.1 anterior, cuando el vehículo se acerque a una regeneración, el fabricante podrá solicitar que se utilice un ciclo de acondicionamiento específico para garantizar dicha regeneración (por ejemplo, alta velocidad, conducción con carga elevada, etc.).

El fabricante podrá solicitar que los ensayos se realicen inmediatamente después de la regeneración o tras el ciclo de acondicionamiento especificado por él y el ensayo normal de preacondicionamiento.

4. ENSAYOS EN CIRCULACIÓN

4.1. Cuando se considere necesario proceder al control de los vehículos, los ensayos de emisiones con arreglo al anexo 4 bis del presente Reglamento se llevarán a cabo en vehículos preacondicionados seleccionados de acuerdo con los requisitos de los puntos 2 y 3 del presente apéndice. Solo se permitirán ciclos de preacondicionamiento adicionales a los especificados en el punto 6.3 del anexo 4 bis del presente Reglamento cuando sean representativos de la conducción normal.

- 4.2. En los vehículos equipados con un sistema OBD, podrá verificarse el funcionamiento adecuado en circulación de la indicación de mal funcionamiento, etc., en relación con los niveles de emisión (véanse los límites de indicación de mal funcionamiento definidos en el anexo 11 del presente Reglamento) para las especificaciones homologadas.
- 4.3. En los sistemas de diagnóstico a bordo, podrán verificarse, por ejemplo, los niveles de emisión que sobrepasen los valores límite aplicables sin indicación de mal funcionamiento, la activación sistemática errónea de la indicación de mal funcionamiento y los componentes del sistema de diagnóstico a bordo que presenten fallos o estén deteriorados.
- 4.4. Si un componente o sistema funciona al margen de lo precisado en el certificado de homologación de tipo o en el expediente de homologación de tipo para esos tipos de vehículos, y semejante desviación no ha sido autorizada con arreglo al Acuerdo de 1958, sin indicación alguna de mal funcionamiento por parte del diagnóstico a bordo, dicho componente o sistema no se sustituirá antes del ensayo de emisiones, a menos que se concluya que el componente o sistema en cuestión ha sido manipulado fraudulentamente de tal modo que el diagnóstico a bordo no detecte el mal funcionamiento resultante.
- 5. EVALUACIÓN DE LOS RESULTADOS DEL ENSAYO DE EMISIONES
- 5.1. Los resultados de la prueba serán enviados a evaluación de conformidad con lo dispuesto en el apéndice 4 del presente Reglamento.
- 5.2. Los resultados de los ensayos no se multiplicarán por los factores de deterioro.
- 5.3. En el caso de los sistemas de regeneración periódica definidos en el punto 2.20 del presente Reglamento, los resultados se multiplicarán por los factores K_i obtenidos en el momento de la concesión de la homologación de tipo.
- 6. PLAN DE MEDIDAS CORRECTORAS
- 6.1. La autoridad de homologación de tipo solicitará al fabricante que le presente un plan de medidas correctoras para remediar la falta de conformidad cuando:
- 6.1.1. Para emisiones de escape, más de un vehículo resulte ser fuente de emisión que excede considerablemente de los valores límite y que, o bien:
 - a) cumple las condiciones del punto 3.2.2 del apéndice 4 del presente Reglamento y tanto la autoridad de homologación de tipo como el fabricante coinciden en que la emisión excesiva se debe a la misma causa, o
 - b) cumple las condiciones del punto 3.2.3 del apéndice 4 del presente Reglamento y la autoridad de homologación de tipo ha determinado que la emisión excesiva se debe a la misma causa.

La autoridad de homologación de tipo solicitará al fabricante que le presente un plan de medidas correctoras para remediar la falta de conformidad.

- 6.1.2. Para la IUPR_M de un monitor M específico, se cumplen las siguientes condiciones estadísticas en una muestra de ensayo, cuyo tamaño se determina con arreglo al punto 9.3.5 del presente Reglamento:
 - a) para los vehículos certificados con una relación de 0,1 de conformidad con el punto 7.1.5 del apéndice 1 del anexo 11 del presente Reglamento, los datos recogidos de los vehículos indiquen, para al menos un monitor M en la muestra de ensayo, bien que la relación media de rendimiento en uso de la muestra de ensayo es inferior a 0,1, o bien que el 66 % o más de los vehículos de la muestra de ensayo tienen una relación de rendimiento en uso del monitor inferior a 0,1;
 - b) para los vehículos certificados con relaciones completas de conformidad con el punto 7.1.4 del apéndice 1 del anexo 11 del presente Reglamento, los datos recogidos de los vehículos indiquen, para al menos un monitor M de la muestra de ensayo, bien que la relación media de rendimiento en uso de la muestra de ensayo es inferior al valor de Ensayo_{mín} (M), o bien que el 66 % o más de los vehículos en la muestra de ensayo tienen una relación de rendimiento en uso del monitor inferior a Ensayo_{mín} (M).

El valor de Ensayo_{mín} (M) será:

- i) 0,230 si el monitor M debe tener una relación en uso de 0,26,
- ii) 0,460 si el monitor M debe tener una relación en uso de 0,52,
- iii) 0,297 si el monitor M debe tener una relación en uso de 0,336,

con arreglo al punto 7.1.4 del apéndice 1 del anexo 11 del presente Reglamento.

- 6.2. El plan de medidas correctoras se enviará a la autoridad de homologación de tipo en un plazo máximo de 60 días laborables a partir de la fecha de notificación a que se refiere el punto 6.1 anterior. Dicha autoridad dispondrá de un plazo de 30 días laborables para declarar si aprueba o desaprueba el plan de medidas correctoras. No obstante, cuando el fabricante pueda demostrar, a satisfacción de la autoridad de homologación de tipo, que necesita más tiempo para investigar la falta de conformidad a fin de presentar el plan de medidas correctoras, se concederá una prórroga.
- 6.3. Las medidas correctoras se aplicarán a todos los vehículos con probabilidades de presentar el mismo defecto. Se evaluará la necesidad de modificar los documentos de homologación de tipo.
- 6.4. El fabricante facilitará una copia de cualquier comunicación relacionada con el plan de medidas correctoras. Asimismo, llevará un registro de la campaña de recuperación y presentará informes de situación periódicos a la autoridad de homologación de tipo.
- 6.5. El plan de medidas correctoras incluirá los requisitos especificados en los puntos 6.5.1 a 6.5.11 siguientes. El fabricante asignará un único número o nombre identificador al plan de medidas correctoras.
- 6.5.1. Una descripción de cada tipo de vehículo incluido en el plan de medidas correctoras.
- 6.5.2. Una descripción de las modificaciones, alteraciones, reparaciones, correcciones, reglajes u otros cambios específicos que han de realizarse para que los vehículos sean conformes y un breve resumen de los datos y estudios técnicos en los que se apoya la decisión del fabricante en cuanto a las medidas concretas que van a adoptarse para corregir la falta de conformidad.
- 6.5.3. Una descripción del método que utilizará el fabricante para informar a los propietarios de los vehículos.
- 6.5.4. Una descripción del mantenimiento o uso adecuado, en su caso, que estipula el fabricante como condición para que los vehículos puedan ser seleccionados con vistas a su reparación con arreglo al plan de medidas correctoras y explicación de los motivos del fabricante para imponer dicha condición. No podrán imponerse condiciones relativas al mantenimiento o al uso a menos que se pueda demostrar su relación con la falta de conformidad y con las medidas correctoras.
- 6.5.5. Una descripción del procedimiento que deberán seguir los propietarios de los vehículos para obtener la corrección de la falta de conformidad. Esta descripción incluirá la fecha a partir de la cual podrán adoptarse las medidas correctoras, el tiempo estimado para que el taller realice la reparación y el lugar en que esta podrá llevarse a cabo. La reparación se efectuará convenientemente, en un plazo razonable a partir de la entrega del vehículo.
- 6.5.6. Una copia de la información transmitida al propietario del vehículo.
- 6.5.7. Una breve descripción del sistema que utilizará el fabricante para garantizar el suministro adecuado de componentes o sistemas a la hora de aplicar la medida correctora. Se indicará cuándo habrá un suministro adecuado de componentes o sistemas para poner en marcha la campaña.
- 6.5.8. Una copia de todas las instrucciones que han de enviarse a las personas que intervienen en la reparación.
- 6.5.9. Una descripción de las repercusiones que tienen las medidas correctoras propuestas en las emisiones, el consumo de combustible, la facilidad de conducción y la seguridad de cada tipo de vehículo, incluidas en el plan de medidas correctoras con los datos, los estudios técnicos, etc., en los que se apoyan tales conclusiones.
- 6.5.10. Cualquier información, informe o dato adicional que la autoridad de homologación de tipo pueda razonablemente considerar necesario para evaluar el plan de medidas correctoras.

- 6.5.11. Cuando el plan de medidas correctoras incluya una recuperación, se enviará a la autoridad de homologación de tipo una descripción del método de registro de la reparación. En caso de que se utilice una etiqueta, se remitirá un ejemplar de la misma.
- 6.6. El fabricante podrá ser requerido para llevar a cabo ensayos razonablemente diseñados y necesarios en componentes y vehículos en los que se haya realizado un cambio, una reparación o una modificación propuestos, para demostrar la eficacia de dicho cambio, reparación o modificación.
- 6.7. El fabricante es responsable de llevar un registro de cada vehículo recuperado y reparado y del taller que efectuó la reparación. La autoridad de homologación de tipo tendrá acceso a dicho registro, previa petición, durante un plazo de 5 años a partir de la aplicación del plan de medidas correctoras.
- 6.8. La reparación o modificación o la incorporación de nuevos equipos se hará constar en un certificado que facilitará el fabricante al propietario del vehículo.

Procedimiento estadístico utilizado en los ensayos de conformidad en circulación de las emisiones de escape

- 1. En el presente apéndice se describe el procedimiento que debe utilizarse para verificar los requisitos de conformidad en circulación en el ensayo de tipo I.
- 2. Se seguirán dos procedimientos diferentes:
 - a) uno se aplicará a los vehículos identificados en la muestra que, debido a un defecto relacionado con la emisión, causan anomalías en los resultados (punto 3 del presente apéndice);
 - b) el otro se aplicará a toda la muestra (punto 4 del presente apéndice).
- 3. Procedimiento que ha de seguirse con los vehículos de la muestra que exceden considerablemente los valores límite
- 3.1. Con un tamaño de muestra mínimo de 3 y un tamaño de muestra máximo determinado por el procedimiento del punto 4 del presente apéndice, se elige al azar un vehículo de la muestra y se miden las emisiones de los contaminantes regulados para determinar si exceden considerablemente los valores límite.
- 3.2. Se considera que un vehículo excede considerablemente los valores límite cuando se cumplen las condiciones del punto 3.2.1 del presente apéndice.
- 3.2.1. En el caso de un vehículo que haya recibido la homologación de tipo de conformidad con los valores límite que figuran en el cuadro 1 del punto 5.3.1.4 del presente Reglamento, se considerará que el vehículo excede considerablemente los valores límite cuando supere en un factor de 1,5 el valor límite aplicable en relación con cualquier contaminante regulado.
- 3.2.2. En el caso específico de un vehículo con emisiones medidas para cualquier contaminante regulado dentro de la «zona intermedia» (¹):
- 3.2.2.1. Si el vehículo cumple las condiciones del presente punto, deberá determinarse la causa de la emisión excesiva y se elegirá al azar otro vehículo de la muestra.
- 3.2.2.2. Cuando más de un vehículo cumpla la condición del presente punto, la autoridad de homologación de tipo y el fabricante determinarán si la emisión excesiva de ambos vehículos se debe o no a la misma causa.
- 3.2.2.2.1. Cuando la autoridad de homologación de tipo y el fabricante coincidan en que la emisión excesiva se debe a la misma causa, la muestra se considerará no conforme y se aplicará el plan de medidas correctoras que figura en el punto 6 del apéndice 3 del presente Reglamento.
- 3.2.2.2.2. Cuando la autoridad de homologación de tipo y el fabricante no coincidan en la causa de las emisiones excesivas de un vehículo concreto o en que esas causas sean las mismas para más de un vehículo, se examinará otro vehículo de la muestra al azar a menos que ya se haya alcanzado el tamaño máximo de la muestra.
- 3.2.2.3. Cuando solo se haya encontrado un vehículo que cumpla las condiciones del presente punto o cuando se haya encontrado más de un vehículo y la autoridad de homologación de tipo y el fabricante coincidan en que las causas son diferentes, se elegirá al azar otro vehículo de la muestra, a menos que ya se haya alcanzado el tamaño máximo de esta.
- 3.2.2.4. Cuando se haya alcanzado el tamaño máximo de la muestra y solo se haya encontrado un vehículo que cumpla los requisitos del presente punto cuya emisión excesiva se deba a la misma causa, se considerará que la muestra es conforme a los requisitos del punto 3 del presente apéndice.

⁽¹) En relación con cualquier vehículo, la «zona intermedia» se determina de la siguiente manera: el vehículo deberá cumplir las condiciones del punto 3.2.1 anterior y, además, el valor medido para el mismo contaminante regulado deberá ser inferior al nivel determinado a partir del producto del valor límite para el mismo contaminante regulado que figura en el cuadro 1 del punto 5.3.1.4 del presente Reglamento multiplicado por un factor de 2,5.

- 3.2.2.5. Si en cualquier momento se agota la muestra inicial, se añadirá otro vehículo a esta y se elegirá dicho vehículo.
- 3.2.2.6. Cada vez que se elija un nuevo vehículo de la muestra, se aplicará el procedimiento estadístico del punto 4 del presente apéndice a la muestra ampliada.
- 3.2.3. En el caso específico de un vehículo con emisiones medidas para cualquier contaminante regulado dentro de la «zona de suspenso» (¹):
- 3.2.3.1. Cuando el vehículo cumpla las condiciones del presente punto, la autoridad de homologación de tipo determinará la causa de la emisión excesiva y se elegirá al azar otro vehículo de la muestra.
- 3.2.3.2. Cuando más de un vehículo cumpla las condiciones del presente apartado y la autoridad de homologación de tipo determine que la emisión excesiva se debe a la misma causa, se comunicará al fabricante que la muestra se considera no conforme, junto con las razones para esa decisión, y se aplicará el plan de medidas correctoras que figura en el punto 6 del apéndice 3 del presente Reglamento.
- 3.2.3.3. Cuando solo se haya encontrado un vehículo que cumpla las condiciones del presente punto o cuando se haya encontrado más de un vehículo y la autoridad de homologación de tipo haya determinado que se debe a causas diferentes, se elegirá al azar otro vehículo de la muestra, a menos que ya se haya alcanzado el tamaño máximo de esta.
- 3.2.3.4. Cuando se haya alcanzado el tamaño máximo de la muestra y solo se haya encontrado un vehículo que cumpla los requisitos del presente punto cuya emisión excesiva se deba a la misma causa, se considerará que la muestra es conforme a los requisitos del punto 3 del presente apéndice.
- 3.2.3.5. Si en cualquier momento se agota la muestra inicial, se añadirá otro vehículo a esta y se elegirá dicho vehículo.
- 3.2.3.6. Cada vez que se elija un nuevo vehículo de la muestra, se aplicará el procedimiento estadístico del punto 4 del presente apéndice a la muestra ampliada.
- 3.2.4. Cada vez que un vehículo no exceda considerablemente los valores límite, se elegirá al azar otro vehículo de la muestra.
- 3.3. Cuando se encuentre un vehículo que exceda considerablemente los valores límite, se determinará la causa del exceso de emisión.
- 3.4. Cuando más de un vehículo exceda considerablemente los valores límite debido a la misma causa, se considerará que la muestra no ha superado la prueba.
- 3.5. Cuando se encuentre solo un vehículo que exceda considerablemente los valores límite, o cuando se encuentre más de un vehículo que exceda considerablemente los valores límite pero debido a causas diferentes, se incrementará la muestra en un vehículo, a menos que ya se haya alcanzado el tamaño máximo de muestra.
- 3.5.1. Cuando en la muestra aumentada se encuentre más de un vehículo que excede considerablemente de los valores límite debido a la misma causa, se considerará que la muestra no ha superado la prueba.
- 3.5.2. Cuando en el tamaño máximo de muestra no se encuentre más de un vehículo que excede considerablemente los valores límite, si el exceso de emisión se debe a la misma causa, se considerará que la muestra ha superado la prueba en lo que se refiere a los requisitos del punto 3 del presente apéndice.
- 3.6. Siempre que se aumente una muestra debido a los requisitos del punto 3.5 anterior, se aplicará a la muestra aumentada el procedimiento estadístico del punto 4.

⁽¹) En relación con cualquier vehículo, la «zona de suspenso» se determina de la siguiente manera: el valor medido para cualquier contaminante regulado supera un nivel determinado a partir del producto del valor límite para el mismo contaminante regulado que figura en el cuadro 1 del punto 5.3.1.4 del presente Reglamento multiplicado por un factor de 2,5.

- 4. Procedimiento que ha de seguirse sin la evaluación por separado en la muestra de los vehículos que exceden considerablemente los valores límite
- 4.1. Con un tamaño mínimo de muestra de tres, se establecerá el procedimiento de muestreo de manera que la probabilidad de que un lote supere un ensayo con el 40 % de la producción defectuosa sea del 0,95 (riesgo para el productor = 5 %) y la probabilidad de que un lote sea aceptado con el 75 % de la producción defectuosa sea del 0,15 (riesgo para el consumidor = 15 %).
- 4.2. Para cada uno de los contaminantes que figuran en el cuadro 1 del punto 5.3.1.4 del presente Reglamento, se utilizará el siguiente procedimiento (véase la figura Ap4/2).

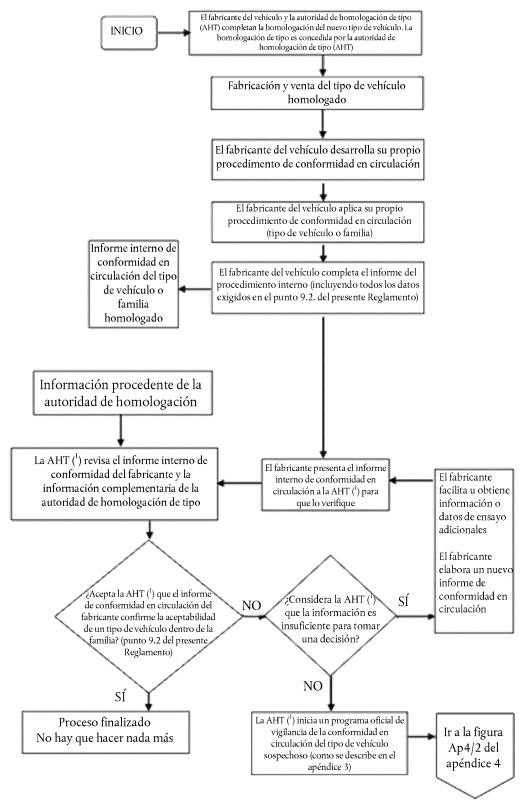
Donde:

- L = el valor límite para el contaminante,
- x_i = el valor de la medición para el vehículo i de la muestra,
- n = el número de la muestra considerada.
- 4.3. Se calcula para la muestra la estadística del ensayo por la que se cuantifica el número de vehículos no conformes, es decir, x, > L.
- 4.4. A partir de ahí:
 - a) si la estadística del ensayo es menor o igual al número correspondiente a la decisión de aprobado para el tamaño de muestra que figura en el cuadro Ap4/1, se obtiene una decisión de aprobado para el contaminante;
 - b) si la estadística del ensayo es mayor o igual al número correspondiente a la decisión de suspenso para el tamaño de muestra que figura en el cuadro Ap4/1, se obtiene una decisión de suspenso para el contaminante:
 - c) de lo contrario, se somete a ensayo otro vehículo y se aplica el procedimiento a la muestra con una unidad extra.

En el siguiente cuadro se calculan los números correspondientes a las decisiones de aprobado y suspenso con arreglo a la norma internacional ISO 8422:1991.

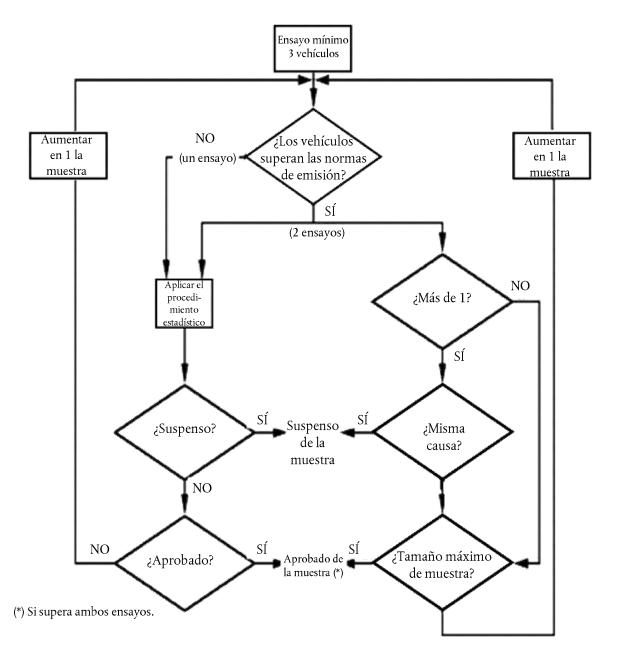
5. Se considera que una muestra ha superado el ensayo cuando ha cumplido tanto los requisitos del punto 3 como los del punto 4 del presente apéndice.

Cuadro Ap1/1


Cuadro del plan de muestreo de aceptación/rechazo por atributos

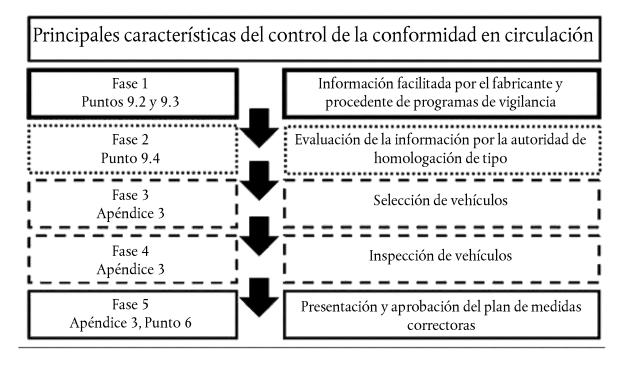
Tamaño acumulativo de la muestra (n)	Número correspondiente a la decisión de aprobado	Número correspondiente a la decisión de suspenso	
3	0	_	
4	1	_	
5	1	5	
6	2	6	
7	2	6	
8	3	7	
9	4	8	
10	4	8	
11	5	9	

Tamaño acumulativo de la muestra (n)	Número correspondiente a la decisión de aprobado	Número correspondiente a la decisión de suspenso	
12	5	9	
13	6	10	
14	6	11	
15	7	11	
16	8	12	
17	8	12	
18	9	13	
19	9	13	
20	11	12	


Figura Ap4/1

Verificación de la conformidad en circulación: procedimiento de auditoría

(¹) AHT designa a la autoridad de homologación de tipo que concedió las homologaciones de tipo con arreglo al presente Reglamento (véase la definición en ECE/TRANS/WP.29/1059, página 2, nota 2 a pie de página).


Figura Ap4/2 Ensayos de conformidad en circulación: selección y ensayo de vehículos

Responsabilidades de la conformidad en circulación

- 1. La figura Ap5/1 ilustra el proceso de verificación de la conformidad en circulación.
- El fabricante recabará toda la información necesaria para cumplir los requisitos del presente anexo. La autoridad de homologación de tipo podrá tomar en consideración, asimismo, información procedente de los programas de vigilancia.
- 3. La autoridad de homologación de tipo llevará a cabo todos los procedimientos y ensayos necesarios para garantizar que se cumplen los requisitos relativos a la conformidad en circulación (fases 2 a 4).
- 4. En caso de discrepancias o desacuerdos en la evaluación de la información suministrada, la autoridad de homologación de tipo solicitará una aclaración del servicio técnico que efectuó el ensayo de homologación de tipo.
- 5. El fabricante establecerá y aplicará un plan de medidas correctoras. La autoridad de homologación de tipo aprobará dicho plan con anterioridad a su aplicación (fase 5).

Figura Ap5/1
Ilustración del proceso de conformidad en circulación

Requisitos para los vehículos que utilizan un reactivo para el sistema de postratamiento de gases de escape

1. INTRODUCCIÓN

En el presente apéndice se establecen los requisitos aplicables a los vehículos que recurren al uso de un reactivo para el sistema de postratamiento con el fin de reducir las emisiones.

2. INDICACIÓN DEL REACTIVO

2.1. El vehículo estará equipado con un indicador específico, situado en el salpicadero, que informe al conductor cuando los niveles de reactivo en el depósito de almacenamiento del mismo sean bajos y cuando el depósito de reactivo se vacíe.

3. SISTEMA DE ALERTA AL CONDUCTOR

- 3.1. El vehículo estará equipado con un sistema de alerta compuesto por alarmas visuales que, cuando el nivel de reactivo sea bajo, informe al conductor de la necesidad de proceder a rellenar el depósito en breve o de que el reactivo no es de la calidad especificada por el fabricante. El sistema de alerta podrá incluir también un componente auditivo que alerte al conductor.
- 3.2. La intensidad del sistema de alerta podrá aumentar a medida que el reactivo esté próximo a agotarse. Culminará con una notificación al conductor que no pueda rechazarse ni ignorarse fácilmente. No será posible apagar el sistema hasta que se haya rellenado el reactivo.
- 3.3. La advertencia visual mostrará un mensaje que indique un bajo nivel de reactivo. La advertencia será distinta a las utilizadas con fines de diagnóstico a bordo u otros fines de mantenimiento del motor. La advertencia será lo suficientemente clara como para que el conductor comprenda que el nivel de reactivo está bajo (por ejemplo, «nivel de urea bajo», «nivel de AdBlue bajo» o «nivel de reactivo bajo»).
- 3.4. Inicialmente no será necesario que el sistema de alerta esté continuamente activado; sin embargo, la intensidad de la advertencia irá en aumento hasta convertirse en continua en el momento en que el nivel del reactivo se aproxime al punto en el que se ponga en marcha el sistema de inducción del conductor establecido en el punto 8 del presente apéndice. Se mostrará una advertencia explícita (por ejemplo, «reponga urea», «reponga AdBlue» o «reponga reactivo»). La señal continua del sistema de alerta podrá ser interrumpida temporalmente por otras señales de advertencia que emitan mensajes importantes relacionados con la seguridad.
- 3.5. El sistema de alerta se activará a una distancia equivalente a una autonomía de conducción de al menos 2 400 km antes de que el depósito de reactivo se vacíe.

4. IDENTIFICACIÓN DEL REACTIVO INCORRECTO

- 4.1. El vehículo incluirá un método que permita determinar que contiene un reactivo que responde a las características declaradas por el fabricante y registradas en el anexo 1 del presente Reglamento.
- 4.2. Si el reactivo del depósito de almacenamiento no se ajusta a los requisitos mínimos declarados por el fabricante, el sistema de alerta al que se hace referencia en el punto 3 del presente apéndice se activará y mostrará un mensaje que recoja la advertencia adecuada (por ejemplo, «detectada urea incorrecta», «detectado AdBlue incorrecto» o «detectado reactivo incorrecto»). Si la calidad del reactivo no se rectifica en los siguientes 50 km a la activación del sistema de alerta, se aplicarán a continuación los requisitos de la inducción del conductor establecidos en el punto 8 del presente apéndice.

5. SUPERVISIÓN DEL CONSUMO DEL REACTIVO

- 5.1. El vehículo incluirá un método que permita determinar el consumo de reactivo y facilitar el acceso externo a la información sobre el consumo.
- 5.2. El consumo medio de reactivo y el consumo medio de reactivo solicitado por el sistema del motor estarán disponibles a través del puerto serie del conector de diagnóstico estándar. Deberán estar disponibles los datos relativos a los 2 400 km previos del período completo de funcionamiento del vehículo.

- 5.3. A fin de controlar el consumo de reactivo, se supervisarán, como mínimo, los siguientes parámetros en el vehículo:
 - a) el nivel de reactivo en el depósito de almacenamiento instalado en el vehículo, y
 - b) el caudal de reactivo o la inyección de reactivo lo más cerca posible técnicamente del punto de inyección en un sistema de postratamiento de gases de escape.
- 5.4. Toda desviación de más del 50 % entre el consumo medio de reactivo y el consumo medio de reactivo solicitado por el sistema del motor durante un período de 30 minutos de funcionamiento del vehículo dará lugar a la activación del sistema de alerta al conductor al que se refiere el punto 3 anterior, que mostrará un mensaje en el que se indique la advertencia adecuada (por ejemplo, «mal funcionamiento de la dosificación de urea», «mal funcionamiento de la dosificación de reactivo»). Si no se rectifica el consumo del reactivo en los siguientes 50 km a la activación del sistema de alerta, se aplicarán a continuación los requisitos de la inducción del conductor establecidos en el punto 8 siguiente.
- 5.5. En caso de interrupción de la actividad de dosificación del reactivo, se activará el sistema de alerta al que se hace referencia en el punto 3, el cual mostrará un mensaje en el que se indique una advertencia adecuada. Dicha activación no será necesaria si la interrupción es solicitada por la unidad de control del motor debido a que las condiciones de funcionamiento del vehículo son tales que su comportamiento en cuanto a emisiones no requiere la dosificación del reactivo, siempre que el fabricante haya comunicado claramente a la autoridad de homologación de tipo cuándo se aplican dichas condiciones de funcionamiento. Si no se rectifica la dosificación del reactivo en los siguientes 50 km a la activación del sistema de alerta, se aplicarán los requisitos de la inducción del conductor establecidos en el punto 8.
- 6. SUPERVISIÓN DE LAS EMISIONES DE NO.
- 6.1. Como alternativa a los requisitos de supervisión establecidos en los puntos 4 y 5 anteriores, los fabricantes podrán utilizar, directamente, sensores de gases de escape para detectar los niveles excesivos de NO_x en el sistema de escape.
- 6.2. El fabricante deberá demostrar que la utilización de los sensores mencionados en el punto 6.1 anterior y de cualquier otro sensor en el vehículo dará lugar a la activación del sistema de alerta al conductor al que se hace referencia en el punto 3 anterior, la aparición de un mensaje en el que se indique la advertencia adecuada (por ejemplo, «emisiones demasiado elevadas: comprobar urea», «emisiones demasiado elevadas: comprobar reactivo») y la activación del sistema de inducción del conductor al que se refiere el punto 8.3 siguiente, cuando se produzcan las situaciones mencionadas en los puntos 4.2, 5.4 o 5.5 anteriores.

A efectos del presente punto, se supone que estas situaciones se producen si se supera el umbral de OBD para los NO_x de los cuadros establecidos en el punto 3.3.2 del anexo 11 del presente Reglamento.

Las emisiones de NO_x durante el ensayo para demostrar la conformidad con estos requisitos no superarán más de un 20 % los umbrales de OBD.

7. ALMACENAMIENTO DE INFORMACIÓN RELATIVA A FALLOS

- 7.1. Cuando se haga referencia al presente punto, se almacenarán identificadores de parámetros no borrables (PID) que determinen la razón que ha dado lugar a la activación del sistema de inducción y la distancia recorrida por el vehículo durante dicha activación. El vehículo conservará un registro de PID durante al menos 800 días o 30 000 km de funcionamiento del vehículo. Los PID estarán disponibles a través del puerto serie de un conector de diagnóstico estándar a petición de una herramienta de exploración genérica con arreglo a lo dispuesto en el punto 6.5.3.1 del apéndice 1 del anexo 11 del presente Reglamento. La información almacenada en los PID estará vinculada al período de funcionamiento acumulado del vehículo durante el cual se produjo, con una precisión no inferior a 300 días o 10 000 km.
- 7.2. Los casos de mal funcionamiento en el sistema de dosificación del reactivo atribuidos a fallos técnicos (por ejemplo, mecánicos o eléctricos) estarán también sujetos a los requisitos del diagnóstico a bordo que figuran en el anexo 11 del presente Reglamento.

8. SISTEMA DE INDUCCIÓN DEL CONDUCTOR

8.1. El vehículo incluirá un sistema de inducción del conductor a fin de garantizar que en todo momento funcione con un sistema de control de las emisiones activado. El sistema de inducción se diseñará de tal manera que el vehículo no pueda funcionar con el depósito de reactivo vacío.

- 8.2. El sistema de inducción se activará, a más tardar, cuando el nivel de reactivo del depósito alcance un nivel equivalente a la autonomía de conducción media del vehículo con el depósito de combustible lleno. El sistema también se activará cuando se hayan producido los fallos mencionados en los puntos 4, 5 o 6 anteriores, dependiendo del enfoque de supervisión de NO_x. La detección de un depósito de reactivo vacío y los fallos mencionados en los puntos 4, 5 o 6 anteriores darán lugar a la aplicación efectiva de los requisitos sobre el almacenamiento de información relativa a fallos que figuran en el punto 7 anterior.
- 8.3. El fabricante seleccionará el tipo de sistema de inducción que desee instalar. Las opciones en cuanto a este sistema se describen en los puntos 8.3.1 a 8.3.4 siguientes.
- 8.3.1. El sistema que impide que el motor vuelva a arrancar tras la cuenta atrás activa la cuenta atrás de los arranques del motor o de la distancia restante una vez que se ha puesto en marcha el sistema de inducción. Los arranques del motor activados por el sistema de control del vehículo, como los sistemas de arranque-parada, no se incluyen en esta cuenta atrás. Será imposible volver a arrancar el motor inmediatamente después de que el depósito de reactivo se vacíe o se haya rebasado una distancia equivalente a un depósito de combustible lleno desde la activación del sistema de inducción, dependiendo de lo que antes ocurra.
- 8.3.2. El sistema que impide que el vehículo arranque tras haber vuelto a llenar el depósito de combustible evita que se pueda arrancar el vehículo después de repostar si se ha activado el sistema de inducción.
- 8.3.3. El sistema de bloqueo de combustible impide repostar combustible al bloquear el sistema de llenado una vez activado el sistema de inducción. El sistema de bloqueo deberá ser resistente, a fin de evitar su manipulación fraudulenta.
- 8.3.4. El sistema de restricción del funcionamiento limita la velocidad del vehículo una vez que se ha activado el sistema de inducción. El nivel de limitación de la velocidad ha de ser evidente para el conductor y reducirá considerablemente la velocidad máxima del vehículo. Esta limitación comenzará a funcionar gradualmente o tras el arranque del motor. Poco antes de que sea imposible volver a arrancar el motor, la velocidad del vehículo no excederá de 50 km/h. Será imposible volver a arrancar el motor inmediatamente después de que el depósito de reactivo esté vacío o se haya rebasado una distancia equivalente a un depósito de combustible lleno desde la activación del sistema de inducción, dependiendo de lo que antes ocurra.
- 8.4. Una vez que el sistema de inducción se haya activado por completo y haya desactivado el vehículo, solo se podrá desactivar el sistema si la cantidad de reactivo añadida al vehículo es equivalente a 2 400 km de autonomía de conducción media o si se han rectificado los fallos especificados en los puntos 4, 5 o 6 del presente apéndice. Cuando se haya llevado a cabo una reparación para corregir un fallo detectado por el sistema de diagnóstico a bordo de conformidad con el punto 7.2 anterior, el sistema de inducción podrá reinicializarse a través del puerto serie del diagnóstico a bordo (por ejemplo, mediante una herramienta de exploración genérica) para permitir el arranque del vehículo con fines de autodiagnóstico. El vehículo funcionará, como máximo, durante 50 km para permitir validar el acierto de la reparación. De persistir el fallo tras dicha validación, el sistema de inducción se reactivará completamente.
- 8.5. El sistema de alerta al conductor al que se hace referencia en el punto 3 anterior mostrará un mensaje en el que se indiquen claramente:
 - a) el número de rearranques restantes y/o la distancia restante, y
 - b) las condiciones en las que se puede volver a arrancar el vehículo.
- 8.6. El sistema de inducción del conductor se desactivará cuando las condiciones que provocaron su activación hayan dejado de existir. El sistema de inducción del conductor no se desactivará automáticamente si no se han corregido las circunstancias que motivaron su activación.
- 8.7. En el momento de la homologación, deberá facilitarse a la autoridad de homologación de tipo Información detallada por escrito que describa exhaustivamente las características funcionales del sistema de inducción del conductor.
- 8.8. En el contexto de la solicitud de homologación de tipo con arreglo al presente Reglamento, el fabricante deberá demostrar el funcionamiento de los sistemas de alerta al conductor y de inducción del conductor.
- 9. REQUISITOS DE INFORMACIÓN
- 9.1. El fabricante facilitará a todos los propietarios de nuevos vehículos información por escrito sobre el sistema de control de emisiones. Dicha información establecerá que si el sistema de control de emisiones del vehículo no está funcionando correctamente, el conductor será informado acerca del problema existente por medio del sistema de alerta al conductor y, consecuentemente, el sistema de inducción del conductor impedirá el arranque del vehículo.

- 9.2. Las instrucciones incluirán requisitos para la utilización y el mantenimiento adecuados de los vehículos, incluido, si procede, el uso apropiado de reactivos consumibles.
- 9.3. Las instrucciones especificarán si el operador del vehículo debe reponer los reactivos consumibles entre los intervalos normales de mantenimiento. Indicarán el modo en el que el conductor debe rellenar el depósito de reactivo. La información también indicará el consumo probable de reactivo para ese tipo de vehículo y la frecuencia recomendada de reposición.
- 9.4. Asimismo, las instrucciones especificarán que la utilización y la reposición del reactivo requerido con las especificaciones correctas son obligatorias, a fin de que el vehículo se ajuste al certificado de conformidad expedido para ese tipo de vehículo.
- 9.5. Las instrucciones establecerán que la utilización de un vehículo que no consuma ningún reactivo, cuando así se requiera para la reducción de emisiones, puede constituir un delito.
- 9.6. Las instrucciones explicarán el funcionamiento del sistema de alerta y del sistema de inducción del conductor. Además, se explicarán las consecuencias que puede tener hacer caso omiso del sistema de alerta y no reponer el reactivo.

10. CONDICIONES DE FUNCIONAMIENTO DEL SISTEMA DE POSTRATAMIENTO

Los fabricantes deberán velar por que el sistema de control de emisiones mantenga su función como tal en todas las condiciones ambientales, especialmente a baja temperatura ambiente. Ello incluye tomar medidas para evitar la total congelación del reactivo durante períodos de aparcamiento de hasta 7 días a 258 K (– 15 °C) con el depósito de reactivo lleno al 50 %. Si el reactivo se ha congelado, el fabricante se asegurará de que esté disponible para su utilización en los 20 minutos siguientes al arranque del vehículo a 258 K (– 15 °C) medidos en el interior del depósito de reactivo, a fin de garantizar el correcto funcionamiento del sistema de control de emisiones.

ANEXO 1

CARACTERÍSTICAS DEL MOTOR Y DEL VEHÍCULO E INFORMACIÓN RELATIVA A LA REALIZACIÓN DE LOS ENSAYOS

La información que figura a continuación, cuando proceda, deberá presentarse por triplicado y acompañada de un índice de contenidos.

Cuando se presenten dibujos, estos deberán estar realizados a la escala adecuada y ser suficientemente detallados; se presentarán en formato A4 o plegados en dicho formato. Las fotografías, si las hubiera, serán suficientemente detalladas.

Si los sistemas, componentes y unidades técnicas independientes están provistos de controles electrónicos, se facilitará la información relativa a sus prestaciones.

0.	Generalidades
0.1.	Marca (nombre de la empresa):
0.2.	Tipo:
0.2.1.	Denominación comercial, si está disponible:
0.3.	Medios de identificación de tipo, si está marcado en el vehículo (¹):
0.3.1.	Emplazamiento de la marca:
0.4.	Categoría del vehículo (²):
0.5.	Nombre y dirección del fabricante:
0.8.	Nombre y dirección de la planta o plantas de montaje:
0.9.	Nombre y dirección del representante autorizado del fabricante, en su caso:
1.	Características generales de construcción del vehículo
1.1.	Fotografías o dibujos de un vehículo representativo:
1.3.3.	Ejes motores (número, emplazamiento e interconexión):
2.	Masas y dimensiones (3) (en kg y mm) (con referencia a los dibujos, en su caso):
2.6.	Masa del vehículo con carrocería y, en el caso de un vehículo tractor no perteneciente a la categoría M ₁ , con dispositivo de enganche, si lo ha instalado el fabricante, en orden de marcha, o masa del bastidor o del bastidor con cabina, sin carrocería ni dispositivo de enganche si no los ha instalado el fabricante (incluidos líquidos, herramientas y rueda de repuesto, si están instalados, el conductor y, en el caso de autobuses y autocares, un miembro de la tripulación si el vehículo dispone de un asiento para él (4)) (máximo y mínimo de cada variante):
2.8.	Masa máxima en carga técnicamente admisible declarada por el fabricante (5) (6):

3.	Descripción de los convertidores de energía y la unidad motriz (7) (en el caso de un vehículo que funcione tanto con gasolina como con gasóleo, etc., o en combinación con otro combustible, se repetirán estos (8)):
3.1.	Fabricante del motor:
3.1.1.	Código del motor asignado por el fabricante (el que aparece en el motor u otros medios de identificación):
3.2.	Motor de combustión interna:
3.2.1.	Características específicas del motor:
3.2.1.1.	Principio de funcionamiento: encendido por chispa/encendido por compresión, de cuatro tiempos/de dos tiempos/rotativo (9)
3.2.1.2.	Número y disposición de los cilindros:
3.2.1.2.1.	Diámetro (10): mm
3.2.1.2.2.	Carrera (10): mm
3.2.1.2.3.	Orden de encendido:
3.2.1.3.	Cilindrada (¹¹):
3.2.1.4.	Relación volumétrica de compresión (12):
3.2.1.5.	Dibujos de la cámara de combustión, de la corona del pistón y, en caso de motor de encendido por chispa, de los segmentos:
3.2.1.6.	Régimen de ralentí normal (12):
3.2.1.6.1.	Régimen elevado de ralentí del motor (12):
3.2.1.7.	Contenido de monóxido de carbono en volumen en los gases de escape emitidos con el motor al ralentí (conforme a las especificaciones del fabricante, solo motores de encendido por chispa) (12):
3.2.1.8.	Potencia neta máxima (¹³): kW a min⁻¹
3.2.1.9.	Velocidad máxima del motor establecida por el fabricante: min-1
3.2.1.10.	Par máximo neto (13):
3.2.2.	Combustible
3.2.2.1.	Vehículos ligeros: gasóleo/gasolina/GLP/GN o biometano/etanol (E 85)/biodiésel/hidrógeno (14)
3.2.2.2.	Índice de octano (RON), sin plomo:
3.2.2.3.	Entrada del depósito de combustible: orificio limitado/etiqueta (9)
3.2.2.4.	Tipo de alimentación del vehículo: monocombustible/bicombustible/flexifuel (9)
3.2.2.5.	Cantidad máxima de biocombustible aceptable en el combustible (valor declarado por el fabricante):

3.2.4.	Alimentación de combustible
3.2.4.2.	Por inyección de combustible (solo encendido por compresión): sí/no (º)
3.2.4.2.1.	Descripción del sistema:
3.2.4.2.2.	Principio de funcionamiento: inyección directa/precámara/cámara de turbulencia (9)
3.2.4.2.3.	Bomba de inyección
3.2.4.2.3.1.	Marca(s):
3.2.4.2.3.2.	Tipo(s):
3.2.4.2.3.3.	Caudal máximo de alimentación de combustible (°) (12): mm³ por carrera o ciclo a un régimen del motor de (°) (12): min⁻¹ o diagrama característico:
3.2.4.2.3.5.	Curva del avance de la inyección (12):
3.2.4.2.4.	Regulador
3.2.4.2.4.2.	Punto de corte:
3.2.4.2.4.2.1.	Punto de corte en carga: min-1
3.2.4.2.4.2.2.	Punto de corte sin carga: min-1
3.2.4.2.6.	Inyector(es):
3.2.4.2.6.1.	Marca(s):
3.2.4.2.6.2.	Tipo(s):
3.2.4.2.7.	Sistema de arranque en frío
	Marca(s):
3.2.4.2.7.1.	warca(s).
3.2.4.2.7.1. 3.2.4.2.7.2.	Tipo(s):
3.2.4.2.7.2.	Tipo(s):
3.2.4.2.7.2. 3.2.4.2.7.3.	Tipo(s): Descripción:
3.2.4.2.7.2. 3.2.4.2.7.3. 3.2.4.2.8.	Tipo(s): Descripción: Dispositivo auxiliar de arranque
3.2.4.2.7.2. 3.2.4.2.7.3. 3.2.4.2.8. 3.2.4.2.8.1.	Tipo(s): Descripción: Dispositivo auxiliar de arranque Marca(s):
3.2.4.2.7.2. 3.2.4.2.7.3. 3.2.4.2.8. 3.2.4.2.8.1. 3.2.4.2.8.2.	Tipo(s): Descripción: Dispositivo auxiliar de arranque Marca(s): Tipo(s):
3.2.4.2.7.3. 3.2.4.2.8. 3.2.4.2.8.1. 3.2.4.2.8.2. 3.2.4.2.8.3.	Tipo(s): Descripción: Dispositivo auxiliar de arranque Marca(s): Tipo(s): Descripción del sistema:
3.2.4.2.7.3. 3.2.4.2.8. 3.2.4.2.8.1. 3.2.4.2.8.2. 3.2.4.2.8.3. 3.2.4.2.8.3.	Tipo(s): Descripción: Dispositivo auxiliar de arranque Marca(s): Tipo(s): Descripción del sistema: Inyección con control electrónico: sí/no (9)
3.2.4.2.7.2. 3.2.4.2.7.3. 3.2.4.2.8. 3.2.4.2.8.1. 3.2.4.2.8.2. 3.2.4.2.8.3. 3.2.4.2.9.	Tipo(s): Descripción: Dispositivo auxiliar de arranque Marca(s): Tipo(s): Descripción del sistema: Inyección con control electrónico: sí/no (°) Marca(s):
3.2.4.2.7.2. 3.2.4.2.7.3. 3.2.4.2.8. 3.2.4.2.8.1. 3.2.4.2.8.2. 3.2.4.2.8.3. 3.2.4.2.9. 3.2.4.2.9.1. 3.2.4.2.9.2.	Tipo(s): Descripción: Dispositivo auxiliar de arranque Marca(s): Tipo(s): Descripción del sistema: Inyección con control electrónico: sí/no (º) Marca(s): Tipo(s): Descripción del sistema (en el caso de sistemas distintos de la inyección continua, apórtense datos

3.2.4.2.9.3.3.	Marca y tipo del sensor del flujo de aire:
3.2.4.2.9.3.4.	Marca y tipo del distribuidor de combustible:
3.2.4.2.9.3.5.	Marca y tipo del alojamiento de la válvula:
3.2.4.2.9.3.6.	Marca y tipo del sensor de la temperatura del agua:
3.2.4.2.9.3.7.	Marca y tipo del sensor de la temperatura del aire:
3.2.4.2.9.3.8.	Marca y tipo del sensor de la presión de aire:
3.2.4.3.	Por inyección de combustible (encendido por chispa únicamente): sí/no (°)
3.2.4.3.1.	Principio de funcionamiento: colector de admisión (monopunto/multipunto)/inyección directa/otros (especifíquese):
3.2.4.3.2.	Marca(s):
3.2.4.3.3.	Tipo(s):
3.2.4.3.4.	Descripción del sistema (en caso de sistemas distintos del de inyección continua, indique la información equivalente):
3.2.4.3.4.1.	Marca y tipo de la unidad de control:
3.2.4.3.4.2.	Marca y tipo del regulador de combustible:
3.2.4.3.4.3.	Marca y tipo del sensor del flujo de aire:
3.2.4.3.4.6.	Marca y tipo del microinterruptor:
3.2.4.3.4.8.	Marca y tipo del alojamiento de la válvula:
3.2.4.3.4.9.	Marca y tipo del sensor de la temperatura del agua:
3.2.4.3.4.10.	Marca y tipo del sensor de la temperatura del aire:
3.2.4.3.5.	Inyectores: presión de apertura (º) (1²): kPa o diagrama característico:
3.2.4.3.5.1.	Marca(s):
3.2.4.3.5.2.	Tipo(s):
3.2.4.3.6.	Reglaje de la inyección:
3.2.4.3.7.	Sistema de arranque en frío
3.2.4.3.7.1.	Principio(s) de funcionamiento:
3.2.4.3.7.2.	Límites de funcionamiento/reglajes (°) (¹²):
3.2.4.4.	Bomba de alimentación
3.2.4.4.1.	Presión (°) (12): kPa o diagrama característico:
3.2.5.	Sistema eléctrico
3.2.5.1.	Tensión nominal:
3.2.5.2.	Generador
3.2.5.2.1.	Tipo:
3.2.5.2.2.	Potencia nominal: VA
3.2.6.	Encendido
3.2.6.1.	Marca(s):

3.2.6.2.	Tipo(s):
3.2.6.3.	Principio de funcionamiento:
3.2.6.4.	Curva de avance al encendido (12):
3.2.6.5.	Reglaje del encendido estático (12): grados antes del PMS
3.2.7.	Sistema de refrigeración: líquido/aire (º)
3.2.7.1.	Valor nominal del mecanismo de control de la temperatura del motor:
3.2.7.2.	Líquido
3.2.7.2.1.	Naturaleza del líquido:
3.2.7.2.2.	Bomba(s) de circulación: sí/no (9)
3.2.7.2.3.	Características:, o
3.2.7.2.3.1.	Marca(s):
3.2.7.2.3.2.	Tipo(s):
3.2.7.2.4.	Relaciones de transmisión:
3.2.7.2.5.	Descripción del ventilador y de su mecanismo de mando:
3.2.7.3.	Aire
3.2.7.3.1.	Soplante: sí/no (°)
3.2.7.3.2.	Características:, o
3.2.7.3.2.1.	Marca(s):
3.2.7.3.2.2.	Tipo(s):
3.2.7.3.3.	Relaciones de transmisión:
3.2.8.	Sistema de admisión:
3.2.8.1.	Sobrealimentador: sí/no (9)
3.2.8.1.1.	Marca(s):
3.2.8.1.2.	Tipo(s):
3.2.8.1.3.	Descripción del sistema (presión de carga máxima: kPa, válvula de descarga, en su caso)
3.2.8.2.	Intercambiador térmico: sí/no (º)
3.2.8.2.1.	Tipo: aire-aire/aire-agua (°)
3.2.8.3.	Depresión de admisión a la velocidad nominal del motor a plena carga (solo motores de encendido por compresión)
	Mínimo permitido: kPa
	Máximo permitido: kPa
3.2.8.4.	Descripción y dibujos de las tuberías de admisión y sus accesorios (cámara de tranquilización, dispositivo de calentamiento, entradas de aire suplementarias, etc.):
3.2.8.4.1.	Descripción del colector de admisión (dibujos o fotografías):
3.2.8.4.2.	Filtro de aire, dibujos:, o
328421	Marca(s):

3.2.8.4.2.2.	Tipo(s):
3.2.8.4.3.	Silenciador de admisión, dibujos, o
3.2.8.4.3.1.	Marca(s):
3.2.8.4.3.2.	Tipo(s):
3.2.9.	Sistema de escape:
3.2.9.1.	Descripción y dibujos del colector de escape:
3.2.9.2.	Descripción y dibujos del sistema de escape:
3.2.9.3.	Contrapresión máxima permitida en el escape a la velocidad nominal del motor a plena carga (solo motores de encendido por compresión):
3.2.9.10.	Secciones transversales mínimas de los conductos de admisión y escape:
3.2.11.	Reglaje de las válvulas o datos equivalentes:
3.2.11.1.	Elevación máxima de las válvulas, ángulos de apertura y cierre o datos detallados de sistemas alternativos de distribución, con respecto a puntos muertos (para el sistema de regulación variable, regulación máxima y mínima):
3.2.11.2.	Rangos de referencia y/o márgenes de reglaje (9) (12):
3.2.12.	Medidas adoptadas contra la contaminación atmosférica:
3.2.12.1.	Dispositivo para reciclar los gases del cárter (descripción y dibujos):
3.2.12.2.	Dispositivos anticontaminantes adicionales (cuando existan y no estén recogidos en otro punto):
3.2.12.2.1.	Convertidor catalítico: sí/no (9)
3.2.12.2.1.1.	Número de convertidores y elementos catalíticos (facilítese la información siguiente para cada unidad independiente):
3.2.12.2.1.2.	Dimensiones y forma del convertidor o convertidores catalíticos (volumen, etc.):
3.2.12.2.1.3.	Tipo de actuación catalítica:
3.2.12.2.1.4.	Carga total de metales preciosos:
3.2.12.2.1.5.	Concentración relativa:
3.2.12.2.1.6.	Sustrato (estructura y material):
3.2.12.2.1.7.	Densidad celular:
3.2.12.2.1.8.	Tipo de carcasa del convertidor o convertidores catalíticos:
3.2.12.2.1.9.	Emplazamiento del convertidor o convertidores catalíticos (lugar y distancias de referencia en el sistema de escape):
3.2.12.2.1.10.	Pantalla contra el calor: sí/no (9)
3.2.12.2.1.11.	Sistemas o método de regeneración de los sistemas de postratamiento de gases de escape, descripción:
3.2.12.2.1.11.1.	Número de ciclos de funcionamiento de tipo I, o ciclos equivalentes del banco de ensayo de motores, entre dos ciclos en los que tienen lugar fases de regeneración en las condiciones equivalentes al ensayo de tipo I (distancia «D» en la figura A13/1 del anexo 13 del presente Reglamento):
3.2.12.2.1.11.2	Descripción del método empleado para determinar el número de ciclos entre dos ciclos en los que tienen lugar fases de regeneración:

3.2.12.2.1.11.3.	Parámetros para determinar el nivel de carga necesario antes de la regeneración (temperatura, presión, etc.):
3.2.12.2.1.11.4.	Descripción del método utilizado para el sistema de carga en el procedimiento de ensayo descrito en el punto 3.1 del anexo 13 del presente Reglamento:
3.2.12.2.1.11.5.	Rango de temperaturas normales de funcionamiento (K):
3.2.12.2.1.11.6.	Reactivos consumibles (cuando proceda):
3.2.12.2.1.11.7.	Tipo y concentración del reactivo necesario para la acción catalítica (cuando proceda):
3.2.12.2.1.11.8.	Rango de temperaturas normales de funcionamiento del reactivo (cuando proceda):
3.2.12.2.1.11.9	Norma internacional (cuando proceda):
3.2.12.2.1.11.10	. Frecuencia de reposición del reactivo: continua/mantenimiento (9) (cuando proceda):
3.2.12.2.1.12.	Marca del convertidor catalítico:
3.2.12.2.1.13.	Número de identificación de la pieza:
3.2.12.2.2.	Sensor de oxígeno: sí/no (9)
3.2.12.2.2.1.	Tipo:
3.2.12.2.2.2.	Emplazamiento del sensor de oxígeno:
3.2.12.2.2.3.	Rango de control del sensor de oxígeno (12):
3.2.12.2.2.4.	Marca del sensor de oxígeno:
3.2.12.2.2.5.	Número de identificación de la pieza:
3.2.12.2.3.	Inyección de aire: sí/no (9)
3.2.12.2.3.1.	Tipo (aire impulsado, bomba de aire, etc.):
3.2.12.2.4.	Recirculación de gases de escape (EGR): sí/no (9)
3.2.12.2.4.1.	Características (caudal, etc.):
3.2.12.2.4.2.	Sistema de refrigeración: sí/no (º)
3.2.12.2.5.	Sistema de control de las emisiones de evaporación sí/no (º)
3.2.12.2.5.1.	Descripción detallada de los dispositivos y de su ajuste:
3.2.12.2.5.2.	Dibujo del sistema de control de las emisiones de evaporación:
3.2.12.2.5.3.	Dibujo del filtro de carbón activo:
3.2.12.2.5.4.	Masa del carbón seco: g
3.2.12.2.5.5.	Esquema del depósito de combustible con indicación de la capacidad y el material:
3.2.12.2.5.6.	Dibujo de la pantalla contra el calor situada entre el depósito y el sistema de escape:
3.2.12.2.6.	Filtro de partículas: sí/no (9)
3.2.12.2.6.1.	Dimensiones y forma del filtro de partículas (capacidad):
3.2.12.2.6.2.	Tipo y diseño del filtro de partículas:
3.2.12.2.6.3.	Emplazamiento del filtro de partículas (distancias de referencia en el sistema de escape):

3.2.12.2.6.4.	Sistema o método de regeneración. Descripción y dibujos:
3.2.12.2.6.4.1.	Número de ciclos de funcionamiento de tipo I, o ciclos equivalentes del banco de ensayo de motores, entre dos ciclos en los que tienen lugar fases de regeneración en las condiciones equivalentes al ensayo de tipo I (distancia «D» en la figura A13/1 del anexo 13 del presente Reglamento):
3.2.12.2.6.4.2.	Descripción del método empleado para determinar el número de ciclos entre dos ciclos en los que tienen lugar fases de regeneración:
3.2.12.2.6.4.3.	Parámetros para determinar el nivel de carga necesario antes de la regeneración (temperatura, presión, etc.):
3.2.12.2.6.4.4.	Descripción del método utilizado para el sistema de carga en el procedimiento de ensayo descrito en el punto 3.1 del anexo 13 del presente Reglamento:
3.2.12.2.6.5.	Marca del filtro de partículas:
3.2.12.2.6.6.	Número de identificación de la pieza:
3.2.12.2.7.	Sistema de diagnóstico a bordo (sí/no) (9)
3.2.12.2.7.1.	Descripción escrita o dibujo del indicador de mal funcionamiento:
3.2.12.2.7.2.	Lista y función de todos los componentes supervisados por el sistema de diagnóstico a bordo:
3.2.12.2.7.3.	Descripción escrita (principios generales de funcionamiento) de:
3.2.12.2.7.3.1.	Motores de encendido por chispa
3.2.12.2.7.3.1.1.	Supervisión del catalizador:
3.2.12.2.7.3.1.2.	Detección de fallos de encendido:
3.2.12.2.7.3.1.3.	Supervisión del sensor de oxígeno:
3.2.12.2.7.3.1.4.	Otros componentes supervisados por el sistema de diagnóstico a bordo:
3.2.12.2.7.3.2.	Motores de encendido por compresión
3.2.12.2.7.3.2.1.	Supervisión del catalizador:
3.2.12.2.7.3.2.2.	Supervisión del filtro de partículas:
3.2.12.2.7.3.2.3.	Supervisión del sistema electrónico de alimentación:
3.2.12.2.7.3.2.4.	Otros componentes supervisados por el sistema de diagnóstico a bordo:
3.2.12.2.7.4.	Criterios para la activación del indicador de mal funcionamiento (número fijo de ciclos de conducción o método estadístico):
3.2.12.2.7.5.	Lista de todos los códigos de salida del diagnóstico a bordo y formatos utilizados (con las explicaciones correspondientes a cada uno de ellos):
3.2.12.2.7.6.	El fabricante del vehículo facilitará la siguiente información adicional para permitir la fabricación de piezas de recambio o de mantenimiento compatibles con el diagnóstico a bordo, herramientas de diagnóstico y equipos de ensayo, salvo que dicha información esté protegida por derechos de propiedad intelectual o forme parte de los conocimientos técnicos específicos del fabricante o de sus proveedores:
3.2.12.2.7.6.1.	Una descripción de tipo y el número de ciclos de preacondicionamiento utilizados para la homologación de tipo original del vehículo.
3.2.12.2.7.6.2.	Una descripción de tipo de ciclo de demostración del diagnóstico a bordo utilizado para la homologación original del vehículo en lo relativo al componente supervisado por el sistema de diagnóstico a bordo.

- 3.2.12.2.7.6.3. Un documento exhaustivo en el que se describan todos los componentes detectados mediante la estrategia de detección de fallos y de activación del indicador de mal funcionamiento (número fijo de ciclos de conducción o método estadístico), incluida la lista de parámetros secundarios pertinentes detectados para cada uno de los componentes supervisados por el sistema de diagnóstico a bordo. Una lista de todos los códigos de salida del diagnóstico a bordo y formato utilizado (junto con una explicación para cada uno) asociados a los distintos componentes de la cadena de tracción relacionados con las emisiones y a los distintos componentes no relacionados con las emisiones, cuando la supervisión del componente se utilice para determinar la activación del indicador de mal funcionamiento. En concreto, se facilitará una explicación exhaustiva de los datos correspondientes al servicio \$05 (ensayo ID \$21 a FF) y al servicio \$06. En el caso de los tipos de vehículos que utilicen un enlace de comunicación conforme a la norma ISO 15765-4, «Vehículos de carretera: Diagnósticos basados en la red CAN (Controller Area Network); parte 4: Requisitos para sistemas relacionados con las emisiones», se facilitará una explicación exhaustiva de los datos correspondientes al servicio \$06 (ensayo ID \$00 a FF) para cada ID de supervisión del diagnóstico a bordo soportado.
- 3.2.12.2.7.6.4. La información requerida en los puntos anteriores se podrá comunicar, por ejemplo, en un cuadro como el siguiente, que se adjuntará al presente anexo:

Com- ponen- te	Código de fallo	Estrategia de supervi- sión	Criterios de detec- ción de fallos	Criterios de activa- ción del indicador de mal funciona- miento	Parámetros secundarios	Preacon- diciona- miento	Ensayo de demostra- ción
Catali- zador	P0420	Señales de los senso- res de oxí- geno 1 y 2	Diferencia entre las señales del sensor 1 y del sensor 2	Tercer ci- clo	Régimen del motor, carga del motor, modo A/F y temperatura del catalizador	Dos ci- clos de tipo I	Tipo I

3.2.12.2.8.	Otros sistemas (descripción y funcionamiento):
3.2.13.	Emplazamiento del símbolo de coeficiente de absorción (solo para los motores de encendido por compresión):
3.2.14.	Descripción detallada de cualquier otro dispositivo destinado a economizar combustible (si no se recoge en otros puntos):
3.2.15.	Sistema de alimentación de GLP: sí/no (9)
3.2.15.1.	Número de homologación (número de homologación del Reglamento nº 67):
3.2.15.2.	Unidad electrónica de control de gestión del motor para la alimentación de GLP
3.2.15.2.1.	Marca(s):
3.2.15.2.2.	Tipo(s):
3.2.15.2.3.	Posibilidades de reglajes relacionados con las emisiones:
3.2.15.3.	Otra documentación:
3.2.15.3.1.	Descripción de la protección del catalizador en el cambio de gasolina a GLP o viceversa:
3.2.15.3.2.	Disposición del sistema (conexiones eléctricas, conexiones de vacío, tubos de compensación, etc.)
3.2.15.3.3.	Dibujo del símbolo:
3.2.16.	Sistema de alimentación de gas natural: sí/no (9)
3.2.16.1.	Número de homologación (número de homologación del Reglamento nº 110):

3.2.16.2.	Unidad electrónica de control de gestión del motor para la alimentación de gas natural
3.2.16.2.1.	Marca(s):
3.2.16.2.2.	Tipo(s):
3.2.16.2.3.	Posibilidades de reglajes relacionados con las emisiones:
3.2.16.3.	Otra documentación:
3.2.16.3.1.	Descripción de la protección del catalizador en el cambio de gasolina a gas natural o viceversa:
3.2.16.3.2.	Disposición del sistema (conexiones eléctricas, conexiones de vacío, tubos de compensación, etc.):
3.2.16.3.3.	Dibujo del símbolo:
3.2.18.	Sistema de alimentación de hidrógeno: sí/no (º)
3.2.18.1.	Número de homologación de tipo con arreglo al Reglamento Técnico Mundial (RTM) relativo a los vehículos de hidrógeno y pila de combustible, actualmente en elaboración:
3.2.18.2.	Unidad electrónica de control de gestión del motor para la alimentación de hidrógeno
3.2.18.2.1.	Marca(s):
3.2.18.2.2.	Tipo(s):
3.2.18.2.3.	Posibilidades de reglajes relacionados con las emisiones:
3.2.18.3.	Otra documentación
3.2.18.3.1.	Descripción de la protección del catalizador en el cambio de gasolina a hidrógeno o viceversa:
3.2.18.3.2.	Disposición del sistema (conexiones eléctricas, conexiones de vacío, tubos de compensación, etc.):
3.2.18.3.3.	Dibujo del símbolo:
3.3.	Motor eléctrico
3.3.1.	Tipo (bobinado, excitación):
3.3.1.1.	Potencia máxima por hora: kW (valor declarado por el fabricante)
3.3.1.1.1.	Potencia neta máxima (15):
3.3.1.1.2.	Potencia máxima durante 30 minutos (15): kW (valor declarado por el fabricante)
3.3.1.2.	Tensión de funcionamiento: V
3.3.2.	Batería
3.3.2.1.	Número de celdas:
3.3.2.2.	Masa: kg
3.3.2.3.	Capacidad:
3.3.2.4.	Localización:
3.4.	Motores o combinaciones de motores
3.4.1.	Vehículo eléctrico híbrido: sí/no (º)

3.4.2.	Categoría de vehículo eléctrico híbrido: se carga desde el exterior/no se carga desde el exterior (9)
3.4.3.	Conmutador del modo de funcionamiento: con/sin (8)
3.4.3.1.	Modos seleccionables
3.4.3.1.1.	Eléctrico puro: sí/no (9)
3.4.3.1.2.	Solo combustible: sí/no (9)
3.4.3.1.3.	Modos híbridos: sí/no (9) (en caso afirmativo, breve descripción)
3.4.4.	Descripción del dispositivo de acumulación de energía (batería, condensador, volante de inercia generador, etc.):
3.4.4.1.	Marca(s):
3.4.4.2.	Tipo(s):
3.4.4.3.	Número de identificación:
3.4.4.4.	Tipo de par electroquímico:
3.4.4.5.	Energía: (batería: tensión y capacidad Ah en 2 h; condensador: J)
3.4.4.6.	Cargador: a bordo/externo/sin (9)
3.4.5.	Máquinas eléctricas (descríbase cada tipo de máquina eléctrica por separado)
3.4.5.1.	Marca:
3.4.5.2.	Tipo:
3.4.5.3.	Uso básico: motor de tracción/generador
3.4.5.3.1.	Cuando se usa como motor de tracción: monomotor/multimotor (número):
3.4.5.4.	Potencia máxima: kW
3.4.5.5.	Principio de funcionamiento:
3.4.5.5.1.	Corriente continua/corriente alterna/número de fases:
3.4.5.5.2.	Excitación separada/serie/compuesto (9)
3.4.5.5.3.	Síncrono/asíncrono (9)
3.4.6.	Unidad de control:
3.4.6.1.	Marca:
3.4.6.2.	Tipo:
3.4.6.3.	Número de identificación:
3.4.7.	Controlador de potencia
3.4.7.1.	Marca:
3.4.7.2.	Tipo:

3.4.7.3.	Número de identificación:	
3.4.8.	Autonomía eléctrica del vehículo: km (con arreglo al anexo 9 del Reglamento nº 101):	
3.4.9.	Preacondicionamiento recomendado por el fabricante:	
3.6.	Temperatura permitida por el fabricante	
3.6.1.	Sistema de refrigeración	
3.6.1.1.	Refrigeración por líquido	
3.6.1.1.1.	Temperatura máxima a la salida:	K
3.6.1.2.	Refrigeración por aire	
3.6.1.2.1.	Punto de referencia:	
3.6.1.2.2.	Temperatura máxima en el punto de referencia:	K
3.6.2.	Temperatura máxima a la salida del intercambiador térmico de admisión:	K
3.6.3.	Temperatura máxima de escape en el punto del tubo o tubos de escape adyacentes a la brida o brida exteriores del colector de escape:	ıs K
3.6.4.	Temperatura del combustible	
3.6.4.1.	Mínimo:	K
3.6.4.2.	Máximo	K
3.6.5.	Temperatura del lubricante	
3.6.5.1.	Mínimo:	K
3.6.5.2.	Máximo	K
3.8.	Sistema de lubricación	
3.8.1.	Descripción del sistema	
3.8.1.1.	Emplazamiento del depósito de lubricante:	
3.8.1.2.	Sistema de alimentación (por bomba/inyección en la admisión/mezcla con combustible, etc.) (9)	
3.8.2.	Bomba de engrase	
3.8.2.1.	Marca(s):	
3.8.2.2.	Tipo(s):	
3.8.3.	Mezcla con combustible	
3.8.3.1.	Porcentaje:	
3.8.4.	Refrigerador del aceite: sí/no (9)	
3.8.4.1.	Dibujo(s):,	o
3.8.4.1.1.	Marca(s):	
3.8.4.1.2.	Tipo(s):	

ES

4.3. Momento de inercia del volante del motor: 4.3.1. Momento de inercia adicional con la caja de velocidades en punto muerto: 4.4. Embrague (tipo): 4.4.1. Conversión máxima del par motor: 4.5. Caja de cambios:					
4.4. Embrague (tipo):	aciones ales de				
4.4.1. Conversión máxima del par motor:	aciones ales de				
	aciones				
4.5. Caja de cambios:	aciones ales de				
	aciones ales de				
4.5.1. Tipo [manual/automática/ transmisión variable continua (CVT)] (9)	aciones ales de				
4.6. Relaciones de transmisión:	aciones ales de				
	ales de				
Índice las revoluciones del motor ción de la caia de cambios tota	JIIIOIOII				
Máximo para CVT					
1					
2					
3					
4, 5, otros					
Mínimo para CVT					
Marcha atrás					
6. Suspensión:					
	Suspensión:				
	Neumáticos y ruedas:				
6.6.1. Combinación o combinaciones de neumático y rueda:					
a)					
Indíquese la designación del tamaño, el índice de capacidad de carga y el símbolo de la velocidad en relación con todas las opciones de neumáticos.					
b)					
En relación con los neumáticos de la categoría Z destinados a ser instalados en vehíci velocidad máxima supere 300 km/h, debe facilitarse la misma información; en cuanto a la indíquese su compensación y el tamaño de la llanta.					
6.6.1.1. Ejes	Ejes				
6.6.1.1.1. Eje 1:	Eje 1:				
6.6.1.1.2. Eje 2:					
6.6.1.1.3. Eje 3:	Eje 3:				
6.6.1.1.4. Eje 4:	Eje 4:, etc.				

6.6.2.	Límites superior e inferior de los radios/la circunferencia de rodadura (17):
6.6.2.1.	Ejes
6.6.2.1.1.	Eje 1:
6.6.2.1.2.	Eje 2:
6.6.2.1.3.	Eje 3:
6.6.2.1.4.	Eje 4:, etc.
6.6.3.	Presión o presiones de los neumáticos recomendadas por el fabricante:
9.	Carrocería
9.1.	Tipo de carrocería (18):
9.10.3.	Asientos
9.10.3.1.	Número:

- (¹) Si la marca de identificación del tipo contiene caracteres no pertinentes para la descripción del tipo de vehículo, de componente o de unidad técnica independiente objeto de la presente ficha de características, dichos caracteres se sustituirán en la documentación por el símbolo «?» (por ejemplo, ABC??123??).
- (²) Con arreglo a la definición que figura en la Resolución consolidada sobre la construcción de vehículos (R.E.3), documento ECE/TRANS/WP.29/78/Rev.3, apartado 2, www.unece.org/trans/main/wp29/wp29wgs/wp29gen/wp29resolutions.html
- (3) Cuando exista una versión con cabina normal y otra con cabina litera, indíquense las dimensiones y masas de ambas.
- (4) Se estima que la masa del conductor y, en su caso, la del acompañante es de 75 kg (68 kg de masa del ocupante y 7 kg de masa del equipaje, con arreglo a la norma ISO 2416:1992), que el depósito de combustible está lleno al 90 % y que los demás sistemas que contienen líquidos (excepto los del agua usada) están al 100 % de la capacidad indicada por el fabricante.
- (5) En el caso de los remolques y semirremolques (así como los vehículos enganchados a un remolque o semirremolque) que ejerzan una carga vertical significativa en el dispositivo de enganche o la quinta rueda, se incluirá esta carga, dividida por la aceleración normal de la gravedad, en la masa máxima técnicamente admisible.
- (6) Indíquense aquí los valores superior e inferior de cada variante.
- (7) En el caso de los motores y sistemas no convencionales, el fabricante deberá facilitar los mismos datos que se figuran en el presente documento.
- (8) Los vehículos que puedan funcionar tanto con gasolina como con combustible gaseoso, pero en los que el sistema de gasolina solo esté instalado para casos de emergencia o para el arranque y cuyo depósito no pueda contener más de 15 litros, a efectos del ensayo se considerarán vehículos que solo pueden funcionar con combustible gaseoso.
- (9) Táchese lo que no proceda.
- (10) Redondéese esta cifra a la décima de milímetro más próxima.
- (11) Calcúlese este valor a partir de π = 3,1416 y redondéese al cm³ más próximo.
- (12) Especifíquese la tolerancia.
- (13) Determinado con arreglo a lo dispuesto en el Reglamento nº 85.
- (14) Táchese lo que no proceda (en algunos casos no es necesario tachar nada si más de una opción es aplicable).
- (15) Determinado con arreglo a lo dispuesto en el Reglamento nº 85.
- (16) Especifíquense los detalles particulares de cada variante propuesta.
- (17) Especifíquese uno u otro.
- (18) Con arreglo a la definición que figura en la Resolución consolidada sobre la construcción de vehículos (R.E.3), documento ECE/TRANS/WP.29/78/Rev.3, apartado 2, www.unece.org/trans/main/wp29/wp29wgs/wp29gen/wp29resolutions.html

Información sobre las condiciones de ensayo

1.	Bujía						
1.1.	Marca:						
1.2.	Tipo:						
1.3.	Separación entre	Separación entre los electrodos:					
2.	Bobina de encen	dido					
2.1.	Marca:						
2.2.	Tipo:						
3.	Lubricante utiliza	ado					
3.1.	Marca:						
3.2.	Tipo (indíquese o	el porcentaje de a	aceite en la mezcl	a si se mezclan lubricante y combustible):			
4.	Información sol dinamómetro)	ore el reglaje d	e la carga del c	linamómetro (repítase la información para cada ensayo de			
4.1.	Tipo de carrocer	ía del vehículo (v	variante/versión):				
4.2.	Tipo de caja de o	cambios (manual	/automática/CVT)	(1)			
4.3.	Información sobre el reglaje del dinamómetro de carga fija (si se utiliza):						
4.3.1.	. Utilización del método de reglaje de la carga alternativa del dinamómetro (sí/no (¹))						
4.3.2.	. Masa de inercia (kg):						
4.3.3.	. Potencia efectiva absorbida a 80 km/h, incluidas las pérdidas en funcionamiento del vehículo en el dinamómetro (kW):						
4.3.4.	. Potencia efectiva absorbida a 50 km/h, incluidas las pérdidas en funcionamiento del vehículo en el dinamómetro (kW):						
4.4.	Información sobre el reglaje del dinamómetro de carga regulable (si se utiliza):						
4.4.1.	. Información sobre la desaceleración en punto muerto desde la pista de ensayo:						
4.4.2.	. Marca y tipo de los neumáticos:						
4.4.3.	Dimensiones de	los neumáticos (delanteros/trasero	s):			
4.4.4.	. Presión de los neumáticos (delanteros/traseros) (kPa):						
4.4.5.	Masa de ensayo	del vehículo, incl	uido el conducto	r (kg):			
4.4.6.	Datos de la desaceleración en punto muerto en carretera (si se utiliza):						
	V (km/h)	V ₂ (km/h)	V ₁ (km/h)	Tiempo medio de desaceleración corregido (s)			
	120						
	100						
	80						

⁽¹) Táchese lo que no proceda.

ES

V (km/h)	V ₂ (km/h)	V ₁ (km/h)	Tiempo medio de desaceleración corregido (s)
60			
40			
20			

4.4.7. Potencia media en carretera corregida (si se utiliza):

V (km/h)	Potencia corregida (kW)
120	
100	
80	
60	
40	
20	

ANEXO 2

COMUNICACIÓN

[Formato máximo: A4 (210 × 297 mm)]

E		Emitida por:	Nombre de la administración:
Relativa a (²):	la concesión de la homologación		
iciativa a ().	la extensión de la homologación		
	la denegación de la homologación		
	la retirada de la homologación		
	el cese definitivo de la producción		
de un tipo de v n° 83	vehículo por lo que respecta a la emisi	ón de gases contami	nantes procedentes del motor con arreglo al Reglamento
$ extsf{N}^\circ$ de homolog	ación:	N° de ext	tensión:
Motivo de la ex	tensión:		

SECCIÓ	ON I
0.1.	Marca (razón social del fabricante):
0.2.	Tipo:
0.2.1.	Nombre comercial (si está disponible):
0.3.	Medios de identificación de tipo, si está marcado en el vehículo (³):
0.3.1.	Emplazamiento de la identificación:
0.4.	Categoría del vehículo (⁴):
0.5.	Nombre y dirección del fabricante:
0.8.	Nombre y dirección de la planta o plantas de montaje:
0.9.	Nombre y dirección del representante del fabricante, en su caso:

Número de identificación del país que ha concedido/extendido/denegado/retirado la homologación (véanse las disposiciones sobre homologación que figuran en el Reglamento).

Táchese lo que no proceda.

Si la marca de identificación del tipo contiene caracteres no pertinentes para la descripción del tipo de vehículo, de componente o de unidad técnica independiente objeto de la presente ficha de características, dichos caracteres se sustituirán en la documentación por el símbolo «?» (por ejemplo: ABC??123??).

Con arreglo a la definición que figura en la Resolución consolidada sobre la construcción de vehículos (R.E.3), documento $ECE/TRANS/WP.29/78/Rev.3, apartado\ 2, www.unece.org/trans/main/wp29/wp29wgs/wp29gen/wp29resolutions.html$

SECCIÓN	1 II					
1.	Información adicio	onal cuando	proceda (véase la adenda):			
2.	Servicio técnico en	cargado de 1	realizar los ensayos:			
3.	Fecha del informe de ensayo:					
4.	Número del informe de ensayo:					
5.	Observaciones, en su caso (véase la adenda):					
6.	Lugar:	••••••				
7.	Fecha:					
8.	Firma:					
Docume	entos adjuntos:	1.	Expediente de homologación.			
		2.	Informe de ensayo.			
A	denda de la Com por lo que respo	unicación d ecta a las en	le homologación de tipo nº relativa a la homologación de tipo de un vehículo nisiones de escape con arreglo al Reglamento nº 83, serie 07 de modificaciones			
	T. C	. 1				
1.	Información adi	cional				
1.1.	Masa del vehículo en orden de marcha:					
1.2.	Masa de referencia del vehículo:					
1.3.	Masa máxima d	el vehículo:	:			
1.4.	Número de asie	ntos (inclui	do el conductor):			
1.6.	Tipo de carroce	ría:				
1.6.1.	para M ₁ , M ₂ : berlina/con portón trasero/familiar/cupé/descapotable/monovolumen (¹)					
1.6.2.	Para N ₁ , N ₂ : can	nión, camic	oneta (¹)			
1.7.	Tracción en las ruedas: delanteras, traseras, 4 × 4 (¹)					
1.8.	Vehículo eléctrico puro: sí/no (¹)					
1.9.	Vehículo eléctrico híbrido: sí/no (¹)					
1.9.1.	Categoría de vehículo eléctrico híbrido: se carga desde el exterior/no se carga desde el exterior (¹)					
1.9.2.	Conmutador del modo de funcionamiento: con/sin (¹)					
1.10.	Identificación del motor:					
1.10.1.	Desplazamiento del motor:					
1.10.2.	. Sistema de alimentación de combustible: inyección directa/inyección indirecta (¹)					

1.10.3. Combustible recomendado por el fabricante:

1.10.4. Potencia máxima: kW a min^{-1}

1.10.5.	Dispositivo de carga de presión: sí/no (¹)				
1.10.6.	Sistema de encendido: encendido por compresión/	por chispa (¹)			
1.11.	Cadena de tracción (para un vehículo eléctrico pur	o o eléctrico híbrido) (¹)			
1.11.1.	Potencia neta máxima: kW	, ahasta min	_		
1.11.2.	Potencia máxima durante 30 minutos:	k	λ		
1.11.3.	Par máximo neto:	Nm, a min	-		
1.12.	Batería de tracción (para un vehículo eléctrico pur	o o eléctrico híbrido)			
1.12.1.	Tensión nominal:		7		
1.12.2.	Capacidad (en 2 h):		J		
1.13.	Transmisión				
1.13.1.	Manual, automática o variable continua (¹) (²):				
1.13.2.	Número de relaciones de transmisión:				
1.13.3.	. Relaciones totales de transmisión (incluidas las circunferencias de rodadura de los neumáticos con carga) velocidades en carretera por 1 000 min ⁻¹ (km/h)				
	Primera velocidad:	Sexta velocidad:			
		Sexta velocidad: Séptima velocidad:			
	Segunda velocidad:				
	Segunda velocidad: Tercera velocidad:	Séptima velocidad:			
	Segunda velocidad: Tercera velocidad: Cuarta velocidad:	Séptima velocidad:			
1.13.4.	Segunda velocidad: Tercera velocidad: Cuarta velocidad: Quinta velocidad:	Séptima velocidad: Octava velocidad: Superdirecta:			
1.13.4. 1.14.	Segunda velocidad: Tercera velocidad: Cuarta velocidad: Quinta velocidad: Relación final de la transmisión:	Séptima velocidad: Octava velocidad: Superdirecta:			
1.14.	Segunda velocidad: Tercera velocidad: Cuarta velocidad: Quinta velocidad: Relación final de la transmisión: Neumáticos:	Séptima velocidad: Octava velocidad: Superdirecta:			
1.14. 1.14.1.	Segunda velocidad: Tercera velocidad: Cuarta velocidad: Quinta velocidad: Relación final de la transmisión: Neumáticos:	Séptima velocidad: Octava velocidad: Superdirecta:			
1.14. 1.14.1. 1.14.2.	Segunda velocidad: Tercera velocidad: Cuarta velocidad: Quinta velocidad: Relación final de la transmisión: Neumáticos: Tipo: Dimensiones:	Séptima velocidad: Octava velocidad: Superdirecta:			
1.14.1.14.1.1.14.2.1.14.3.	Segunda velocidad: Tercera velocidad: Cuarta velocidad: Quinta velocidad: Relación final de la transmisión: Neumáticos: Tipo: Dimensiones: Circunferencia de rodadura con carga:	Séptima velocidad: Octava velocidad: Superdirecta:			
1.14.1.14.1.1.14.2.1.14.3.	Segunda velocidad: Tercera velocidad: Cuarta velocidad: Quinta velocidad: Relación final de la transmisión: Neumáticos: Tipo: Dimensiones: Circunferencia de rodadura con carga:	Séptima velocidad: Octava velocidad: Superdirecta:			
1.14. 1.14.1. 1.14.2. 1.14.3. 1.14.4.	Segunda velocidad: Tercera velocidad: Cuarta velocidad: Quinta velocidad: Relación final de la transmisión: Neumáticos: Tipo: Dimensiones: Circunferencia de rodadura con carga: Circunferencia de rodadura de los neumáticos utili Resultados del ensayo	Séptima velocidad: Octava velocidad: Superdirecta:			

Número de homologación de tipo si no es un vehículo de origen (3)

Resultado de tipo I	Ensa- yo	CO (mg/km)	HCT (mg/km)	HCNM (mg/km)	NO _x (mg/km)	HCT + NO _x (mg/km)	Partí- culas (mg/km)	Partí- culas (nº/km)
Medido (i) (ii)	1							
	2							
	3							
Valor medio medido (M) (i) (ii)								
K_{i} (i) (iii)						(iv)		
Valor medio calculado con K_i (M. K_i) (ii)						(v)		
DF (i) (iii)								
Valor medio final calculado con K _i y DF (M.K _i .DF) (vi)								
Valor límite								

- (i) Cuando proceda.
- (ii) Redondeado a 2 decimales.
- (iii) Redondeado a 4 decimales.
- (iv) No procede
- (v) Valor medio calculado mediante la suma de valores medios (M.K.) calculados para HCT y NO_v.
- (vi) Redondeado a un decimal más que el valor límite.

ES	
----	--

	— Especifíquense los valores (DF):									
	Tipo VI:	Tipo VI:								
	Tipo VI		CO (mg/km)	ŀ	ICT (mg/km)					
	Valor medido									
2.1.1.	flexifuel, cuando el er presente Reglamento y o bicombustible, se re- resultados obtenidos s	nsayo de tipo I deba , para los vehículos e petirá el cuadro para e recogerán en un c	a realizarse con ambo que utilicen GLP o gas los distintos gases de cuadro adicional. Cuar	os combustibles, con a s natural/biometano, ya referencia utilizados en	oustible. Para vehículos arreglo al cuadro A del sean monocombustible a el ensayo, y los peores o con los puntos 3.1.4 o calculados.					
	Ensayo de diagnóstico	a bordo								
2.1.2.	Descripción escrita o c	libujo del indicador o	le mal funcionamiento	o:						
2.1.3.					ordo y función de los					
2.1.4.	Descripción escrita (principios generales de funcionamiento) de:									
2.1.4.1.	Detección de fallos de	encendido (4):								
2.1.4.2.	Supervisión del cataliz	ador (4):								
2.1.4.3.	Supervisión del sensor	de oxígeno (4):								
2.1.4.4.	Otros componentes su	pervisados por el sis	tema de diagnóstico a	bordo (4):						
2.1.4.5.	Supervisión del cataliz	ador (5):								
2.1.4.6.	Supervisión del filtro d	le partículas (5):								
2.1.4.7.	Supervisión del accion	ador del sistema elec	trónico de alimentació	on (5):						
2.1.4.8.	Otros componentes su	pervisados por el sis	tema de diagnóstico a	bordo:						
2.1.5.					ciclos de conducción o					
2.1.6.					las explicaciones corres-					
2.2.	Datos de emisiones exigidos en el ensayo de aptitud para la circulación:									
	Ensayo	Valor CO (% volumen)	Lambda (*)	Régimen del motor (min ⁻¹)	Temperatura del aceite del motor (°C)					
	Ensayo en régimen de ralentí bajo		N. P.							
	Ensayo en régimen de ralentí alto									

- 2.3. Convertidores catalíticos: sí/no (¹)
- 2.3.1. Convertidor catalítico del equipo original sometido a ensayo con respecto a todos los requisitos pertinentes del presente Reglamento: sí/no (¹)
- 2.4. Resultados del ensayo de opacidad de los humos (1) (6)
- 2.4.1. A velocidades constantes: véase el número del informe de ensayo del servicio técnico
- 2.4.2. Ensayos en aceleración libre
- 2.4.2.1. Valor medido del coeficiente de absorción: m⁻¹
- 2.4.2.2. Valor corregido del coeficiente de absorción: m^{-1}
- 2.4.2.3. Emplazamiento del símbolo de coeficiente de absorción en el vehículo:
- 3. Observaciones:
- (¹) Táchese o bórrese lo que no proceda (en algunos casos no es necesario borrar nada si más de una opción es aplicable).
- (2) En el caso de los vehículos equipados con cajas de cambio automáticas, facilítense todos los datos técnicos pertinentes.
- (3) Si la marca de identificación del tipo contiene caracteres no pertinentes para la descripción del tipo de vehículo, de componente o de unidad técnica independiente objeto de la presente ficha de características, dichos caracteres se sustituirán en la documentación por el símbolo «?» (por ejemplo: ABC??123??).
- (4) Para vehículos con motor de encendido por compresión.
- (5) Para vehículos equipados con motor de encendido por chispa.
- (6) Las mediciones de la opacidad de los humos deben realizarse de conformidad con lo dispuesto en el Reglamento nº 24.

Apéndice 1

Información relativa al diagnóstico a bordo

Como se indica en el punto 3.2.12.2.7.6 del anexo 1 del presente Reglamento, el fabricante del vehículo facilita la información que figura en el presente apéndice para permitir la fabricación de piezas de recambio o de mantenimiento compatibles con el diagnóstico a bordo, de herramientas de diagnóstico y de equipos de ensayo.

La información que figura a continuación se pondrá a disposición de todos los fabricantes de piezas, herramientas de diagnóstico o equipos de ensayo que lo soliciten, sin ningún tipo de discriminación.

- 1. Una descripción del tipo y el número de ciclos de preacondicionamiento utilizados para la homologación de tipo original del vehículo.
- 2. Una descripción del tipo de ciclo de demostración del diagnóstico a bordo utilizado para la homologación original de tipo del vehículo en lo relativo al componente supervisado por el sistema de diagnóstico a bordo.
- 3. Un documento exhaustivo en el que se describan todos los componentes detectados mediante la estrategia de detección de fallos y de activación del indicador de mal funcionamiento (número fijo de ciclos de conducción o método estadístico), incluida la lista de parámetros secundarios pertinentes detectados para cada uno de los componentes supervisados por el sistema de diagnóstico a bordo y una lista de todos los códigos de salida de este y de los formatos utilizados (junto con una explicación para cada uno de ellos) asociados a los distintos componentes de la cadena de tracción relacionados con las emisiones y a los distintos componentes no relacionados con las emisiones, cuando la supervisión del componente se utilice para determinar la activación del indicador de mal funcionamiento. En concreto, se facilitará una explicación exhaustiva de los datos correspondientes al servicio \$05 (ensayo ID \$21 a FF) y al servicio \$06. En el caso de los tipos de vehículos que utilicen un enlace de comunicación conforme a la norma ISO 15765-4, «Vehículos de carretera: Diagnósticos basados en la red CAN (Controller Area Network); parte 4: Requisitos para sistemas relacionados con las emisiones», se facilitará una explicación exhaustiva de los datos correspondientes al servicio \$06 (ensayo ID \$00 a FF) para cada ID de supervisión del diagnóstico a bordo soportado.

La información anterior se podrá comunicar a través de un cuadro como el siguiente:

Compo- nente	Código de fallo	Estrategia de supervisión	Criterios de detec- ción de fallos	Criterios de activación del indi- cador de mal funcio- namiento	Parámetros secundarios	Preacondi- ciona- miento	Ensayo de demostra- ción
Catalizador	P0420	Señales de los sensores de oxí- geno 1 y 2	Diferencia entre las señales del sensor 1 y del sensor 2	Tercer ci- clo	Régimen del motor, carga del motor, modo A/F y temperatura del catalizador	Dos ciclos de tipo I	Тіро І

ES

Apéndice 2

Certificado de conformidad con los requisitos de rendimiento en uso del diagnóstico a bordo expedido por el fabricante

(Fabricante):

(Dirección del fabricante):

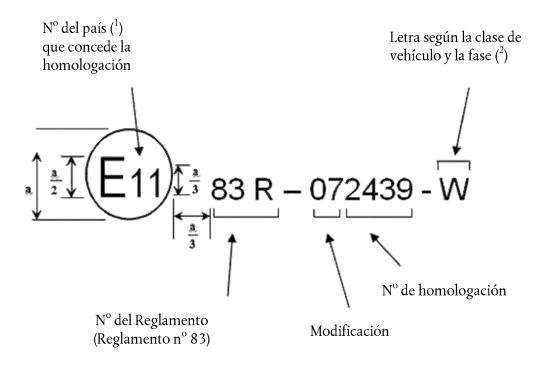
Certifica que:

- 1. Los tipos de vehículos enumerados en el documento adjunto al presente Certificado cumplen lo dispuesto en el punto 7 del apéndice 1 del anexo 11 del presente Reglamento con respecto al rendimiento en uso del sistema de diagnóstico a bordo en todas las condiciones de conducción razonablemente previsibles.
- 2. Los planos con la descripción detallada de los criterios técnicos para incrementar el numerador y el denominador de cada monitor, adjuntos al presente Certificado son correctos y completos para todos los tipos de vehículos a los que se aplica el mismo.

Hecho en (... localidad) el (... fecha) (Firma del representante del fabricante)

Anexos:

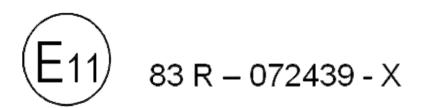
- a) La lista de tipos de vehículos a los que se aplica el presente Certificado.
- b) Los planos con la descripción detallada de los criterios técnicos para incrementar el numerador y el denominador de cada monitor, así como los planos para desactivar los numeradores, denominadores y el denominador general.


ANEXO 3

DISPOSICIÓN DE LA MARCA DE HOMOLOGACIÓN

En la marca de homologación expedida y colocada en un vehículo de conformidad con el apartado 4 del presente Reglamento, el número de homologación de tipo irá acompañado de una letra, asignada con arreglo al cuadro A3/1 del presente anexo, que indique la categoría y clase de vehículo a las que está limitada la homologación.

En el presente anexo se aborda la apariencia de dicha marca y se incluye un ejemplo de su composición.


El esquema gráfico que figura a continuación presenta la disposición general, las proporciones y el contenido de la marca. Se indica el significado de los números y las letras, así como las fuentes para determinar las alternativas correspondientes a cada supuesto de homologación.

a = 8 mm (mínimo)

- (1) Número correspondiente al país, con arreglo a la nota a pie de página del punto 4.4.1 del presente Reglamento.
- (2) El gráfico siguiente es un ejemplo práctico de cómo debe estar compuesta la marca:

De conformidad con el cuadro A3/1 del presente anexo.

Esta marca de homologación, colocada en un vehículo de conformidad con el apartado 4 del presente Reglamento, indica que el tipo de vehículo en cuestión ha sido homologado en el Reino Unido (E 11) con arreglo al Reglamento n° 83 con el número de homologación 2439. Esta marca indica que la homologación se ha concedido de conformidad con lo dispuesto en el presente Reglamento una vez introducidas las modificaciones de la serie 07. En cuanto a la letra «X», indica que el vehículo pertenece a la categoría N_1 clase II, que cumple las normas sobre emisiones y OBD enumeradas en el cuadro A3/1.

Cuadro A3/1 Letras relativas al combustible, el motor y la categoría de vehículo

Letra	Categoría y clase de vehículo	Tipo de motor	Norma de emisiones	Norma OBD
Т	M, N ₁ clase I	ECM	A	Límites umbral provisionales del OBD (véase el cuadro A11/3)
U	N ₁ clase II	ECM	A	Límites umbral provisionales del OBD (véase el cuadro A11/3)
V	N ₁ clase III, N ₂	ECM	A	Límites umbral provisionales del OBD (véase el cuadro A11/3)
W	M, N ₁ clase I	ECH ECM	A	Límites umbral preliminares del OBD (véase el cuadro A11/2)
X	N ₁ clase II	ECH ECM	A	Límites umbral preliminares del OBD (véase el cuadro A11/2)
Y	N ₁ clase III, N ₂	ECH ECM	A	Límites umbral preliminares del OBD (véase el cuadro A11/2)
ZA	M, N ₁ clase I	ECH ECM	В	Límites umbral preliminares del OBD (véase el cuadro A11/2)
ZB	N ₁ clase II	ECH ECM	В	Límites umbral preliminares del OBD (véase el cuadro A11/2)
ZC	N ₁ clase III, N ₂	ECH ECM	В	Límites umbral preliminares del OBD (véase el cuadro A11/2)
ZD	M, N ₁ clase I	ECH ECM	В	Límites umbral finales del OBD (véase el cuadro A11/1)
ZE	N ₁ clase II	ECH ECM	В	Límites umbral finales del OBD (véase el cuadro A11/1)
ZF	N ₁ clase III, N ₂	ECH ECM	В	Límites umbral finales del OBD (véase el cuadro A11/1)

Leyenda sobre la norma de emisiones

- A Requisitos relativos a las emisiones conforme a los límites del cuadro 1 del punto 5.3.1.4 del presente Reglamento, pero permitiendo los valores preliminares para los números de partículas en el caso de los vehículos de encendido por chispa, según se detalla en la nota 2 al pie de dicho cuadro.
- B Requisitos relativos a las emisiones conforme a los límites del cuadro 1 del punto 5.3.1.4 del presente Reglamento, incluidas las normas definitivas sobre el número de partículas para los vehículos de encendido por chispa y la utilización de combustible de referencia E10 y B7 (cuando proceda).

ANEXO 4 bis

Ensayo de tipo I

(Verificación de las emisiones de escape después de un arranque en frío)

1. APLICABILIDAD

El presente anexo sustituye efectivamente al anterior anexo 4 del presente Reglamento.

2. INTRODUCCIÓN

En el presente anexo se describe el procedimiento para llevar a cabo el ensayo de tipo I definido en el apartado 5.3.1 del presente Reglamento. Cuando el combustible de referencia utilizado sea GLP o gas natural/biometano, se aplicará, además, lo dispuesto en el anexo 12 del presente Reglamento.

3. CONDICIONES DE ENSAYO

3.1. Condiciones ambientales

3.1.1. Durante el ensayo, la temperatura de la celda estará comprendida entre 293 y 303 K (20 y 30 °C). La humedad absoluta (H) del aire en el interior de la celda o del aire de admisión del motor será:

 $5.5 \le H \le 12.2$ (g H₂O/kg de aire seco)

Se medirá la humedad absoluta (H).

Se medirán las temperaturas siguientes:

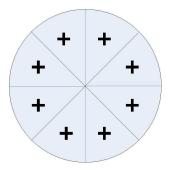
Aire ambiente en la celda de ensayo

Temperaturas de dilución y del sistema de muestreo de conformidad con los sistemas de medición de emisiones de los apéndices 2 a 5 del presente anexo.

Se medirá la presión atmosférica.

3.2. Vehículo de ensayo

- 3.2.1. El vehículo se presentará en buenas condiciones mecánicas. Deberá haberse sometido a rodaje y haber recorrido un mínimo de 3 000 km antes del ensayo.
- 3.2.2. El dispositivo de escape no presentará fuga alguna que pueda disminuir la cantidad de gases recogidos, es decir, la cantidad de gases procedentes del motor.
- 3.2.3. Podrá comprobarse la estanquidad del sistema de admisión a fin de evitar que la carburación se vea alterada por una entrada accidental de aire.
- 3.2.4. Los reglajes del motor y de los mecanismos de control del vehículo serán los establecidos por el fabricante. Este requisito se aplicará también, en particular, a los reglajes del ralentí (velocidad de rotación y contenido de monóxido de carbono de los gases de escape), del sistema de arranque en frío y del sistema de limpieza de los gases de escape.
- 3.2.5. El vehículo que se va a someter a ensayo, o un vehículo equivalente, estará equipado, en su caso, con un dispositivo que permita medir los parámetros característicos necesarios para el reglaje del banco dinamométrico, de conformidad con lo dispuesto en el punto 5 del presente anexo.
- 3.2.6. El servicio técnico encargado de realizar los ensayos podrá comprobar si las prestaciones del vehículo concuerdan con las especificadas por el fabricante, si el vehículo puede utilizarse en condiciones normales de circulación y, sobre todo, si puede arrancar en frío y en caliente.


- 3.2.7. Las luces de circulación diurna del vehículo, definidas en el punto 2 del Reglamento nº 48, estarán encendidas durante el ciclo de ensayo. El vehículo sometido a ensayo deberá ir equipado con el sistema de luces de circulación diurna que tenga el mayor consumo de energía eléctrica de los sistemas de este tipo que el fabricante instale en los vehículos del grupo representado por el vehículo que ha recibido la homologación de tipo. El fabricante facilitará a las autoridades de homologación de tipo la documentación técnica correspondiente a este respecto.
- 3.3. Combustible de ensayo
- 3.3.1. Para los ensayos se utilizará el combustible de referencia adecuado definido en el anexo 10 o 10 bis del presente Reglamento.
- 3.3.2. Los vehículos alimentados, bien con gasolina, bien con GLP o gas natural/biometano se someterán a ensayo con arreglo al anexo 12 del presente Reglamento con el combustible o combustibles de referencia adecuados según la definición de su anexo 10 o 10 bis.
- 3.4. Instalación del vehículo
- 3.4.1. Durante el ensayo, el vehículo estará en la posición más horizontal posible a fin de evitar la distribución anormal del combustible.
- 3.4.2 Se aplicará una corriente de aire de velocidad variable sobre el vehículo. La velocidad del soplante se situará en un rango de funcionamiento de 10 km/h a, como mínimo, la velocidad máxima del ciclo de ensayo que se esté utilizando. La velocidad lineal del aire a la salida del soplante será de ± 5 km/h con respecto a la velocidad correspondiente de los rodillos en un rango de 10 a 50 km/h. En el rango superior a 50 km/h, la velocidad lineal del aire será de ± 10 km/h con respecto a la velocidad correspondiente de los rodillos. Cuando la velocidad de los rodillos sea inferior a 10 km/h, la velocidad del aire podrá ser cero.

La velocidad del aire mencionada se determinará calculando el valor medio de una serie de puntos de medición que:

a) en el caso de los soplantes con salida rectangular, están situados en el centro de cada rectángulo, dividiendo la salida del soplante en nueve áreas y, tanto los lados horizontales como verticales de la salida del soplante, en tres partes iguales. No se medirá la zona del centro (según se muestra en el diagrama siguiente):

+	+	+
+		+
+	+	+

b) en el caso de los soplantes con salida circular, esta se divide en ocho arcos iguales, mediante líneas verticales, horizontales y de 45°; los puntos de medición están situados en la línea central radial de cada arco (22,5°), a un radio de dos tercios del total (como se muestra en el siguiente diagrama):

Estas mediciones se realizarán sin vehículos ni ninguna otra obstrucción delante del ventilador.

El dispositivo utilizado para medir la velocidad lineal del aire estará situado a una distancia de entre 0 y 20 cm desde la salida del aire.

La selección final del soplante tendrá las siguientes características:

- a) superficie: al menos 0,2 m²;
- b) altura del borde inferior respecto del suelo: aproximadamente 0,2 m;
- c) distancia desde el frontal del vehículo: aproximadamente 0,3 m.

La altura y la posición lateral del ventilador de refrigeración podrán modificarse a petición del fabricante y si lo considera adecuado la autoridad de homologación de tipo.

En los casos descritos anteriormente, la posición y la configuración del ventilador se registrarán en el informe de ensayo de homologación y se utilizarán para los ensayos relativos a la conformidad de la producción y la conformidad en circulación.

4. EQUIPO DE ENSAYO

4.1. Banco dinamométrico

Los requisitos del banco dinamométrico figuran en el apéndice 1 del presente anexo.

4.2. Sistema de dilución de los gases de escape

Los requisitos del sistema de dilución de los gases de escape figuran en el apéndice 2 del presente anexo.

4.3. Muestreo y análisis de las emisiones gaseosas

Los requisitos del equipo de muestreo y análisis de las emisiones gaseosas figuran en el apéndice 3 del presente anexo.

4.4. Equipo para las emisiones de la masa de partículas

Los requisitos de muestreo y medición de la masa de partículas figuran en el apéndice 4 del presente anexo.

4.5. Equipo para las emisiones del número de partículas

Los requisitos de muestreo y medición del número de partículas figuran en el apéndice 5 del presente anexo.

4.6. Equipo general de la celda de ensayo

Las siguientes temperaturas se medirán con una precisión de ± 1,5 K:

- a) aire ambiente en la celda de ensayo;
- b) aire entrante en el motor;
- c) temperaturas de dilución y del sistema de muestreo de conformidad con los sistemas de medición de emisiones de los apéndices 2 a 5 del presente anexo.

La presión atmosférica deberá poder medirse con un margen de ± 0,1 kPa.

La humedad absoluta (H) deberá poder medirse con un margen de ± 5 %.

5. DETERMINACIÓN DE LA RESISTENCIA AL AVANCE DEL VEHÍCULO

5.1. Procedimiento de ensayo

El procedimiento para medir la resistencia al avance del vehículo figura en el apéndice 7 del presente anexo.

Este procedimiento no es necesario si la carga del banco dinamométrico debe establecerse con arreglo a la masa de referencia del vehículo.

6. PROCEDIMIENTO DEL ENSAYO DE EMISIONES

6.1. Ciclo de ensayo

El ciclo de funcionamiento, compuesto de una parte 1 (ciclo urbano) y una parte 2 (ciclo extraurbano), se ilustra en la figura A4a/1. Durante todo el ensayo, el ciclo urbano elemental se pone en marcha cuatro veces, seguido de la parte 2.

6.1.1. Ciclo urbano elemental

La parte 1 del ciclo de ensayo consta de cuatro veces el ciclo urbano elemental, que se define en el cuadro A4a/1, se ilustra en la figura A4a/2 y se resume a continuación.

Desglose por fases:

	Tiempo (s)	%	
Ralentí	60	30,8	35,4
Desaceleración, embrague pisado	9	4,6	
Cambio de marchas	8	4,1	
Aceleraciones	36	18,5	
Períodos de velocidad constante	57	29,2	
Desaceleraciones	25	12,8	
Total	195	100	

Desglose por utilización de las marchas:

	Tiempo (s)	%	
Ralentí	60	30,8	35,4
Desaceleración, embrague pisado	9	4,6	
Cambio de marchas	8	4,1	
Primera velocidad	24	12,3	
Segunda velocidad	53	27,2	
Tercera velocidad	41	21	
Total	195	100	

Información general:

Velocidad media durante el ensayo:	19 km/h
Tiempo efectivo de marcha:	195 s
Distancia teórica recorrida por ciclo:	1,013 km
Distancia equivalente para los cuatro ciclos:	4,052 km

6.1.2. Ciclo extraurbano

La parte 2 del ciclo de ensayo es el ciclo extraurbano, que se define en el cuadro A4a/2, se ilustra en la figura A4a/3 y se resume a continuación.

Desglose por fases:

	Tiempo (s)	%
Ralentí	20	5,0
Desaceleración, embrague pisado	20	5,0
Cambio de marchas	6	1,5
Aceleraciones	103	25,8
Períodos de velocidad constante	209	52,2
Desaceleraciones	42	10,5
Total	400	100

Desglose por utilización de las marchas:

	Tiempo (s)	%
Ralentí	20	5,0
Desaceleración, embrague pisado	20	5,0
Cambio de marchas	6	1,5
Primera velocidad	5	1,3
Segunda velocidad	9	2,2
Tercera velocidad	8	2
Cuarta velocidad	99	24,8
Quinta velocidad	233	58,2
Total	400	100

Información general

Velocidad media durante el ensayo:	62,6 km/h
Tiempo efectivo de marcha:	400 s
Distancia teórica recorrida por ciclo:	6,955 km
Velocidad máxima:	120 km/h
Aceleración máxima:	0,833 m/s ²
Desaceleración máxima:	- 1,389 m/s ²

6.1.3. Utilización de la caja de cambios

6.1.3.1. Cuando la velocidad máxima que pueda alcanzarse en primera sea inferior a 15 km/h, se utilizarán la segunda, tercera y cuarta velocidades para el ciclo urbano (parte 1) y la segunda, tercera, cuarta y quinta para el ciclo extraurbano (parte 2). Podrán utilizarse la segunda, tercera y cuarta velocidades para el ciclo urbano (parte 1) y la segunda, tercera, cuarta y quinta para el ciclo extraurbano (parte 2) cuando las instrucciones del fabricante recomienden el arranque horizontal en segunda o cuando la primera esté definida exclusivamente como marcha para campo a través, arrastre o remolque.

Los vehículos que no alcancen los valores de aceleración y velocidad máxima previstos en el ciclo de funcionamiento deberán accionarse con el acelerador pisado a fondo hasta que alcancen de nuevo la curva de funcionamiento prevista. Las desviaciones del ciclo de funcionamiento deberán hacerse constar en el informe de ensayo.

Los vehículos equipados con una caja de cambios semiautomática se someterán a ensayo utilizando las marchas empleadas normalmente en circulación, y la palanca se utilizará de acuerdo con las instrucciones del fabricante

- 6.1.3.2. Los vehículos equipados con una caja de cambios automática se someterán a ensayo con la marcha más larga («directa») metida. El acelerador se utilizará de manera que se obtenga una aceleración lo más uniforme posible, para permitir el cambio de las distintas marchas en el orden normal. Por otro lado, no serán de aplicación los puntos de cambio de marchas indicados en los cuadros A4a/1 y A4a/2 del presente anexo; se mantendrá la aceleración a lo largo de todo el período representado por la línea recta que une el fin de cada período de ralentí con el comienzo del siguiente período de velocidad constante. Serán de aplicación las tolerancias que figuran en los puntos 6.1.3.4 y 6.1.3.5.
- 6.1.3.3. Los vehículos equipados con una marcha superdirecta que pueda ser accionada por el conductor se someterán a ensayo con la superdirecta desactivada para el ciclo urbano (parte 1) y activada para el ciclo extraurbano (parte 2).
- 6.1.3.4. Se tolerará una desviación de ± 2 km/h entre la velocidad indicada y la velocidad teórica durante la aceleración, y durante la velocidad constante y durante la desaceleración cuando se utilicen los frenos del vehículo. Cuando el vehículo desacelere más rápidamente sin utilizar los frenos, se aplicará únicamente lo dispuesto en el punto 6.4.4.3. Durante los cambios de fase, se admitirán diferencias de velocidad superiores a los valores establecidos, siempre que no superen el medio segundo.
- 6.1.3.5. Las tolerancias de tiempo serán de ± 1 segundo. Las tolerancias expresadas anteriormente se aplicarán tanto al inicio como al final de cada período de cambio de marchas para el ciclo urbano (parte 1) y para las operaciones 3, 5 y 7 del ciclo extraurbano (parte 2). Téngase en cuenta que la tolerancia de tiempo de dos segundos incluye el tiempo que se tarda en cambiar de marcha y, en su caso, un cierto margen para adaptarse al ciclo.
- 6.2. Preparación del ensayo
- 6.2.1. Reglaje de la carga y la inercia
- 6.2.1.1. Determinación de la carga con el ensayo en carretera del vehículo

Se regulará el dinamómetro de manera que la inercia total de las masas rotatorias simule la inercia y otras fuerzas de resistencia al avance que actúen sobre el vehículo al conducir por carretera. Los métodos para determinar esta carga se describen en el punto 5 del presente anexo.

Dinamómetro con curva de carga fija: el simulador de carga se regulará de tal modo que absorba la potencia ejercida en las ruedas motrices a una velocidad constante de 80 km/h y se tomará nota de la potencia absorbida a 50 km/h.

Dinamómetro con curva de carga regulable: el simulador de carga se regulará de tal modo que absorba la potencia ejercida en las ruedas motrices a una velocidad constante de 120, 100, 80, 60, 40 y 20 km/h.

6.2.1.2. Determinación de la carga por masas de referencia del vehículo

Previo acuerdo del fabricante, podrá utilizarse el siguiente método:

El freno se regulará de modo que absorba la carga ejercida en las ruedas motrices a una velocidad constante de 80 km/h, de conformidad con el cuadro A4a/3.

Si la inercia equivalente correspondiente no está disponible en el dinamómetro, se utilizará el valor más elevado más próximo a la masa de referencia del vehículo.

En el caso de los vehículos que no estén destinados al transporte de viajeros, cuya masa de referencia sea superior a 1 700 kg, o vehículos en los que todas las ruedas sean permanentemente motrices, los valores de potencia indicados en el cuadro A4a/3 se multiplicarán por un factor de 1,3.

6.2.1.3. El método utilizado y los valores obtenidos (inercia equivalente, parámetro característico de ajuste) se indicarán en el informe de ensayo.

6.2.2. Ciclos de ensayo preliminares

Cuando resulte necesario, conviene realizar ciclos de ensayo preliminares para determinar la mejor manera de accionar los mandos del acelerador y el freno, de forma que se consiga un ciclo que se aproxime al ciclo teórico dentro de los límites establecidos en los que tiene lugar el ciclo.

6.2.3. Presión de los neumáticos

La presión de los neumáticos será la especificada por el fabricante y se utilizará durante el ensayo preliminar en carretera para el ajuste del freno. En los dinamómetros de dos rodillos, la presión de los neumáticos podrá aumentarse un 50 % como máximo con respecto a las recomendaciones del fabricante. La presión real utilizada se anotará en el informe de ensayo.

6.2.4. Medición de la masa de partículas de fondo

El nivel de fondo de las partículas del aire de dilución podrá determinarse haciendo pasar el aire de dilución filtrado a través del filtro de partículas. Se extraerá en el mismo punto que la muestra de partículas. Podrá realizarse una medición antes o después del ensayo. Las mediciones de la masa de partículas podrán corregirse sustrayendo la contribución de fondo del sistema de dilución. La contribución de fondo admisible será ≤ 1 mg/km (o la masa equivalente en el filtro). Si el fondo supera este nivel, se empleará la cifra por defecto de 1 mg/km (o la masa equivalente en el filtro). Cuando el resultado de la sustracción de la contribución de fondo sea negativo, se considerará que la masa de partículas resultante es igual a cero.

6.2.5. Medición del número de partículas de fondo

La sustracción del número de partículas de fondo podrá determinarse mediante una muestra de aire de dilución extraída en un punto del flujo de los filtros de partículas e hidrocarburos en el sistema de medición del número de partículas. La corrección de fondo de las mediciones del número de partículas no estará permitida en el caso de la homologación de tipo, pero podrá utilizarse, a petición del fabricante, en la conformidad de la producción y la conformidad en circulación cuando haya indicios de que la contribución del túnel es significativa.

6.2.6. Selección del filtro de la masa de partículas

Tanto en la fase urbana como en la extraurbana del ciclo combinado, se utilizará un único filtro de partículas, sin filtro auxiliar.

Podrán utilizarse dos filtros de partículas iguales, uno para la fase urbana y otro para la extraurbana, sin filtros auxiliares, solo cuando se espere que el aumento de la caída de presión a lo largo del filtro de muestra entre el inicio y el fin del ensayo de emisiones supere los 25 kPa.

6.2.7. Preparación del filtro de la masa de partículas

- 6.2.7.1. Se acondicionarán los filtros de muestreo de la masa de partículas (en lo que respecta a la temperatura y la humedad) en un recipiente abierto que haya estado protegido del polvo en una cámara de aire acondicionado durante un mínimo de 2 horas y un máximo de 80 antes del ensayo. A continuación, se pesarán los filtros no contaminados y se guardarán hasta el momento de su utilización. Si en el plazo de una hora a partir de su retirada de la cámara de pesaje los filtros no se han utilizado, deberán pesarse de nuevo.
- 6.2.7.2. El plazo de una hora podrá sustituirse por otro de ocho si se cumple, al menos, una de las condiciones siguientes:
- 6.2.7.2.1. el filtro estabilizado se introduce y conserva en un portafiltros estanco con los extremos cerrados herméticamente, o
- 6.2.7.2.2. el filtro estabilizado se introduce en un portafiltros estanco, que, a su vez, se introduce inmediatamente en un conducto de muestra a través del cual no hay flujo.

- 6.2.7.3. El sistema de muestreo de partículas se iniciará y se preparará para el muestreo.
- 6.2.8. Preparación de la medición del número de partículas
- 6.2.8.1. El sistema específico de dilución de partículas y el equipo de medición se iniciarán y se prepararán para el muestreo.
- 6.2.8.2. Antes de los ensayos, se confirmará el correcto funcionamiento del contador de partículas y el eliminador de partículas volátiles del sistema de muestreo de partículas de conformidad con los puntos 2.3.1 y 2.3.3 del apéndice 5 del presente anexo.

La respuesta del contador de partículas se someterá a ensayo diariamente, a un valor cercano a cero, antes de cada ensayo, con concentraciones elevadas de partículas y utilizando el aire ambiente.

Cuando la entrada esté equipada con un filtro de aire de partículas de elevada eficacia (HEPA), se demostrará que no hay fugas en ninguna zona del sistema de muestreo de partículas.

6.2.9. Verificación de los analizadores de gases

Los analizadores de emisiones de gases se pondrán en cero y se ajustarán con gas patrón. Se evacuarán las bolsas de muestreo.

- 6.3. Procedimiento de acondicionamiento
- 6.3.1. Al objeto de medir las partículas, con una antelación máxima de 36 horas y una mínima de 6 con respecto al inicio del ensayo, para el preacondicionamiento del vehículo se utilizará el ciclo de la parte 2 descrito en el punto 6.1 del presente anexo. Se completarán tres ciclos consecutivos. El reglaje del dinamómetro será el indicado en el punto 6.2.1 del presente anexo.

A petición del fabricante, los vehículos equipados con motor de encendido por chispa con inyección indirecta podrán preacondicionarse con un ciclo de conducción de la parte 1 y dos ciclos de la parte 2.

6.3.2. En una instalación de ensayo en la que exista la posibilidad de que un vehículo cuya emisión de partículas sea baja se contamine de otro vehículo cuya emisión de partículas sea elevada, se recomienda llevar a cabo, en el preacondicionamiento del equipo de muestreo, con un vehículo cuya emisión de partículas sea baja, un ciclo de conducción de 20 minutos a una velocidad constante de 120 km/h seguido de tres ciclos de la parte 2.

Después de este preacondicionamiento, y antes de proceder al ensayo, el vehículo permanecerá en una sala en la que la temperatura se mantendrá relativamente constante entre 293 y 303 K (20 y 30 °C). Este acondicionamiento durará seis horas como mínimo y proseguirá hasta que la temperatura del aceite del motor y la del líquido de refrigeración, en su caso, estén a ± 2 K de la temperatura de la sala.

Cuando el fabricante lo solicite, el ensayo se efectuará en un plazo máximo de 30 horas a contar desde el momento en que el vehículo haya funcionado a su temperatura normal.

- 6.3.3. En el caso de los vehículos equipados con motor de encendido por chispa alimentados con GLP o gas natural/biometano o equipados de modo que puedan alimentarse bien con gasolina, bien con GLP o gas natural/biometano, entre los ensayos con el primer combustible gaseoso de referencia y el segundo combustible gaseoso de referencia, el vehículo se preacondicionará antes del ensayo con el segundo combustible de referencia. El preacondicionamiento se efectuará con el segundo combustible de referencia mediante un ciclo de preacondicionamiento consistente en una vez la parte 1 (parte urbana) y dos veces la parte 2 (parte extraurbana) del ciclo de ensayo descrito en el punto 6.1 del presente anexo. A instancias del fabricante, y con el acuerdo del servicio técnico, podrá ampliarse el ciclo de preacondicionamiento. El reglaje del dinamómetro será el indicado en el punto 6.2 del presente anexo.
- 6.4. Procedimiento de ensayo
- 6.4.1. Arranque del motor
- 6.4.1.1. El motor se pondrá en marcha utilizando los dispositivos previstos al efecto y de acuerdo con las instrucciones del fabricante que figuran en el manual de utilización de los vehículos de producción.

- 6.4.1.2. El primer ciclo empieza en el momento en que se inicia el procedimiento de arranque del motor.
- 6.4.1.3. En caso de que se utilice GLP o gas natural/biometano como combustible, el motor podrá ponerse en marcha con gasolina y cambiar a GLP o gas natural/biometano después de un período predeterminado que el conductor no podrá modificar. Este período de tiempo no superará los 60 s.
- 6.4.2. Ralentí
- 6.4.2.1. Cambio manual o semiautomático (véanse los cuadros A4a/1 y A4a/2 del presente anexo).
- 6.4.2.2. Cambio automático

Una vez en la posición inicial, el selector no se accionará en ningún momento del ensayo, salvo en el caso especificado en el punto 6.4.3.3 del presente anexo o cuando pueda accionar la marcha superdirecta, si existe.

- 6.4.3. Aceleraciones
- 6.4.3.1. Las aceleraciones se efectuarán de manera que su valor sea lo más constante posible durante toda la operación.
- 6.4.3.2. Si una aceleración no pudiera efectuarse en el tiempo previsto, el tiempo adicional necesario se descontará del tiempo permitido para cambiar de velocidad, en la medida de lo posible, y, en su defecto, del siguiente período de velocidad constante.
- 6.4.3.3. Cambio automático

Si una aceleración no pudiera efectuarse en el tiempo previsto, el selector de velocidades se accionará de acuerdo con lo dispuesto para el cambio manual.

6.4.4. Desaceleraciones

6.4.4.1. Todas las desaceleraciones del ciclo urbano elemental (parte 1) se efectuarán retirando totalmente el pie del acelerador y con el pedal del embrague sin pisar. Se pisará el embrague, sin utilizar la palanca de cambios, cuando se alcance la velocidad más alta de las siguientes: 10 km/h o la velocidad correspondiente al régimen de ralentí del motor.

Todas las desaceleraciones del ciclo extraurbano (parte 2) se efectuarán retirando el pie totalmente del acelerador y dejando el embrague sin pisar. Para la última desaceleración, se pisará el embrague, sin utilizar la palanca de cambios, cuando la velocidad sea de 50 km/h.

- 6.4.4.2. Si el tiempo necesario para la desaceleración fuera mayor de lo previsto para la fase correspondiente, se utilizarán los frenos del vehículo para poder respetar la secuencia del ciclo.
- 6.4.4.3. Si el tiempo necesario para la desaceleración fuera menor de lo previsto para la fase correspondiente, se recuperará el tiempo del ciclo teórico mediante un período a velocidad constante o en régimen de ralentí que enlazará con la operación siguiente.
- 6.4.4.4. Al término del período de desaceleración (detención del vehículo en los rodillos) del ciclo urbano elemental (parte 1), la palanca de cambios se colocará en punto muerto y no se pisará el embrague.
- 6.4.5. Velocidades constantes
- 6.4.5.1. Se evitará el «bombeo» o el cierre de la válvula cuando se pase de la aceleración a la siguiente fase de velocidad constante.
- 6.4.5.2. Se llegará a los períodos de velocidad constante manteniendo fija la posición del acelerador.

6.4.6. Muestreo

El muestreo comienza antes o en el momento del inicio del procedimiento de arranque del motor y finaliza en el momento en que concluye el período final de ralentí en el ciclo extraurbano (parte 2, final del muestreo) o, en el caso del ensayo de tipo VI, en el momento en que concluye el período final de ralentí del último ciclo urbano elemental (parte 1).

- 6.4.7. Durante el ensayo, se registrará la velocidad con arreglo al tiempo o mediante el sistema de adquisición de datos, de manera que se pueda evaluar la corrección de los ciclos ejecutados.
- 6.4.8. Las partículas se medirán continuamente en el sistema de muestreo de partículas. Las concentraciones medias se determinarán integrando las señales del analizador en el ciclo de ensayo.
- 6.5. Procedimientos posteriores al ensayo
- 6.5.1. Verificación del analizador de gases

Se verificarán los valores de gas cero y gas patrón resultantes de los analizadores utilizados para la medición continua. El ensayo se considerará aceptable si la diferencia entre los resultados anteriores y posteriores al ensayo es inferior al 2 % del valor del gas patrón.

6.5.2. Pesaje del filtro de partículas

Los filtros de referencia se pesarán dentro de las ocho horas siguientes al pesaje del filtro de ensayo. El filtro de ensayo de partículas contaminadas se llevará a la cámara de pesaje dentro de la hora siguiente a los análisis de los gases de escape. El filtro de ensayo se acondicionará durante un mínimo de 2 horas y un máximo de 80 y, a continuación, se pesará.

- 6.5.3. Análisis de la bolsa
- 6.5.3.1. El análisis de los gases de escape contenidos en la bolsa se efectuará cuanto antes y, en cualquier caso, 20 minutos como máximo después de finalizar el ciclo de ensayo.
- 6.5.3.2. Antes de cada análisis de las muestras, el rango del analizador que vaya a utilizarse para cada contaminante se ajustará a cero con el gas cero adecuado.
- 6.5.3.3. A continuación, se ajustarán los analizadores a las curvas de calibración utilizando gases patrón que presenten concentraciones nominales comprendidas entre el 70 y el 100 % del rango.
- 6.5.3.4. Se verificará una vez más la puesta a cero de los analizadores. Si el valor resultante difiere en más del 2 % del rango con respecto al establecido en el punto 6.5.3.2 del presente anexo, se repetirá el proceso para ese analizador.
- 6.5.3.5. A continuación, se analizarán las muestras.
- 6.5.3.6. Tras el análisis, se controlarán de nuevo los puntos cero y patrón utilizando los mismos gases. Si los resultados de los nuevos controles se sitúan en el ± 2 % con respecto a los valores del punto 6.5.3.3 del presente anexo, se considerará aceptable el análisis.
- 6.5.3.7. En todos los elementos del presente punto, los caudales y presiones de los diversos gases deberán ser los mismos que se han utilizado durante la calibración de los analizadores.
- 6.5.3.8. La cifra adoptada para el contenido de los gases en cada uno de los contaminantes medidos será el valor resultante tras la estabilización del dispositivo de medición. Las emisiones másicas de hidrocarburos de los motores de encendido por compresión se calcularán a partir del valor resultante integrado en el detector de ionización de llama calentado, corregido, si es necesario, en función de la variación del flujo, tal como se establece en el punto 6.6.6 del presente anexo.
- 6.6. Cálculo de emisiones
- 6.6.1. Determinación del volumen
- 6.6.1.1. Cálculo del volumen cuando se utilice un dispositivo de dilución variable con control constante del flujo mediante orificio o venturi.

Se registrarán constantemente los parámetros que muestran el flujo volumétrico y se calculará el volumen total durante todo el ensayo.

6.6.1.2. Cálculo del volumen cuando se utilice una bomba de desplazamiento positivo

El volumen de gases de escape diluidos medido en los sistemas que incluyen una bomba de desplazamiento positivo se calculará mediante la fórmula siguiente:

$$V = V_o \cdot N$$

Donde:

V = volumen del gas diluido, expresado en litros por ensayo (antes de la corrección)

V_o = volumen de gas desplazado por la bomba de desplazamiento positivo en las condiciones de ensayo, en litros por revolución

N = número de revoluciones por ensayo

6.6.1.3. Corrección del volumen en condiciones normales

El volumen de los gases de escape diluidos se corregirá mediante la fórmula siguiente:

$$V_{\text{mix}} = V \cdot K_1 \cdot \left(\frac{P_B - P_1}{T_P}\right) \tag{1}$$

Donde:

$$K_1 = \frac{273,2(K)}{101,33(kPa)} = 2,6961$$
 (2)

P_R = presión barométrica en la cámara de ensayo en kPa

P₁ = vacío a la entrada de la bomba de desplazamiento positivo en kPa en relación con la presión barométrica ambiente

T_p = temperatura media de los gases de escape diluidos que entran en la bomba de desplazamiento positivo durante el ensayo (Κ)

6.6.2. Masa total emitida de gases y partículas contaminantes

La masa M de cada contaminante emitido por el vehículo en el transcurso del ensayo se determinará calculando el producto de la concentración volumétrica y el volumen del gas en cuestión, teniendo en cuenta las densidades que figuran a continuación en las condiciones de referencia antes citadas:

En el caso del monóxido de carbono (CO): d = 1,25 g/l

En el caso de los hidrocarburos:

para gasolina (E5) ($C_1H_{1,89}O_{0,016}$)	d = 0.631 g/1
para gasolina (E10) (C ₁ H _{1,93} O _{0,033})	d = 0.645 g/1
para gasóleo (B5) (C ₁ H _{1,86} O _{0,005})	d = 0.622 g/1
para gasóleo (B7) ($C_1H_{l,86}O_{0,007}$)	d = 0.623 g/1
para GLP (CH _{2,525})	d = 0.649 g/l
para GLP (CH _{2,525})	d = 0.649 g/l
para GN/biometano (C ₁ H ₄)	d = 0.714 g/l

para etanol (E85)
$$(C_1H_{2,74}O_{0,385})$$
 d = 0,932 g/l

para etanol (E75)
$$(C_1H_{2.61}O_{0.329})$$
 d = 0,886 g/l

en el caso de los óxidos de nitrógeno (NO_x): d = 2,05 g/1

6.6.3. Las emisiones másicas de gases contaminantes se calcularán mediante la siguiente fórmula:

$$M_{i} = \frac{V_{\text{mix}} \cdot Q_{i} \cdot k_{h} \cdot C_{i} \cdot 10^{-6}}{d} \tag{3}$$

Donde:

M_i = emisión másica del contaminante i en g/km

 V_{mix} = volumen de los gases de escape diluidos, expresado en litros por ensayo y corregido hasta llevarlo a las condiciones normales (273,2 K y 101,33 kPa)

 Q_i = densidad del contaminante i en gramos por litro a temperatura y presión normales (273,2 K y 101,33 kPa)

k_h = factor de corrección de la humedad utilizado para calcular las emisiones másicas de los óxidos de nitrógeno; no existe corrección de humedad para HC y CO

C_i = concentración del contaminante i en los gases de escape diluidos, expresada en ppm y corregida mediante la cantidad de contaminante i presente en el aire de dilución

d = distancia correspondiente al ciclo de funcionamiento en kilómetros

6.6.4. Corrección de la concentración del aire de dilución

La concentración de contaminante en el gas de escape diluido se corregirá mediante la cantidad del contaminante en el aire de dilución, de la manera siguiente:

$$C_{i} = C_{e} - C_{d} \cdot \left(1 - \frac{1}{DF}\right) \tag{4}$$

Donde:

C_i = concentración del contaminante i en los gases de escape diluidos, expresada en ppm y corregida por la cantidad de i presente en el aire de dilución

C_e = concentración medida del contaminante i en los gases de escape diluidos, expresada en ppm

C_d = concentración de contaminante i en el aire utilizado para dilución, expresada en ppm

DF = factor de dilución

El factor de dilución se calcula del modo siguiente:

Para cada combustible de referencia, excepto hidrógeno:

$$DF = \frac{X}{C_{CO_2} + (C_{HC} + C_{CO}) \cdot 10^{-4}}$$

Para un combustible cuya composición sea C_xH_vO_z, la fórmula general es:

$$X = 100 \frac{x}{x + \frac{y}{2} + 3,76 \cdot \left(x + \frac{y}{4} - \frac{z}{2}\right)}$$

A continuación figuran los factores de dilución de los combustibles de referencia correspondientes al ámbito de aplicación del presente Reglamento:

$$DF = \frac{13.4}{C_{CO_2} + (C_{HC} + C_{CO}) \cdot 10^{-4}}$$
 para gasolina (E5)

$$DF = \frac{13.4}{C_{CO_2} + (C_{HC} + C_{CO}) \cdot 10^{-4}}$$
 para gasolina (E10)

$$DF = \frac{13.5}{C_{CO_2} + (C_{HC} + C_{CO}) \cdot 10^{-4}}$$
 para gasóleo (B5)

$$DF = \frac{13.5}{C_{CO_2} + (C_{HC} + C_{CO}) \cdot 10^{-4}}$$
 para gasóleo (B7)

$$DF = \frac{11.9}{C_{CO_2} + (C_{HC} + C_{CO}) \cdot 10^{-4}}$$
 para GLP (5e)

$$DF = \frac{9.5}{C_{CO_2} + (C_{HC} + C_{CO}) \cdot 10^{-4}}$$
 para GN/biometano (5f)

$$DF = \frac{12.5}{C_{CO_2} + (C_{HC} + C_{CO}) \cdot 10^{-4}}$$
 para etanol (E85)

DF =
$$\frac{12.7}{C_{CO_2} + (C_{HC} + C_{CO}) \cdot 10^{-4}}$$
 para etanol (E75)

$$DF = \frac{35,03}{C_{H_2O} - C_{H_2O-DA} + C_{H_2} \cdot 10^{-4}}$$
 para hidrógeno (5i)

En estas ecuaciones:

C_{CO2} = concentración de CO₂ en los gases de escape diluidos contenidos en la bolsa de muestreo, expresada en porcentaje de volumen

C_{HC} = concentración de HC en los gases de escape diluidos contenidos en la bolsa de muestreo, expresada en ppm de equivalente de carbono

C_{CO} = concentración de CO en los gases de escape diluidos contenidos en la bolsa de muestreo, expresada en ppm

C_{H2O} = concentración de H₂O en los gases de escape diluidos contenidos en la bolsa de muestreo, expresada en porcentaje de volumen

C_{H2O-DA} = concentración de H₂O en el aire de dilución, expresada en porcentaje de volumen;

C_{H2} = concentración de hidrógeno en los gases de escape diluidos contenidos en la bolsa de muestreo, expresada en ppm

La concentración de hidrocarburos no metánicos se calculará como sigue:

$$C_{NMHC} = C_{THC} - (Rf_{CH4} \cdot C_{CH4})$$

Donde:

C_{NMHC} = concentración corregida de HCNM en los gases de escape diluidos, expresada en ppm de equivalentes de carbono

C_{THC} = concentración de HCT en los gases de escape diluidos, expresada en ppm de equivalentes de carbono y corregida por la cantidad de HCT presente en el aire de dilución

C_{CH4} = concentración de CH₄ en los gases de escape diluidos, expresada en ppm de equivalentes de carbono y corregida por la cantidad de CH₄ presente en el aire de dilución

Rf _{CH4} = factor de respuesta del detector de ionización de llama al metano, definido en el punto 2.3.3 del apéndice 3 del presente anexo

6.6.5. Cálculo del factor de corrección de humedad del NO

A fin de corregir los efectos de la humedad en los resultados de óxidos de nitrógeno, se aplicará la fórmula siguiente:

$$k_{h} = \frac{1}{1 - 0.0329 \cdot (H - 10.71)} \tag{6}$$

Donde:

$$H = \frac{6,211 \cdot R_a \cdot P_d}{P_B - P_d \cdot R_a \cdot 10^{-2}}$$

Donde:

H = humedad absoluta, expresada en gramos de agua por kilogramos de aire seco

R_a = humedad relativa del aire ambiente, expresada en porcentaje

P_d = presión de vapor de saturación a temperatura ambiente, expresada en kPa

P_R = presión atmosférica en la cámara, expresada en kPa

6.6.6. Determinación de HC en los motores de encendido por compresión

Para determinar la emisión másica de HC en los motores de encendido por compresión, la concentración media de HC se calcula como sigue:

$$C_{e} = \frac{\int_{t_{1}}^{t_{2}} C_{HC} \cdot dt}{t_{2} - t_{1}}$$
 (7)

Donde:

 $\int_{t_1}^{t_2} C_{HC} \cdot dt = integral del registro del detector de ionización de llama calentado durante el ensayo <math>(t_2 - t_1)$

 C_e = la concentración de HC medida en los gases de escape diluidos, en ppm de Ci se sustituye por C_{HC} en todas las ecuaciones pertinentes

6.6.7. Determinación de partículas

La emisión de partículas Mp (g/km) se calcula mediante la ecuación siguiente:

$$M_p = \frac{(V_{mix} + V_{ep}) \cdot P_e}{V_{ep} \cdot d}$$

en caso de que los gases de escape sean expulsados fuera del túnel;

$$M_p = \frac{V_{mix} \cdot P_e}{V_{en} \cdot d}$$

en caso de que los gases de escape sean reconducidos al túnel.

Donde:

V_{mix} = volumen de los gases de escape diluidos (véase el punto 6.6.1 del presente anexo) en condiciones

V_{ep} = volumen de los gases de escape que atraviesan el filtro de partículas en condiciones normales

P_e = masa de partículas recogida en los filtros

d = distancia correspondiente al ciclo de funcionamiento en km

M_p = emisión de partículas en g/km

Cuando la corrección del nivel de fondo de partículas se realice a partir del sistema de dilución, se determinará de conformidad con el punto 6.2.4 del presente anexo. En este caso, la masa de partículas (g/km) se calculará de la manera siguiente:

$$M_p = \left\lceil \frac{P_e}{V_{ep}} - \left(\frac{P_a}{V_{ap}} \cdot \left(1 - \frac{1}{DF} \right) \right) \right\rceil \cdot \frac{(V_{mix} + V_{ep})}{d}$$

en caso de que los gases de escape sean expulsados fuera del túnel;

$$M_p = \left\lceil \frac{P_e}{V_{ep}} - \left(\frac{P_a}{V_{ap}} \cdot \left(1 - \frac{1}{DF}\right)\right) \right\rceil \cdot \frac{V_{mix}}{d}$$

en caso de que los gases de escape sean reconducidos al túnel.

Donde:

V_{an} = volumen del aire del túnel que atraviesa el filtro de partículas de fondo en condiciones normales

P_a = masa de partículas recogida en el filtro de fondo

DF = factor de dilución con arreglo al punto 6.6.4 del presente anexo

Cuando la aplicación de una corrección de fondo da como resultado una masa de partículas negativa (en g/km), el resultado se considerará una masa de partículas de 0 g/km.

6.6.8. Determinación de los números de partículas

La emisión del número de partículas se calculará mediante la ecuación siguiente:

$$N = \frac{V \cdot k \cdot \overline{C}_{s} \cdot \overline{f_{r}} \cdot 10^{3}}{d}$$

Donde:

N = emisión del número de partículas expresada en partículas por kilómetro

V = volumen de los gases de escape diluidos, expresado en litros por ensayo y corregido hasta llevarlo a las condiciones normales (273,2 K y 101,33 kPa)

K = factor de calibración para corregir las mediciones del contador del número de partículas con respecto al nivel del instrumento de referencia cuando esto no se aplique internamente en el contador del número de partículas; cuando el factor de calibración se aplique internamente en el contador del número de partículas, en la ecuación anterior se utilizará un valor de 1 para k

- \overline{C}_s = concentración corregida de partículas procedentes del gas de escape diluido expresada como el promedio de partículas por centímetro cúbico procedentes del ensayo de emisiones, incluida la duración total del ciclo de conducción. Si los resultados de la concentración media volumétrica (\overline{C}) procedente del contador del número de partículas no se han obtenido en condiciones normales (273,2 K y 101,33 kPa), deben corregirse las concentraciones en tales condiciones (\overline{C}_s)
- $\overline{f_r}$ = factor de reducción de la concentración media de partículas del eliminador de partículas volátiles en el reglaje de dilución utilizado para el ensayo
- d = distancia correspondiente al ciclo de funcionamiento, expresada en kilómetros
- \overline{C} = se calculará a partir de la siguiente ecuación:

$$\overline{C} = \frac{\sum_{i=1}^{i=n} C_i}{n}$$

Donde:

- C_i = medición diferenciada de la concentración de partículas en los gases de escape diluidos procedentes del contador de partículas, expresada en partículas por centímetro cúbico y corregida para coincidencia
- n = número total de mediciones diferenciadas de la concentración de partículas realizadas durante el ciclo de funcionamiento
- n se calculará a partir de la siguiente ecuación:

$$n = T \cdot f$$

Donde:

- T = duración del ciclo de funcionamiento, expresada en segundos
- f = frecuencia de registro de los datos del contador de partículas, expresada en Hz
- 6.6.9. Emisiones másicas procedentes de vehículos equipados con dispositivos de regeneración periódica

Cuando el vehículo esté equipado con un sistema de regeneración periódica definido en el anexo 13 del presente Reglamento:

- 6.6.9.1. Lo dispuesto en el anexo 13 del presente Reglamento se aplicará solo a las mediciones de la masa de partículas y no a las mediciones del número de partículas.
- 6.6.9.2. En el muestreo de la masa de partículas durante un ensayo en el que el vehículo se someta a regeneración programada, la temperatura frontal del filtro no superará los 192 °C.
- 6.6.9.3. En el muestreo de la masa de partículas durante un ensayo en el que el dispositivo de regeneración esté en condiciones estables de carga (es decir, el vehículo no se somete a regeneración), se recomienda que el vehículo haya completado más de un tercio del kilometraje entre las regeneraciones programadas o que el dispositivo de regeneración periódica se haya sometido a una carga equivalente a la del vehículo.

A los fines del ensayo de conformidad de la producción, el fabricante podrá garantizar que este se incluye en el coeficiente de evolución. En este caso, el punto 8.2.3.2 del presente Reglamento se sustituye por el punto 6.6.9.3.1 del presente anexo.

- 6.6.9.3.1. Si el fabricante desea realizar un rodaje («x» km, donde $x \le 3000$ km en el caso de los vehículos equipados con motor de encendido por chispa $y \ge 15000$ km en el caso de los vehículos equipados con motor de encendido por compresión y en el cual el vehículo esté situado a más de un tercio de distancia entre regeneraciones sucesivas), dicho rodaje se realizará de la siguiente forma:
 - a) las emisiones de contaminantes (tipo I) se medirán a cero y a «x» km en el primer vehículo sometido a ensayo;
 - b) se calculará para cada contaminante el coeficiente de evolución de las emisiones entre cero y «x» km:

$$Evolution\ coefficient = \frac{Emissions\ at\ «x»\ km}{Emissions\ at\ zero\ km}$$

que puede ser inferior a 1;

a) Los demás vehículos no tendrán hecho el rodaje, pero sus emisiones correspondientes a 0 km se multiplicarán por el coeficiente de evolución.

En este caso, se tomarán los siguientes valores:

- a) los valores correspondientes a «x» km en el caso del primer vehículo;
- b) los valores a 0 km multiplicados por el coeficiente de evolución para los demás vehículos.

 ${\it Cuadro~A4a/1}$ Ciclo de funcionamiento urbano elemental en el banco dinamométrico (parte 1)

	Operación	n Fase	Aceleración (m/s²)	Velocidad (km/h)	Duració	n de cada	Tiempo acumulado (s)	Marcha que se ha de utilizar con cambio manual
	Орстастоп				Operación (s)	Fase (s)		
1	Ralentí	1	0	0	11	11	11	6 s PM + 5 s K ₁ (¹)
2	Aceleración	2	1,04	0-15	4	4	15	1
3	Velocidad constante	3	0	15	9	8	23	1
4	Desaceleración	4	- 0,69	15-10	2	5	25	1
5	Desaceleración, desembragado		- 0,92	10-0	3		28	K ₁ (¹)
6	Ralentí	5	0	0	21	21	49	16 s PM + 5 s K ₁ (¹)
7	Aceleración	6	0,83	0-15	5	12	54	1
8	Cambio de marchas			15	2		56	
9	Aceleración		0,94	15-32	5		61	2
10	Velocidad constante	7	0	32	24	24	85	2
11	Desaceleración	8	- 0,75	32-10	8	11	93	2
12	Desaceleración, desembragado		- 0,92	10-0	3		96	K ₂ (¹)
13	Ralentí	9	0	0	21		117	16 s PM + 5 s K ₁ (¹)
14	Aceleración	10	0,83	0-15	5	26	122	1
15	Cambio de marchas			15	2		124	
16	Aceleración		0,62	15-35	9		133	2
17	Cambio de marchas			35	2		135	
18	Aceleración		0,52	35-50	8		143	3

	Operación	Fase	Aceleración (m/s²)	Velocidad (km/h)	Duración de cada		Tiempo acumulado	Marcha que se ha de utilizar
	Operación	rase			Operación (s)	Fase (s)	(s)	con cambio manual
19	Velocidad constante	11	0	50	12	12	155	3
20	Desaceleración	12	- 0,52	50-35	8	8	163	3
21	Velocidad constante	13	0	35	13	13	176	3
22	Cambio de marchas	14		35	2	12	178	
23	Desaceleración		- 0,99	35-10	7		185	2
24	Desaceleración, desembragado		- 0,92	10-0	3		188	K ₂ (¹)
25	Ralentí	15	0	0	7	7	195	7 s PM (¹)

⁽¹) PM = caja de cambios en punto muerto, embragado. K₁, K₂ = primera o segunda marcha, desembragado.

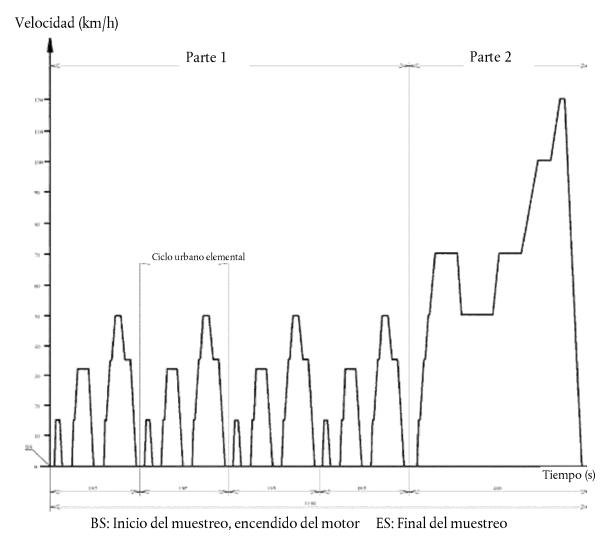
Cuadro A4a/2

Ciclo extraurbano (parte 2) del ensayo de tipo I

Nº de		Fase	Aceleración (m/s²)	Velocidad (km/h)	Duración de cada		Tiempo acumulado (s)	Marcha que se ha de utilizar con cambio manual
opera- ción	rase	Aceleración (m/s²)	velocidad (km/n)	operación (s)	fase (s)			
1	Ralentí	1	0	0	20	20	20	K ₁ (1)
2	Aceleración	2	0,83	0-15	5	41	25	1
3	Cambio de marchas			15	2		27	_
4	Aceleración		0,62	15-35	9		36	2
5	Cambio de marchas			35	2		38	_
6	Aceleración		0,52	35-50	8		46	3
7	Cambio de marchas			50	2		48	_
8	Aceleración		0,43	50-70	13		61	4

3.7.2015

Nº de	Operación	Fase	Aceleración (m/s²)	Velocidad (km/h)	Duraciór	1 de cada	Tiempo acumulado	Marcha que se ha de utilizar
opera- ción	Operación	rase	Aceleración (m/s-)	velocidad (kiii/ii)	operación (s)	fase (s)	(s)	con cambio manual
9	Velocidad constante	3	0	70	50	50	111	5
10	Desaceleración	4	- 0,69	70-50	8	8	119	4 s.5 + 4 s.4
11	Velocidad constante	5	0	50	69	69	188	4
12	Aceleración	6	0,43	50-70	13	13	201	4
13	Velocidad constante	7	0	70	50	50	251	5
14	Aceleración	8	0,24	70-100	35	35	286	5
15	Velocidad constante (2)	9	0	100	30	30	316	5 (2)
16	Aceleración (²)	10	0,28	100-120	20	20	336	5 (2)
17	Velocidad constante (2)	11	0	120	10	20	346	5 (2)
18	Desaceleración (2)	12	- 0,69	120-80	16	34	362	5 (2)
19	Desaceleración (2)		- 1,04	80-50	8		370	5 (2)
20	Desaceleración, embrague pisado		1,39	50-0	10		380	K ₅ (1)
21	Ralentí	13	0	0	20	20	400	PM (¹)


 ⁽¹) PM = caja de cambios en punto muerto, embragado. K₁, K₅ = primera o segunda marcha, desembragado.
 (²) Pueden emplearse marchas adicionales, de acuerdo con las recomendaciones del fabricante, si el vehículo está equipado con una transmisión de más de cinco velocidades.

Cuadro A4a/3

Requisitos de simulación de inercia y carga del dinamómetro

Masa de referencia del vehículo RW (kg)	Inercia equiva- lente	Potencia y carga dinamómetr	absorbidas por el o a 80 km/h	Coeficientes de resistencia al avance	
	kg	kW	N	a (N)	b [N/(km/h) ²]
RW ≤ 480	455	3,8	171	3,8	0,0261
480 < RW ≤ 540	510	4,1	185	4,2	0,0282
540 < RW ≤ 595	570	4,3	194	4,4	0,0296
595 < RW ≤ 650	625	4,5	203	4,6	0,0309
550 < RW ≤ 710	680	4,7	212	4,8	0,0323
710 < RW ≤ 765	740	4,9	221	5,0	0,0337
765 < RW ≤ 850	800	5,1	230	5,2	0,0351
350 < RW ≤ 965	910	5,6	252	5,7	0,0385
065 < RW ≤ 1 080	1 020	6,0	270	6,1	0,0412
080 < RW ≤ 1 190	1 130	6,3	284	6,4	0,0433
190 < RW ≤ 1 305	1 250	6,7	302	6,8	0,0460
305 < RW ≤ 1 420	1 360	7,0	315	7,1	0,0481
420 < RW ≤ 1 530	1 470	7,3	329	7,4	0,0502
530 < RW ≤ 1 640	1 590	7,5	338	7,6	0,0515
640 < RW ≤ 1 760	1 700	7,8	351	7,9	0,0536
760 < RW ≤ 1 870	1 810	8,1	365	8,2	0,0557
. 870 < RW ≤ 1 980	1 930	8,4	378	8,5	0,0577
980 < RW ≤ 2 100	2 040	8,6	387	8,7	0,0591
2 100 < RW ≤ 2 210	2 150	8,8	396	8,9	0,0605
2 210 < RW ≤ 2 380	2 270	9,0	405	9,1	0,0619
380 < RW ≤ 2 610	2 270	9,4	423	9,5	0,0646
610 < RW	2 270	9,8	441	9,9	0,0674

Figura A4a/1 Ciclo de funcionamiento del ensayo de tipo I

3.7.2015

Figura A4a/2
Ciclo urbano elemental del ensayo de tipo I

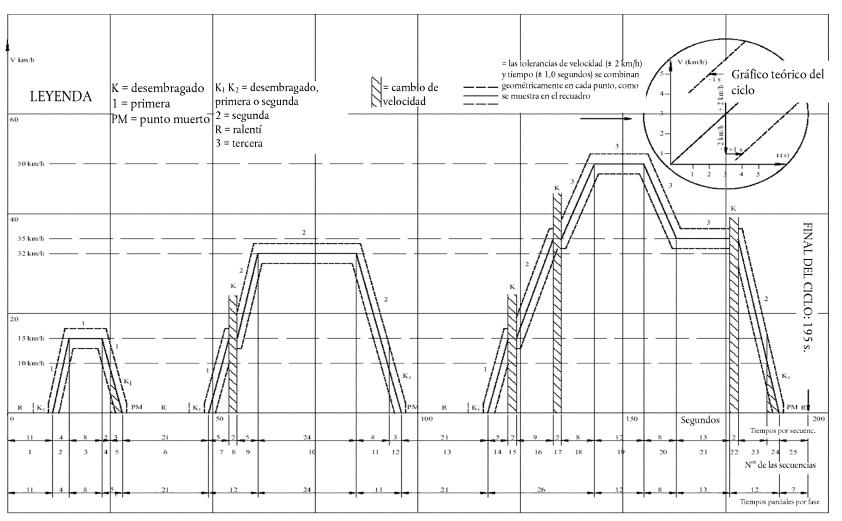
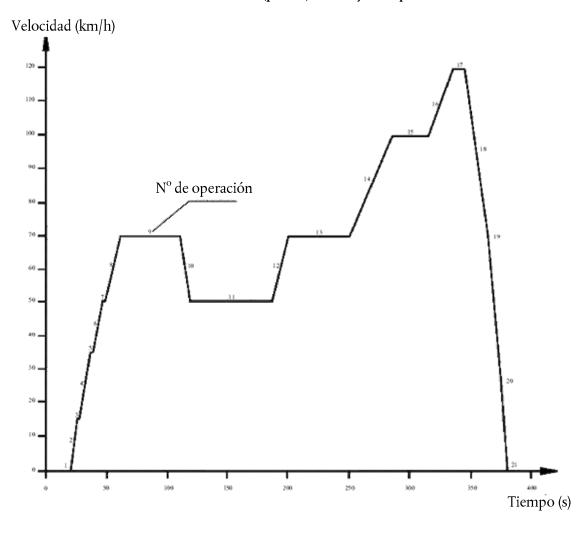



Figura A4a/3 Ciclo extraurbano (parte 2) del ensayo de tipo I

Apéndice 1

Sistema de banco dinamométrico

- 1. ESPECIFICACIÓN
- 1.1. Requisitos generales
- 1.1.1. El dinamómetro permitirá simular la resistencia al avance y pertenecerá a uno de los tipos siguientes:
 - a) dinamómetro con curva de carga fija, es decir, un dinamómetro cuyas características físicas den una forma fija a la curva de carga;
 - b) dinamómetro con curva de carga regulable, es decir, un dinamómetro en el que al menos dos parámetros de resistencia al avance pueden regularse para dar forma a la curva de carga.
- 1.1.2. En el caso de los dinamómetros con simulación eléctrica de inercia, se demostrará que son equivalentes a los sistemas mecánicos de inercia. El método para establecer dicha equivalencia se describe en el apéndice 6 del presente anexo.
- 1.1.3. En el supuesto de que la resistencia total al avance en carretera no pueda reproducirse en el banco dinamométrico entre 10 y 120 km/h, se recomienda la utilización de un banco dinamométrico que tenga las características que se definen a continuación.
- 1.1.3.1. La carga absorbida por el freno y los rozamientos internos del banco dinamométrico entre 0 y 120 km/h serán los siguientes:

 $F = (a + b \cdot V^2) \pm 0.1 \cdot F_{80}$ (sin que sea negativo)

Donde:

F = carga total absorbida por el banco dinamométrico (N)

a = valor equivalente a la resistencia a la rodadura (N)

b = valor equivalente al coeficiente de resistencia al aire $[N/(km/h)^2]$

V = velocidad (km/h)

 F_{80} = carga a 80 km/h (N)

- 1.2. Requisitos específicos
- 1.2.1. El reglaje del dinamómetro no se verá afectado por el paso del tiempo ni producirá vibraciones perceptibles en el vehículo que puedan perjudicar al funcionamiento normal de este.
- 1.2.2. El banco dinamométrico podrá constar de uno o dos rodillos. El rodillo delantero deberá accionar, directa o indirectamente, las masas de inercia y el dispositivo de absorción de potencia.
- 1.2.3. La carga indicada deberá poder medirse y leerse con una precisión de ± 5 %.
- 1.2.4. En el caso de los dinamómetros con curva de carga fija, la precisión del reglaje de la carga a 80 km/h será de ± 5 %. En el caso de los dinamómetros con curva de carga regulable, la precisión a la hora de sincronizar la carga del dinamómetro y la resistencia al avance será de ± 5 % a 120, 100, 80, 60 y 40 km/h y de ± 10 % a 20 km/h. Por debajo de estos valores, la absorción del dinamómetro será positiva.
- 1.2.5. Deberá conocerse la inercia total de las partes giratorias (incluida la inercia simulada cuando proceda), que estará situada a ± 20 kg de la clase de inercia del ensayo.
- 1.2.6. La velocidad del vehículo se determinará en función de la velocidad de rotación del rodillo (rodillo delantero en el caso de los dinamómetros de dos rodillos). A velocidades superiores a 10 km/h, se medirá con una precisión de ± 1 km/h.

La distancia efectivamente recorrida por el vehículo se determinará en función del movimiento de rotación del rodillo (rodillo delantero en el caso de los dinamómetros de dos rodillos).

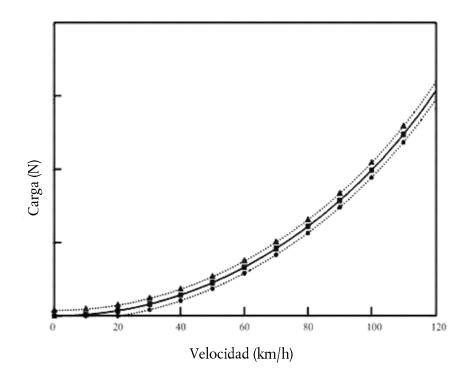
2. PROCEDIMIENTO DE CALIBRACIÓN DEL DINAMÓMETRO

2.1. Introducción

En el presente punto se describe el método que ha de utilizarse para determinar la carga absorbida por un freno dinamométrico. La carga absorbida comprenderá la absorbida por los rozamientos y la absorbida por el dispositivo de absorción de potencia.

El dinamómetro se pone en funcionamiento a una velocidad superior a las del rango de velocidades de ensayo. A continuación, se desconecta el dispositivo utilizado para poner en marcha el dinamómetro y disminuye la velocidad de rotación del rodillo arrastrado.

El dispositivo de absorción de potencia y el rozamiento disipan la energía cinética de los rodillos. Este método no tiene en cuenta las variaciones de los rozamientos internos de los rodillos con o sin vehículo. Tampoco tendrá en cuenta los rozamientos del rodillo trasero cuando este esté libre.


2.2. Calibración del indicador de carga a 80 km/h

Para calibrar el indicador de carga a 80 km/h con arreglo a la carga absorbida, se utilizará el siguiente procedimiento (véase también la figura A4a.Ap1/4):

- 2.2.1. Se medirá, si todavía no se ha hecho, la velocidad de rotación del rodillo. Para ello, podrá utilizarse una quinta rueda, un cuentarrevoluciones o cualquier otro método.
- 2.2.2. Se instalará el vehículo en el dinamómetro o se aplicará otro método para poner en marcha el dinamómetro.
- 2.2.3. Se utilizará el volante de inercia o cualquier otro sistema de simulación de inercia para la clase de inercia que deba utilizarse.

Figura A4a.Ap1/4

Diagrama ilustrativo de la potencia absorbida por el banco dinamométrico

Leyenda:

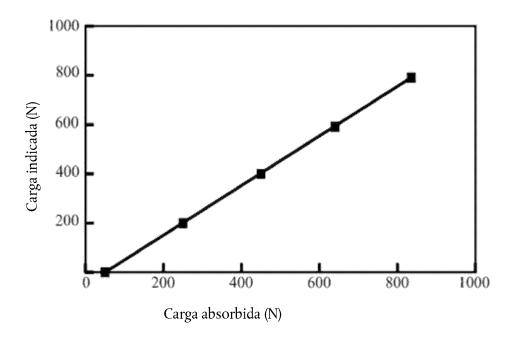
- 2.2.4. Se llevará el dinamómetro hasta una velocidad de 80 km/h.
- 2.2.5. Se anotará la carga indicada F_i (N).
- 2.2.6. Se llevará el dinamómetro hasta una velocidad de 90 km/h.
- 2.2.7. Se desconectará el dispositivo utilizado para poner en marcha el dinamómetro.
- 2.2.8. Se anotará el tiempo utilizado por el dinamómetro para pasar de 85 a 75 km/h.
- 2.2.9. Se ajustará el dispositivo de absorción de potencia a un nivel diferente.
- 2.2.10. Se repetirán las operaciones de los puntos 2.2.4 a 2.2.9 del presente apéndice tantas veces como sea necesario para completar el rango de cargas utilizadas.
- 2.2.11. Se calculará la carga absorbida utilizando la fórmula siguiente:

$$F = \frac{M_i \cdot \Delta V}{t}$$

Donde:

F = carga absorbida (N)

M_i = inercia equivalente en kg (excluidos los efectos de inercia del rodillo trasero libre)


 Δ V = desviación de la velocidad en m/s (10 km/h = 2,775 m/s)

t = tiempo utilizado por el rodillo para pasar de 85 a 75 km/h

2.2.12. La figura A4a.Ap1/5 muestra la carga indicada a 80 km/h en función de la carga absorbida a 80 km/h.

Figura A4a.Ap1/5

Carga indicada a 80 km/h en función de la carga absorbida a 80 km/h

2.2.13. Se repetirán las operaciones descritas en los puntos 2.2.3 a 2.2.12 del presente apéndice para todas las clases de inercia que vayan a utilizarse.

2.3. Calibración del indicador de carga a otras velocidades

Se repetirán los procedimientos del punto 2.2 del presente apéndice tantas veces como sea necesario para las velocidades elegidas.

2.4. Calibración de la fuerza o el par

Se seguirá el mismo procedimiento para calibrar la fuerza o el par.

- 3. VERIFICACIÓN DE LA CURVA DE CARGA
- 3.1. Procedimiento

La curva de absorción de carga del dinamómetro a partir de un reglaje de referencia a una velocidad de 80 km/h se verificará de la manera siguiente:

- 3.1.1. Se instalará el vehículo en el dinamómetro o se aplicará otro método para poner en marcha el dinamómetro.
- 3.1.2. Se ajustará el dinamómetro a la carga absorbida (F) a 80 km/h.
- 3.1.3. Se anotará la carga absorbida a 120, 100, 80, 60, 40 y 20 km/h.
- 3.1.4. Se trazará la curva F(V) y se comprobará que corresponde a lo dispuesto en el punto 1.1.3.1 del presente apéndice.
- 3.1.5. Se repetirá el procedimiento establecido en los puntos 3.1.1 a 3.1.4 del presente apéndice para otros valores de potencia F a 80 km/h y para otros valores de inercia.

Apéndice 2

Sistema de dilución de los gases de escape

1. ESPECIFICACIÓN DEL SISTEMA

1.1. Descripción del sistema

Se utilizará un sistema de dilución de los gases de escape de flujo total en el cual es necesario que los gases de escape del vehículo se diluyan de manera continua con el aire ambiente en condiciones controladas. Se medirá el volumen total de la mezcla de gases de escape y aire diluido y se recogerá para análisis una muestra continuamente proporcional del volumen. Las cantidades de contaminantes se determinan a partir de las concentraciones de la muestra, corregidas en función de la concentración de contaminante en el aire ambiente y el flujo totalizado durante el período de ensayo.

El sistema de dilución de los gases de escape consistirá en un tubo de transferencia, una cámara de mezclado y un túnel de dilución, un dispositivo de acondicionamiento del aire de dilución, un dispositivo de aspiración y un dispositivo de medición del flujo. Se instalarán sondas de muestreo en el túnel de dilución, como se especifica en los apéndices 3, 4 y 5 del presente anexo.

La cámara de mezclado descrita anteriormente consistirá en un recipiente como los de las figuras A4a.Ap2/6 y A4a.Ap2/7, en el que los gases de escape del vehículo y el aire de dilución se combinen para dar lugar a una mezcla homogénea a la salida de la cámara.

1.2. Requisitos generales

- 1.2.1. Los gases de escape del vehículo se diluirán con una cantidad de aire ambiente suficiente como para impedir la condensación del agua en el sistema de muestreo y medición en todas las condiciones que puedan presentarse durante un ensayo.
- 1.2.2. La mezcla de aire y gases de escape deberá ser homogénea en el punto donde esté situada la sonda de muestreo (véase el punto 1.3.3 del presente apéndice). La sonda de muestreo extraerá una muestra representativa de los gases de escape diluidos.
- 1.2.3. El sistema permitirá que se mida el volumen total de los gases de escape diluidos.
- 1.2.4. El sistema de muestreo deberá ser impermeable a los gases. El diseño del sistema de muestreo de dilución variable y los materiales que lo constituyen no afectarán a la concentración de contaminantes en los gases de escape diluidos. Si cualquiera de los componentes del sistema (intercambiador de calor, separador ciclón, soplante, etc.) modificase la concentración de alguno de los contaminantes en los gases de escape diluidos y no fuera posible corregir el fallo, el muestreo de dicho contaminante se llevará a cabo antes del componente en cuestión.
- 1.2.5. Todas las partes del sistema de dilución que estén en contacto con los gases de escape crudos o diluidos estarán diseñadas de manera que se minimice la deposición o la alteración de las partículas. Todos los elementos estarán fabricados con materiales conductores de electricidad que no reaccionen con los componentes del gas de escape, y se conectarán a tierra para evitar efectos electrostáticos.
- 1.2.6. Si el vehículo que se está sometiendo a ensayo estuviera equipado con un tubo de escape con varias salidas, los tubos de conexión se conectarán lo más cerca posible del vehículo, sin que esto afecte negativamente a su funcionamiento.
- 1.2.7. El sistema de dilución variable estará diseñado de manera que permita llevar a cabo el muestreo de los gases de escape sin modificar de forma apreciable la contrapresión a la salida del tubo de escape.
- 1.2.8. El tubo que conecta el vehículo y el sistema de dilución estará diseñado de manera que se minimicen las pérdidas de calor.

1.3. Requisitos específicos

1.3.1. Conexión con el sistema de escape del vehículo

El tubo que conecta las salidas de los gases de escape del vehículo y el sistema de dilución será lo más corto posible y cumplirá los requisitos siguientes:

a) tendrá una longitud inferior a 3,6 m o a 6,1 m si está aislado térmicamente. Su diámetro interior no podrá superar los 105 mm;

- b) no hará que la presión estática en las salidas de los gases de escape del vehículo sometido a ensayo difiera en más de ± 0,75 kPa a 50 km/h (o en más de ± 1,25 kPa durante toda la duración del ensayo) de las presiones estáticas registradas cuando no haya nada conectado a las salidas de los gases de escape del vehículo. La presión se medirá en la salida de los gases de escape o en una alargadera con el mismo diámetro, lo más cerca posible del extremo del tubo; se utilizarán sistemas de muestreo que puedan mantener la presión estática a ± 0,25 kPa, cuando la necesidad de reducir la tolerancia esté justificada mediante una petición por escrito del fabricante al servicio técnico;
- c) no modificará la naturaleza de los gases de escape;
- d) los conectores de elastómero empleados serán lo más estables posible desde un punto de vista térmico y su exposición a los gases de escape será mínima.

1.3.2. Acondicionamiento del aire de dilución

El aire de dilución utilizado en la dilución básica de los gases de escape en el túnel de muestreo a volumen constante pasará a través de un medio capaz de reducir las partículas del tamaño de mayor penetración en el material del filtro (MPPS) en un ≥ 99,95 %, o a través de un filtro que sea como mínimo de la clase H13 según la norma EN 1822:1998. Esta especificación corresponde a los filtros de aire de partículas de elevada eficacia (HEPA). El aire de dilución también puede limpiarse con carbón vegetal antes de pasar por el filtro HEPA. Se recomienda colocar un filtro de partículas gruesas adicional antes del filtro HEPA y después del limpiador de carbón vegetal, en su caso.

A petición del fabricante del vehículo, el aire de dilución podrá someterse a muestreo de acuerdo con las buenas prácticas de ingeniería para determinar la contribución del túnel a los niveles de masa de partículas de fondo y restarla a continuación de los valores medidos en los gases de escape diluidos.

1.3.3. Túnel de dilución

Se mezclarán los gases de escape del vehículo y el aire de dilución. Podrá utilizarse un orificio de mezcla.

La presión en el punto de mezclado no diferirá en más de ± 0,25 kPa de la presión atmosférica, a fin de minimizar los efectos sobre las condiciones en la salida de los gases de escape y de limitar el descenso de la presión en el interior del dispositivo de acondicionamiento del aire de dilución.

La homogeneidad de la mezcla en un corte transversal cualquiera en el emplazamiento de la sonda de muestreo no diferirá en más de ± 2 % del valor medio obtenido en al menos cinco puntos situados a intervalos iguales en el diámetro del flujo de gas.

Para el muestreo de partículas y emisiones de partículas se utilizará un túnel de dilución:

- a) consistente en un tubo rectilíneo de material conductor de la electricidad, que estará conectado a tierra;
- b) de diámetro lo suficientemente pequeño como para dar lugar a un flujo turbulento (número de Reynolds ≥ 4 000) y de longitud suficiente como para dar lugar a la mezcla completa de los gases de escape y el aire de dilución;
- c) el diámetro será como mínimo de 200 mm;
- d) podrá estar aislado.

1.3.4. Dispositivo de aspiración

Este dispositivo podrá tener un rango de velocidades fijas a fin de garantizar un flujo suficiente para impedir la condensación del agua. Este resultado se obtiene generalmente si el flujo es:

- a) dos veces el volumen del flujo máximo de los gases de escape producidos por las aceleraciones del ciclo de conducción, o bien
- b) suficiente para garantizar que la concentración de CO₂ en la bolsa de muestreo de los gases de escape diluidos se mantiene por debajo del 3 % en volumen en el caso de la gasolina y el gasóleo, por debajo del 2,2 % en volumen en el caso del GLP y por debajo del 1,5 % en volumen en el caso del gas natural/biometano.

1.3.5. Medición del volumen en el sistema de dilución básico

El método de medición del volumen total de los gases de escape diluidos incorporados en el sistema de muestreo a volumen constante deberá ser tal que la precisión sea de ± 2 % en todas las condiciones de funcionamiento. Si el dispositivo no pudiese compensar las variaciones de temperatura de la mezcla de gases de escape y aire de dilución en el punto de medición, se utilizará un intercambiador de calor para mantener la temperatura a ± 6 K de la temperatura de funcionamiento prevista.

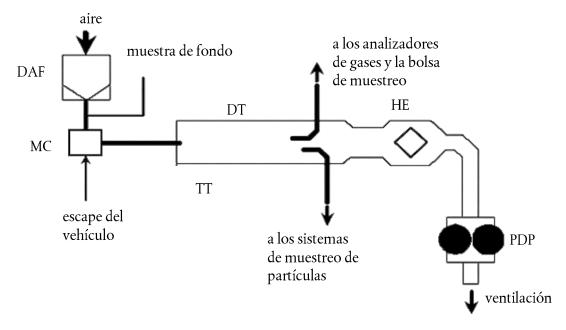
Cuando resulte necesario, podrá utilizarse algún tipo de protección para el dispositivo de medición del volumen; por ejemplo, un separador ciclón, un filtro del flujo a granel, etc.

Se instalará un sensor de temperatura inmediatamente antes del dispositivo de medición del volumen. Dicho sensor deberá tener una exactitud y una precisión de ± 1 K y un tiempo de respuesta de 0,1 segundos al 62 % de una variación de temperatura dada (valor medido en aceite de silicona).

La diferencia de presión con relación a la presión atmosférica se medirá a la entrada y, si fuese necesario, a la salida del dispositivo de medición del volumen.

Durante el ensayo, las mediciones de la presión deberán tener una precisión y una exactitud de ± 0,4 kPa.

1.4. Descripción de los sistemas recomendados

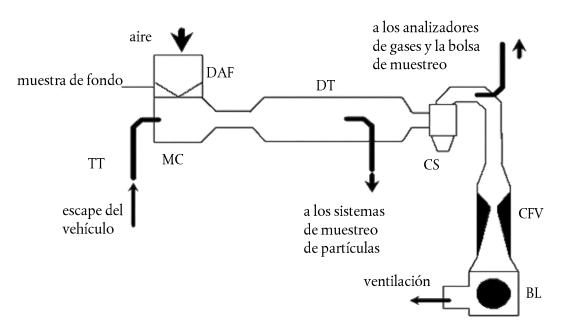

Las figuras A4a.Ap2/6 y A4a.Ap2/7 muestran dibujos esquemáticos de dos tipos de sistemas de dilución de gases de escape recomendados que cumplen los requisitos del presente anexo.

Dado que pueden obtenerse resultados precisos a partir de diversas configuraciones, la conformidad exacta con estos dibujos no es esencial. Podrán utilizarse componentes adicionales tales como instrumentos, válvulas, solenoides y conmutadores para obtener información adicional y coordinar las funciones del sistema de componentes.

1.4.1. Sistema de dilución de flujo total con bomba de desplazamiento positivo

Figura A4a.Ap2/6

Sistema de dilución con bomba de desplazamiento positivo


El sistema de dilución de flujo total con bomba de desplazamiento positivo cumple los requisitos del presente anexo, al medir el flujo de gases que pasa a través de la bomba a temperatura y presión constantes. Para medir el volumen total, se cuenta el número de revoluciones de la bomba de desplazamiento positivo previamente calibrada. La muestra proporcional se obtiene realizando un muestreo mediante bomba, caudalímetro y válvula de control del flujo a caudal constante. El equipo de recogida de muestras estará formado por:

1.4.1.1. Un filtro para el aire de dilución, que, cuando sea necesario, podrá precalentarse. Este filtro estará compuesto por los siguientes filtros, uno detrás de otro: un filtro opcional de carbón vegetal activado (en la entrada) y un filtro de aire de partículas de elevada eficacia (HEPA) (en la salida). Se recomienda colocar un filtro de partículas gruesas adicional antes del filtro HEPA y después del filtro de carbón vegetal, en su caso. El objetivo del filtro de carbón vegetal es reducir y estabilizar las concentraciones de hidrocarburos de las emisiones ambiente en el aire de dilución.

- 1.4.1.2. un tubo de transferencia, a través del cual los gases de escape del vehículo entran en el túnel de dilución, en el que se mezclan de manera homogénea los gases de escape y el aire de dilución;
- 1.4.1.3. la bomba de desplazamiento positivo, que genera un flujo de volumen constante de mezcla de aire y gases de escape. Las revoluciones de la bomba de desplazamiento positivo, junto con las mediciones asociadas de temperatura y presión, se utilizan para determinar la velocidad del flujo;
- 1.4.1.4. un intercambiador de calor con capacidad suficiente para mantener a lo largo de todo el ensayo la temperatura de la mezcla de aire y gases de escape medida en un punto situado inmediatamente antes de la entrada de la bomba de desplazamiento positivo, a no más de 6 K de la temperatura de funcionamiento media durante el ensayo. Este dispositivo no afectará a las concentraciones de contaminantes de los gases diluidos tomados después para ser analizados;
- 1.4.1.5. una cámara de mezclado en la que los gases de escape y el aire se mezclen de manera homogénea y que podrá estar situada cerca del vehículo, para minimizar la longitud del tubo de transferencia.
- 1.4.2. Sistema de dilución de flujo total con venturi de flujo crítico

Figura A4a.Ap2/7

Sistema de dilución con venturi de flujo crítico

El uso de un venturi de flujo crítico en el sistema de dilución de flujo total se basa en los principios de la mecánica de fluidos para el flujo crítico. El caudal de la mezcla variable de aire de dilución y gases de escape se mantendrá a una velocidad sónica que sea directamente proporcional a la raíz cuadrada de la temperatura de los gases. El flujo se controlará, calculará e integrará constantemente durante todo el ensayo.

El uso de un venturi adicional de muestreo de flujo crítico garantiza la proporcionalidad de las muestras de gases tomadas del túnel de dilución. Dado que la presión y la temperatura en las entradas de los dos venturis son iguales, el volumen del flujo de gases desviado para muestreo será proporcional al volumen total de la mezcla producida de gases de escape diluidos, cumpliéndose así los requisitos del presente anexo. El equipo de recogida de muestras estará formado por:

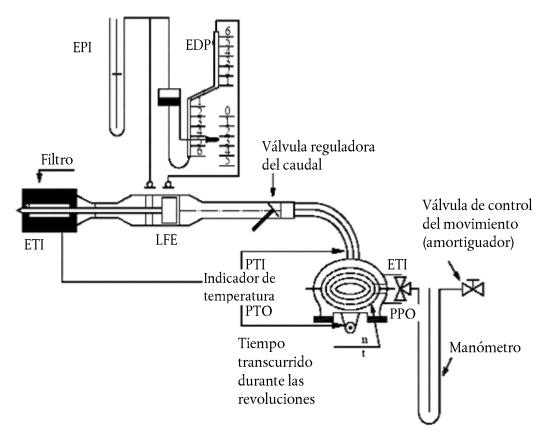
- 1.4.2.1. un filtro para el aire de dilución, que, cuando sea necesario, podrá precalentarse. Este filtro estará compuesto por los siguientes filtros, uno detrás de otro: un filtro opcional de carbón vegetal activado (en la entrada) y un filtro HEPA (en la salida). Se recomienda colocar un filtro de partículas gruesas adicional antes del filtro HEPA y después del filtro de carbón vegetal, en su caso. El objetivo del filtro de carbón vegetal es reducir y estabilizar las concentraciones de hidrocarburos de las emisiones ambiente en el aire de dilución;
- 1.4.2.2. una cámara de mezclado en la que los gases de escape y el aire se mezclen de manera homogénea y que podrá estar situada cerca del vehículo, para minimizar la longitud del tubo de transferencia;

- 1.4.2.3. un túnel de dilución del que se tomarán las muestras de partículas;
- 1.4.2.4. podrá utilizarse algún tipo de protección para el sistema de medición; por ejemplo, un separador ciclón, un filtro del flujo a granel, etc.;
- 1.4.2.5. un venturi de medición de flujo crítico para medir el volumen del flujo de los gases de escape diluidos;
- 1.4.2.6. un soplante con capacidad suficiente para manejar el volumen total de los gases de escape diluidos.
- 2. PROCEDIMIENTO DE CALIBRACIÓN DEL MUESTREO A VOLUMEN CONSTANTE
- 2.1. Requisitos generales

El sistema de muestreo a volumen constante se calibrará utilizando un caudalímetro preciso y un dispositivo que limite el flujo. El flujo a través del sistema se medirá con diversos valores de presión y se determinarán los parámetros de control del sistema y su relación con los flujos. El dispositivo de medición del flujo será dinámico y adecuado para los grandes caudales observados en los ensayos con sistema de muestreo a volumen constante. Dicho dispositivo tendrá una precisión certificada conforme a una norma nacional o internacional oficial.

- 2.1.1. El caudalímetro utilizado podrá ser de varios tipos: venturi calibrado, caudalímetro laminar, caudalímetro de turbina calibrado, etc., siempre que se trate de un aparato de medición dinámica que, además, cumpla los requisitos del punto 1.3.5 del presente apéndice.
- 2.1.2. En los puntos siguientes se ofrece información sobre los métodos para calibrar las bombas de desplazamiento positivo y los venturi de flujo crítico utilizando un caudalímetro laminar que permita obtener la precisión deseada, junto con una comprobación estadística de la validez de la calibración.
- 2.2. Calibración de la bomba de desplazamiento positivo
- 2.2.1. El procedimiento de calibración que se define a continuación describe el equipo, la configuración del ensayo y los diversos parámetros que se miden para determinar el caudal de la bomba con muestreo a volumen constante. Todos los parámetros relacionados con dicha bomba se medirán al mismo tiempo que los del caudalímetro que esté conectado en serie a la bomba. A continuación se podrá representar gráficamente el caudal calculado (expresado en m³/min a la entrada de la bomba, a presión y temperatura absolutas) frente a una función de correlación correspondiente a una combinación específica de parámetros de la bomba. Se determinará, así, la ecuación lineal que exprese la relación entre el flujo de la bomba y la función de correlación. En caso de que un muestreo a volumen constante tenga múltiples velocidades, se calibrará con respecto a cada uno de los rangos utilizados.
- 2.2.2. Este procedimiento de calibración se basa en la medición de los valores absolutos de los parámetros de la bomba y del caudalímetro que estén relacionados con el caudal en cada punto. Para garantizar la precisión y la integridad de la curva de calibración, deberán respetarse tres condiciones:
- 2.2.2.1. Las presiones de la bomba se medirán con tomas en la propia bomba en lugar de en las tuberías externas conectadas a la entrada y a la salida de la misma. Las tomas de presión instaladas en el centro superior e inferior de la placa frontal de accionamiento de la bomba estarán expuestas a las presiones reales de la cavidad de la bomba y, de esa forma, reflejarán las diferencias absolutas de presión.
- 2.2.2.2. La temperatura se mantendrá estable durante la calibración. El caudalímetro laminar es sensible a las variaciones de la temperatura de entrada, que provocan una dispersión de los valores medidos. Los cambios graduales de ± 1 K en la temperatura podrán aceptarse siempre que se produzcan a lo largo de un período de varios minutos.
- 2.2.2.3. Además, todas las conexiones entre el caudalímetro y la bomba de muestreo a volumen constante deberán ser estanças
- 2.2.3. Durante un ensayo de emisiones de escape, la medición de estos mismos parámetros de la bomba permitirá al usuario calcular el caudal a partir de la ecuación de calibración.
- 2.2.4. En la figura A4a.Ap2/8 del presente apéndice se muestra un ejemplo de configuración de ensayo. Podrán admitirse variantes siempre y cuando estén aprobadas por el servicio técnico por ofrecer una precisión comparable. Cuando se utilice la configuración de la figura A4a.Ap2/8, los parámetros siguientes deberán respetar los límites de precisión indicados:

presión barométrica (corregida) (P_b)


± 0,03 kPa

temperatura ambiente (T)

temperatura del aire en LFE (ETI)	± 0,15 K
depresión a la entrada de LFE (EPI)	± 0,01 kPa
caída de la presión a través del conducto de LFE (EDP)	± 0,0015 kPa
temperatura del aire a la entrada de la bomba CVS (PTI)	± 0,2 K
temperatura del aire a la salida de la bomba CVS (PTO)	± 0,2 K
depresión a la entrada de la bomba CVS (PPI)	± 0,22 kPa
presión a la salida de la bomba CVS (PPO)	± 0,22 kPa
revoluciones de la bomba durante el ensayo (n)	± 1 min ⁻¹
tiempo transcurrido por período (mínimo 250 s) (t)	± 0,1 s

Figura A4a.Ap2/8

Configuración de la calibración de la bomba de desplazamiento positivo

- 2.2.5. Una vez conectado el sistema como se muestra en la figura A4a.Ap2/8, se situará la válvula reguladora del caudal en la posición de abertura máxima y se pondrá en marcha la bomba de desplazamiento positivo durante 20 minutos antes de comenzar la calibración.
- 2.2.6. Se cerrará de nuevo parcialmente la válvula reguladora del caudal de manera que se obtenga un aumento de la depresión a la entrada de la bomba (aproximadamente 1 kPa), que permita disponer de un mínimo de seis puntos de medida para el conjunto de la calibración. Se dejará que el sistema se estabilice durante tres minutos y se repetirán las mediciones.
- 2.2.7. Según el método prescrito por el fabricante, el caudal de aire (Q_s) en cada punto del ensayo se calculará en m³/min (condiciones normales), a partir de los datos del caudalímetro.

2.2.8. A continuación, el caudal de aire se convertirá en flujo de la bomba (V₀) expresado en m³/rev, a temperatura y presión absolutas a la entrada de la bomba:

$$V_0 = \frac{Q_s}{n} \cdot \frac{T_p}{273.2} \cdot \frac{101.33}{P_p}$$

Donde:

 V_0 = caudal de la bomba a T_p y P_p expresado en m^3/rev

 Q_s = flujo de aire a 101,33 kPa y 273,2 K, en m³/min

T_p = temperatura a la entrada de la bomba (K)

P_p = presión absoluta a la entrada de la bomba (kPa)

N = velocidad de la bomba (min-1)

2.2.9. Para compensar la interacción de la velocidad de rotación de la bomba, las variaciones de presión y su índice de deslizamiento, se calculará la función de correlación (x_0) entre la velocidad de la bomba (n), la diferencia de presión entre la entrada y salida de la bomba y la presión absoluta a la salida de la bomba mediante la fórmula siguiente:

$$x_0 = \frac{1}{n} \sqrt{\frac{\Delta P_p}{P_e}}$$

Donde:

x₀ = función de correlación

 ΔP_{p} = diferencia de presión entre la entrada y la salida de la bomba (kPa)

P_e = presión absoluta a la salida de la bomba (PPO + P_b) (kPa)

Se realizará un ajuste lineal mediante el método de los mínimos cuadrados a fin de obtener las ecuaciones de calibración que tienen por fórmula:

$$V_0 = D_0 - M(x_0)$$

$$N = A - B (\Delta P_p)$$

D₀, M, A y B son las constantes de pendiente y de ordenadas que describen las líneas.

- 2.2.10. Cuando un muestreo a volumen constante tenga múltiples velocidades, se calibrará con respecto a cada una de las velocidades utilizadas. Las curvas de calibración obtenidas para los rangos deberán ser aproximadamente paralelas y los valores de intersección (D₀) aumentarán a medida que disminuye el caudal de la bomba.
- 2.2.11. Si se ha realizado adecuadamente la calibración, los valores calculados a partir de la ecuación se situarán por debajo del 0,5 % del valor medido de V_0 . Los valores de M variarán de una bomba a otra. La calibración deberá realizarse cuando se ponga en funcionamiento la bomba y después de las principales operaciones de mantenimiento.
- 2.3. Calibración del venturi de flujo crítico
- 2.3.1. La calibración del venturi de flujo crítico se basa en la siguiente ecuación de flujo para un venturi crítico:

$$Q_s = \frac{K_v P}{\sqrt{T}}$$

Donde:

Q_s = flujo

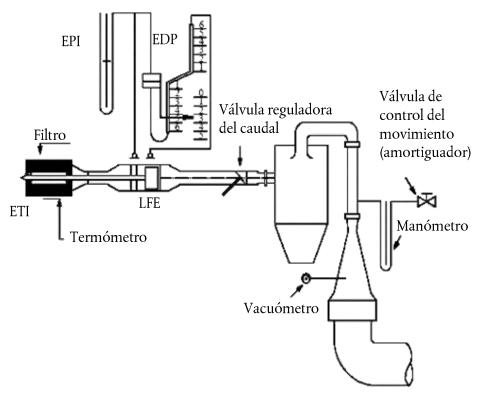
K_w = coeficiente de calibración

P = presión absoluta (kPa)

T = temperatura absoluta (K)

El flujo de gas dependerá de la presión y la temperatura de entrada.

El procedimiento de calibración descrito a continuación determina el valor del coeficiente de calibración para los valores medidos de presión, temperatura y flujo de aire.


- 2.3.2. Para calibrar las partes electrónicas del venturi de flujo crítico, se seguirá el procedimiento recomendado por el fabricante.
- 2.3.3. Para calibrar el flujo del venturi de flujo crítico se necesitan mediciones; además, los siguientes parámetros deberán respetar los límites de precisión indicados:

temperatura del aire en LFE, caudalímetro (ETI) ± 0	0,15 K
depresión a la entrada de LFE (EPI) ± 0	0,01 kPa
caída de presión a través del conducto de LFE (EDP) ± 0	0,0015 kPa
flujo de aire (Q_s) ± 0	0,5 %
depresión a la entrada de CFV (PPI) ± 0	0,02 kPa
temperatura a la entrada del venturi (T_v) \pm 0	0,2 K

2.3.4. El equipo estará configurado como se muestra en la figura A4a.Ap2/9 y se verificará su estanquidad. Cualquier fuga entre el dispositivo de medición del caudal y el venturi de flujo crítico afectará gravemente a la precisión de la calibración.

Figura A4a.Ap2/9

Configuración de la calibración del venturi de flujo crítico

- 2.3.5. La válvula reguladora del caudal se situará en posición de abertura máxima, se pondrá en marcha el soplante y se estabilizará el sistema. Se registrarán los datos procedentes de todos los instrumentos.
- 2.3.6. Se variará la posición de la válvula reguladora del caudal y se efectuarán al menos ocho lecturas repartidas en la zona de flujo crítico del venturi.

2.3.7. Los datos registrados durante la calibración se utilizarán en los cálculos que figuran a continuación. El caudal de aire (Q_s) en cada punto de ensayo se calculará a partir de los datos del caudalímetro, siguiendo el método recomendado por el fabricante.

Se calcularán los valores del coeficiente de calibración para cada punto de ensayo:

$$K_{v} = \frac{Q_{s}\sqrt{T_{v}}}{P_{v}}$$

Donde:

 Q_s = caudal en m³/min a 273,2 K y 101,33 kPa

T_v = temperatura a la entrada del venturi (K)

P_v = presión absoluta a la entrada del venturi (kPa)

Se representará gráficamente K_{ν} como una función de la presión a la entrada del venturi. En el caso de un flujo sónico, K_{ν} tendrá un valor relativamente constante. A medida que disminuye la presión (aumenta el vacío), se desbloquea el venturi y disminuye K_{ν} . No se permitirán los cambios resultantes en K_{ν} .

Se calculará el K, medio y la desviación estándar para un mínimo de ocho puntos en la región crítica.

Cuando la desviación estándar supere el 0,3 % del K_v medio, se adoptarán medidas para corregirla.

- 3. PROCEDIMIENTO DE VERIFICACIÓN DEL SISTEMA
- 3.1. Requisitos generales

Se determinará la precisión total del sistema de muestreo y de análisis a volumen constante introduciendo una masa conocida de un gas contaminante en el sistema mientras este funciona como lo haría durante un ensayo normal; a continuación, se analizará y se calculará la masa del contaminante con arreglo a las fórmulas del punto 6.6 del presente anexo, tomando, no obstante, como densidad del propano 1,967 g/l en condiciones normales. Las dos técnicas que se describen a continuación son conocidas por ofrecer un grado de precisión suficiente.

La desviación máxima admisible entre la cantidad de gas introducida y la cantidad de gas medida será del 5 %.

- 3.2. Método con orificio de flujo crítico
- 3.2.1. Medición de un flujo constante de gas puro (CO o C₃H_o) utilizando un orificio de flujo crítico
- 3.2.2. A través del orificio crítico calibrado, se introducirá en el sistema de muestreo a volumen constante una cantidad conocida de gas puro (CO o C₃H₈). Si la presión de entrada es lo suficientemente elevada, el caudal (q) regulado por el orificio de flujo crítico será independiente de la presión de salida del mismo (flujo crítico). Si se observan desviaciones superiores al 5 %, se determinará la causa de la anomalía y se corregirá. Durante cinco o diez minutos se hará funcionar el muestreo a volumen constante como para un ensayo de emisiones de escape. Los gases recogidos en la bolsa de muestreo se analizarán con el equipo habitual y se compararán los resultados con la concentración de las muestras de gases, ya conocida.
- 3.3. Método gravimétrico
- 3.3.1. Medición de una cantidad limitada de gas puro (CO o C₃H₈) mediante una técnica gravimétrica
- 3.3.2. Para verificar el sistema de muestreo a volumen constante podrá utilizarse el método gravimétrico que se expone a continuación.

Se determina el peso de un pequeño cilindro lleno de monóxido de carbono o de propano con una precisión de ± 0,01 g. Durante unos cinco o diez minutos se pone en funcionamiento el sistema de muestreo a volumen constante, como en un ensayo normal de emisiones de escape, mientras se inyecta CO o propano en el sistema. La cantidad de gas puro utilizado se determinará mediante la diferencia de peso. A continuación, se analizarán los gases acumulados en la bolsa, utilizando el equipo con el que se analizan normalmente los gases de escape. Se compararán los resultados con los valores de concentración calculados anteriormente.

Apéndice 3

Equipos de medición de las emisiones gaseosas

1. ESPECIFICACIÓN

1.1. Descripción del sistema

Se recogerá para análisis una muestra de proporción constante de los gases de escape diluidos y del aire de dilución.

Las emisiones másicas gaseosas se determinarán a partir de las concentraciones de la muestra proporcional y del volumen total medido durante el ensayo. Las concentraciones de la muestra se corregirán de manera que se tenga en cuenta el contenido en contaminantes del aire ambiente.

1.2. Requisitos del sistema de muestreo

- 1.2.1. La muestra de los gases de escape diluidos se tomará antes del dispositivo de aspiración, pero después de los dispositivos de acondicionamiento (en su caso).
- 1.2.2. El caudal no se desviará de la media en más de ± 2 %.
- 1.2.3. El índice de muestreo será, como mínimo, de 5 l/min y no superará el 0,2 % del caudal de los gases de escape diluidos. Se aplicará un límite equivalente a los sistemas de muestreo de masa constante.
- 1.2.4. Cerca de la toma de aire ambiente (después del filtro, en su caso), se tomará una muestra de aire de dilución de un caudal constante.
- 1.2.5. La muestra de aire de dilución no deberá estar contaminada por los gases de escape procedentes de la zona de mezclado.
- 1.2.6. El caudal de muestreo del aire de dilución deberá ser comparable al utilizado en el caso de los gases de escape diluidos.
- 1.2.7. Los materiales utilizados en las operaciones de muestreo no modificarán la concentración de contaminantes.
- 1.2.8. Podrán utilizarse filtros para extraer las partículas sólidas de la muestra.
- 1.2.9. Las distintas válvulas utilizadas para dirigir los gases de escape deberán ser de ajuste y acción rápidos.
- 1.2.10. Entre las válvulas de tres vías y las bolsas de muestreo podrán utilizarse conexiones de bloqueo rápido impermeables al gas, que se obturarán automáticamente en el lado de la bolsa. Para encauzar las muestras hacia el analizador, podrán utilizarse otros sistemas (válvulas de tres vías, por ejemplo).

1.2.11. Almacenamiento de la muestra

Las muestras de gases se recogerán en bolsas de muestreo con capacidad suficiente para no impedir el flujo de muestreo; el material de la bolsa no afectará ni a las mediciones propiamente dichas ni a la composición química de las muestras de gases en más de ± 2 % tras 20 minutos (por ejemplo: polietileno laminado/ poliamida o polihidrocarburos fluorados).

- 1.2.12. Sistema de muestreo de hidrocarburos: motores diésel
- 1.2.12.1. El sistema de muestreo de hidrocarburos estará compuesto por una sonda de muestreo calentada, un conducto, un filtro y una bomba. La sonda de muestreo estará instalada a la misma distancia de la entrada de gases de escape que la sonda de muestreo de partículas, de manera que se eviten las interferencias recíprocas. Tendrá un diámetro interno mínimo de 4 mm.
- 1.2.12.2. El sistema calefactor deberá mantener todas las piezas calentadas a una temperatura de 463 K (190 °C) ± 10 K.
- 1.2.12.3. La concentración media de los hidrocarburos medidos se determinará por integración.

- 1.2.12.4. El conducto de muestreo calentado estará equipado con un filtro calentado (F_H), eficaz al 99 % con partículas ≥ 0,3 μm, para extraer todas las partículas sólidas del flujo continuo de gas necesario para el análisis
- 1.2.12.5. El tiempo de respuesta del sistema de muestreo (desde la sonda hasta la entrada del analizador) no superará los cuatro segundos.
- 1.2.12.6. El detector de ionización de llama calentado se utilizará con un sistema de flujo constante (intercambiador de calor) a fin de garantizar que la muestra es representativa, a menos que se realice una compensación para la variación del flujo del venturi o del orificio de flujo crítico.
- 1.3. Requisitos de análisis de los gases
- 1.3.1. Análisis de monóxido de carbono (CO) y dióxido de carbono (CO₂)

Los analizadores serán de tipo de absorción de infrarrojos no dispersivo.

1.3.2. Análisis de hidrocarburos totales: motores de encendido por chispa

El analizador será de tipo de ionización de llama, calibrado con gas propano expresado en equivalente a átomos de carbono (C_1) .

1.3.3. Análisis de hidrocarburos totales: motores de encendido por compresión

El analizador será de tipo de ionización de llama, con detector, válvulas, tuberías, etc., calentado a 463 K (190 °C) \pm 10 K (detector de ionización de llama calentado). Se calibrará con gas propano expresado en equivalente a átomos de carbono (C_1).

1.3.4. Análisis de metano (CH₄)

El analizador será un cromatógrafo de gases combinado con un detector de tipo de ionización de llama o un detector de ionización de llama con un cortador no metánico, calibrado con gas metano expresado en equivalente a átomos de carbono (C_1).

1.3.5. Análisis de agua (H₂O)

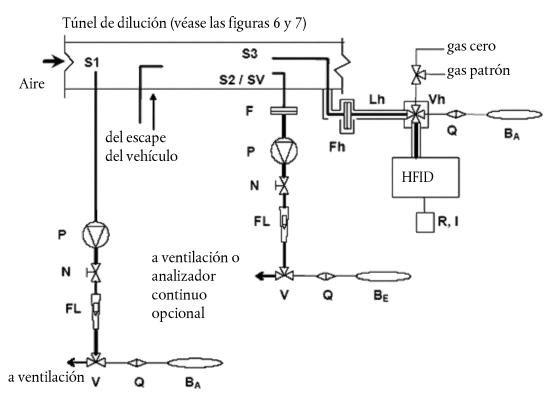
Los analizadores serán de tipo de absorción de infrarrojos no dispersivo (NDIR), calibrado con vapor de agua o con propileno (C_3H_6). Si el NDIR se calibra con vapor de agua, es necesario impedir la condensación del agua en tubos y conexiones durante el proceso de calibrado. Si el NDIR se calibra con propileno, el fabricante del analizador facilitará información para convertir la concentración de propileno en su concentración correspondiente de vapor de agua. El fabricante del analizador comprobará periódicamente los valores de conversión, al menos una vez por año.

1.3.6. Análisis de hidrógeno (H₂)

El analizador será de tipo de espectrómetro de masas de sector, calibrado con hidrógeno.

1.3.7. Análisis de óxido de nitrógeno (NO_x)

El analizador será bien de tipo de quimiluminiscencia, bien de absorción de resonancia ultravioleta no dispersivo, ambos con convertidor de NO_x en NO_x .


- 1.3.8. Los analizadores tendrán un rango de medida compatible con la precisión requerida para medir las concentraciones de contaminantes en las muestras de los gases de escape.
- 1.3.9. El error de medición no será superior a ± 2 % (error intrínseco del analizador), sin tener en cuenta el verdadero valor de los gases de calibración.
- 1.3.10. En las concentraciones inferiores a 100 ppm, el error de medición no deberá exceder de ± 2 ppm.
- 1.3.11. La muestra de aire ambiente se medirá en el mismo analizador con un rango adecuado.
- 1.3.12. No se utilizará ningún dispositivo de secado del gas antes de los analizadores, a menos que se demuestre que no producirá ningún efecto en el contenido en contaminante del flujo de gas.

1.4. Descripción de los sistemas recomendados

La figura A4a.Ap3/10 consiste en un dibujo esquemático del sistema de muestreo de emisiones gaseosas.

Figura A4a.Ap3/10

Esquema del muestreo de emisiones gaseosas

Los componentes del sistema son los siguientes:

- 1.4.1. Dos sondas de muestreo $(S_1 \ y \ S_2)$ para el muestreo continuo del aire de dilución y de la mezcla de gases de escape diluidos y aire.
- 1.4.2. Un filtro (F) para extraer las partículas sólidas de los flujos de gases tomados para el análisis.
- 1.4.3. Bombas (P) para extraer durante el ensayo un flujo constante de aire de dilución y de la mezcla de gases de escape diluidos y aire.
- 1.4.4. Reguladores del flujo (N) para garantizar un flujo uniforme y constante de las muestras de gases tomadas en el transcurso del ensayo a partir de las sondas de muestreo S₁ y S₂ (para muestreo a volumen constante con bomba de desplazamiento positivo); el flujo de las muestras de gases será tal que, al término de cada ensayo, la cantidad será suficiente para el análisis (unos 10 litros por minuto).
- 1.4.5. Caudalímetros (FL) para regular y supervisar que el flujo de las muestras de gases es constante en el transcurso del ensayo.
- 1.4.6. Válvulas de acción rápida (V) para desviar el flujo constante de las muestras de gases hacia las bolsas de muestreo o hacia la ventilación exterior.
- 1.4.7. Conexiones de bloqueo rápido impermeables a los gases (Q), intercaladas entre las válvulas de acción rápida y las bolsas de muestreo; la conexión deberá obturarse automáticamente por el lado de la bolsa de muestreo; podrán utilizarse otros métodos para transportar las muestras hasta el analizador (válvulas de tres vías, por ejemplo).
- 1.4.8. Bolsas (B) para recoger las muestras de los gases de escape diluidos y del aire de dilución en el transcurso del ensayo.

- 1.4.9. Un venturi de muestreo de flujo crítico (SV) para la toma de muestras proporcionales de los gases de escape diluidos en la sonda de muestreo S_2A (solo para muestreo a volumen constante con venturi de flujo crítico).
- 1.4.10. Un limpiador (PS) en el conducto de muestreo (solo para muestreo a volumen constante con venturi de flujo crítico).
- 1.4.11. Componentes para el muestreo de hidrocarburos con utilización de detector de ionización de llama calentado:
 - Fh filtro calentado
 - S₃ punto de muestreo cerca de la cámara de mezclado
 - V_b válvula multivías calentada
 - Q conexión rápida que permite analizar la muestra de aire ambiente BA en el detector de ionización de llama calentado
 - FID detector de ionización de llama calentado
 - R and I métodos para la integración y el registro de las concentraciones instantáneas de hidrocarburos
 - L_h conducto de muestreo calentado.
- 2. PROCEDIMIENTOS DE CALIBRACIÓN
- 2.1. Procedimiento de calibración del analizador
- 2.1.1. Cada analizador se calibrará con la frecuencia necesaria y, en cualquier caso, en el transcurso del mes anterior al ensayo de homologación de tipo y al menos una vez cada seis meses para verificar la conformidad de la producción.
- 2.1.2. Cada uno de los rangos de funcionamiento normalmente utilizados se calibrará mediante el procedimiento que figura a continuación.
- 2.1.2.1. La curva de calibración del analizador se establecerá mediante cinco puntos de calibración como mínimo, espaciados lo más uniformemente posible. La concentración nominal del gas de calibración de la concentración más elevada no será inferior al 80 % del fondo de escala.
- 2.1.2.2. La concentración necesaria de gas de calibración podrá obtenerse mediante un divisor de gases, por dilución con N_2 o aire sintético purificados. La precisión del mezclador será tal que permita determinar la concentración de los gases de calibración diluidos en \pm 2 %.
- 2.1.2.3. La curva de calibración se calculará por el método de los mínimos cuadrados. Si el grado del polinomio resultante es superior a 3, el número de puntos de calibración deberá ser al menos igual al grado del polinomio más 2.
- 2.1.2.4. La curva de calibración no diferirá en más de ± 2 % del valor nominal de cada uno de los gases de calibración.
- 2.1.3. Trazado de la curva de calibración

A partir del trazado de la curva de calibración y de los puntos de calibración, podrá verificarse si esta se ha efectuado correctamente. Se indicarán los diferentes parámetros característicos del analizador y, en particular:

la escala,

la sensibilidad,

el punto cero,

la fecha de calibración.

- 2.1.4. Cuando se pueda demostrar a satisfacción del servicio técnico que otras técnicas (por ejemplo, el ordenador, el conmutador electrónico de rangos, etc.) ofrecen resultados de precisión equivalente, podrán aplicarse dichas técnicas
- 2.2. Procedimiento de verificación del analizador
- 2.2.1. Antes de cada análisis, se verificará cada rango de funcionamiento normalmente utilizado de acuerdo con lo siguiente:
- 2.2.2. se verificará la calibración utilizando un gas cero y un gas patrón cuyo valor nominal esté comprendido entre el 80 y el 95 % del valor que se supone que hay que analizar;

- 2.2.3. los parámetros de reglaje podrán modificarse si, en el caso de los dos puntos considerados, el valor obtenido no difiere del valor teórico en más de ± 5 % del fondo de escala. En caso contrario, se establecerá una nueva curva de calibración de conformidad con el punto 2.1 del presente apéndice;
- 2.2.4. tras el ensayo, el gas cero y el mismo gas patrón se utilizarán para un nuevo control. El análisis se considerará válido cuando la diferencia entre las dos medidas resultantes sea inferior al 2 %.
- 2.3. Procedimiento de verificación de la respuesta de los hidrocarburos al detector de ionización de llama
- 2.3.1. Optimización de la respuesta del detector

El detector de ionización de llama se regulará de acuerdo con las instrucciones del fabricante. Para optimizar la respuesta, se utilizará propano diluido en aire en el rango de funcionamiento más común.

2.3.2. Calibración del analizador de hidrocarburos

El analizador deberá calibrarse utilizando propano diluido en aire y aire sintético purificado (véase el punto 3 del presente apéndice).

Se establecerá una curva de calibración con arreglo a la descripción del punto 2.1 del presente apéndice.

2.3.3. Factores de respuesta de distintos hidrocarburos y límites recomendados

El factor de respuesta (Rf) para un tipo concreto de hidrocarburo será la relación entre el resultado de C_1 del detector de ionización de llama y la concentración del cilindro de gas, expresada en ppm de C_1 .

La concentración del gas de ensayo se situará a un nivel que permita dar una respuesta de aproximadamente el 80 % de desviación del fondo de escala para el rango de funcionamiento. La concentración se conocerá con una precisión de ± 2 % en referencia a una norma gravimétrica expresada en volumen. Además, el cilindro de gas se preacondicionará durante 24 horas a una temperatura comprendida entre 293 y 303 K (20 y 30 °C).

Los factores de respuesta se determinarán cuando se ponga en servicio un analizador y, posteriormente, en los principales intervalos de mantenimiento. Los gases de ensayo que deberán utilizarse y los factores de respuesta recomendados son:

metano y aire purificado: 1,00 < Rf < 1,15

o 1,00 < Rf < 1,05 para vehículos alimentados con GN/biometano

propileno y aire purificado: 0.90 < Rf < 1.00 tolueno y aire purificado: 0.90 < Rf < 1.00

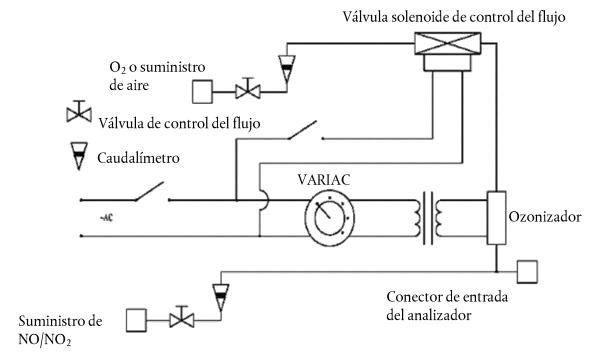
en relación con un factor de respuesta (Rf) de 1,00 para propano y aire purificado.

2.3.4. Control de la interferencia del oxígeno y límites recomendados

El factor de respuesta se determinará de acuerdo con el punto 2.3.3. El gas de ensayo que deberá utilizarse y el factor de respuesta recomendado son:

propano y nitrógeno: 0,95 < Rf < 1,05

2.4. Procedimiento de ensayo de rendimiento del convertidor NO_v


El rendimiento del convertidor utilizado para la conversión del NO_2 en NO se someterá a ensayo de la manera siguiente.

El ensayo podrá efectuarse por medio de un ozonizador, siguiendo el esquema establecido en la figura A4a. Ap3/11 y el procedimiento descrito a continuación.

2.4.1. Se calibrará el analizador en el rango de funcionamiento más común siguiendo las indicaciones del fabricante, utilizando gas cero y gas patrón (cuyo contenido en NO deberá ser aproximadamente el 80 % del rango de funcionamiento y la concentración de NO₂ de la mezcla de gases deberá ser inferior al 5 % de la concentración de NO). El analizador de NO_x estará en el modo NO, de manera que el gas patrón no pase a través del convertidor. Se registrará la concentración indicada.

- 2.4.2. Mediante un conector en T, se añadirá continuamente oxígeno o aire sintético al flujo de gas patrón hasta que la concentración indicada sea aproximadamente un 10 % inferior a la concentración de calibración indicada en el punto 2.4.1 del presente apéndice. Se registrará la concentración indicada (c). El ozonizador permanecerá desactivado durante todo el proceso.
- 2.4.3. A continuación, se pondrá en funcionamiento el ozonizador, de manera que produzca suficiente ozono para hacer que la concentración de NO descienda hasta el 20 % (valor mínimo 10 %) de la concentración de calibración especificada en el punto 2.4.1 del presente apéndice. Se registrará la concentración indicada (d).
- 2.4.4. El analizador de NO_x se conmutará luego al modo NO_x, de manera que la mezcla de gases (constituida por NO, NO₂, O₂ y N₂) pase a través del convertidor. Se registrará la concentración indicada (a).
- 2.4.5. Se desactivará el ozonizador. La mezcla de gases descrita en el punto 2.4.2 del presente apéndice pasará al detector a través del convertidor. Se registrará la concentración indicada (b).

${\it Figura~A4a.Ap3/11}$ Configuración para el ensayo de rendimiento del convertidor ${\it NO}_{\rm x}$

- 2.4.6. Con el ozonizador desactivado, se cortará también el flujo de oxígeno o de aire sintético. El resultado de NO₂ indicado por el analizador no superará en más de un 5 % la cifra especificada en el punto 2.4.1 del presente apéndice.
- 2.4.7. El rendimiento del convertidor de NO_x se calculará de la manera siguiente:

Efficiency (per cent) =
$$\left(1 + \frac{a-b}{c-d}\right) \cdot 100$$

- 2.4.8. El rendimiento del convertidor no deberá ser inferior al 95 %.
- 2.4.9. Se verificará el rendimiento del convertidor al menos una vez a la semana.
- 3. GASES DE REFERENCIA
- 3.1. Gases puros

Para la calibración y el funcionamiento estarán disponibles, en su caso, los gases puros siguientes:

nitrógeno purificado (pureza: ≤ 1 ppm C, ≤ 1 ppm CO, ≤ 400 ppm CO₂, ≤ 0,1 ppm NO);

aire sintético purificado (pureza: \leq 1 ppm C, \leq 1 ppm CO, \leq 400 ppm CO₂, \leq 0,1 ppm NO); contenido en oxígeno entre el 18 y el 21 % en volumen;

oxígeno purificado (pureza: > 99,5 % en volumen de O2);

hidrógeno purificado (y mezcla que contenga helio) (pureza: ≤ 1 ppm C, ≤ 400 ppm CO₂);

monóxido de carbono (pureza mínima: 99,5 %);

propano (pureza mínima: 99,5 %);

propileno (pureza mínima: 99,5 %).

3.2. Gas de calibración y gas patrón

Se dispondrá de mezclas de gases que posean las siguientes composiciones químicas:

- a) C₃ H₈ y aire sintético purificado (véase el punto 3.1 anterior);
- b) CO y nitrógeno purificado;
- c) CO₂ y nitrógeno purificado.

 ${
m NO}$ y nitrógeno purificado (la cantidad de ${
m NO}_2$ que contiene el gas de calibración no deberá superar el 5 % de contenido en ${
m NO}$).

La concentración real de un gas de calibración se situará en ± 2 % de la cifra establecida.

Apéndice 4

Equipos de medición de las emisiones de masa de partículas

- 1. ESPECIFICACIÓN
- 1.1. Descripción del sistema
- 1.1.1. La unidad de muestreo de partículas estará formada por una sonda de muestreo situada en el túnel de dilución, un tubo de transferencia de partículas, un portafiltros, una bomba de flujo parcial y un mecanismo de regulación y medida del flujo.
- 1.1.2. Se recomienda colocar un preclasificador del tamaño de las partículas (por ejemplo, ciclón, impactador, etc.) antes de la entrada del portafiltros. No obstante, una sonda de muestreo que actúe como dispositivo adecuado de clasificación del tamaño, como la que se muestra en la figura A4a.Ap4/13, también es aceptable.
- 1.2. Requisitos generales
- 1.2.1. La sonda de muestreo para el flujo de gases de ensayo de partículas deberá colocarse en el tracto de dilución de tal modo que pueda tomarse una muestra representativa de la mezcla homogénea de aire/gas de escape.
- 1.2.2. El caudal de la muestra de partículas será proporcional al flujo total de gases de escape diluidos en el túnel de dilución, con una tolerancia de ± 5 % del caudal de la muestra de partículas.
- 1.2.3. La muestra de gases de escape diluidos se mantendrá a una temperatura inferior a 325 K (52 °C) 20 cm antes o después del frontal del filtro de partículas, excepto en el caso de un ensayo de regeneración, en el que la temperatura deberá ser inferior a 192 °C.
- 1.2.4. La muestra de partículas se recogerá en un único filtro, situado dentro de un dispositivo en el flujo de la muestra del flujo de gases de escape diluidos.
- 1.2.5. Todas las partes del sistema de dilución y del sistema de muestreo, desde el tubo de escape hasta el portafiltros, que están en contacto con gases de escape crudos y diluidos estarán diseñadas de manera que minimicen la deposición o la alteración de las partículas. Todos los elementos estarán fabricados con materiales conductores de electricidad que no reaccionen con los componentes del gas de escape, y se conectarán a tierra para evitar efectos electrostáticos.
- 1.2.6. Si no fuera posible compensar las variaciones de caudal, será necesario disponer de un intercambiador de calor y un dispositivo de regulación de la temperatura con las características especificadas en el punto 1.3.5 del apéndice 2 del presente anexo, a fin de garantizar la constancia del caudal en el sistema y, en consecuencia, la proporcionalidad del caudal de muestreo.
- 1.3. Requisitos específicos
- 1.3.1. Sonda de muestreo de partículas
- 1.3.1.1. La sonda de muestreo realizará la clasificación del tamaño de partículas descrita en el punto 1.3.1.4 de este apéndice. Se recomienda realizarla utilizando una sonda con bordes afilados y extremos abiertos, orientada directamente hacia la dirección del flujo, y un preclasificador (ciclón, impactador, etc.). También podrá utilizarse una sonda de muestreo adecuada, como la que se muestra en la figura A4a.Ap4/13, siempre y cuando realice la preclasificación descrita en el punto 1.3.1.4 de este apéndice.
- 1.3.1.2. La sonda de muestreo estará instalada cerca de la línea central del túnel, a una distancia de entre diez y veinte veces el diámetro del túnel a partir de la entrada de gases de escape y en dirección de la corriente, y tendrá un diámetro interno mínimo de 12 mm.
 - Si de una misma sonda de muestreo se extrae más de una muestra simultánea, el flujo extraído de dicha sonda se dividirá en dos subflujos idénticos para evitar instrumentos de muestreo.
 - Si se utilizan varias sondas, cada una de ellas tendrá bordes afilados y extremos abiertos y estará orientada directamente hacia la dirección del flujo. Las sondas estarán espaciadas uniformemente en torno al eje central longitudinal del túnel de dilución, con un espaciado mínimo de 5 cm.

- 1.3.1.3. La distancia desde la punta de la sonda de muestreo hasta el soporte del filtro será como mínimo de cinco veces el diámetro de la sonda y como máximo de 1 020 mm.
- 1.3.1.4. El preclasificador (ciclón, impactador, etc.) estará situado antes del conjunto del portafiltros. El diámetro de las partículas para un punto de corte del 50 % del preclasificador será de entre 2,5 y 10 μm en el caudal volumétrico seleccionado para el muestreo de las emisiones de masa de partículas. El preclasificador permitirá que al menos el 99 % de la concentración másica de partículas de 1 μm que entren en él pasen por su salida al caudal volumétrico seleccionado para el muestreo de las emisiones de masa de partículas. No obstante, una sonda de muestreo que actúe como dispositivo adecuado de clasificación del tamaño, como la que se muestra en la figura A4a.Ap3/13, también es aceptable como alternativa a un preclasificador independiente.
- 1.3.2. Bomba y caudalímetro de muestreo
- 1.3.2.1. La unidad de medición del flujo de gases de muestra estará compuesta por bombas, reguladores del flujo de gas y unidades de medición del flujo.
- 1.3.2.2. La temperatura del flujo de gas en el caudalímetro no podrá fluctuar por encima de ± 3 K, excepto durante los ensayos de regeneración en vehículos equipados con dispositivos postratamiento de regeneración periódica. Asimismo, el caudal de la masa de muestra será proporcional al flujo total de gases de escape diluidos, con una tolerancia de ± 5 % del caudal másico de la muestra de partículas. Cuando el volumen del flujo varíe por encima de los límites admitidos, como consecuencia de la carga excesiva del filtro, se interrumpirá el ensayo. Cuando se repita, se reducirá el caudal.
- 1.3.3. Filtro y portafiltros
- 1.3.3.1. Después del filtro, se colocará una válvula en la dirección del flujo. Dicha válvula será lo suficientemente rápida como para abrirse y cerrarse en 1 segundo desde el inicio y el final del ensayo.
- 1.3.3.2. Se recomienda que la masa recogida en el filtro de diámetro de 47 mm (P₂) sea ≥ 20 μg y que se maximice la carga del filtro de conformidad con los requisitos de los puntos 1.2.3, 132 y 1.3.3 del presente apéndice.
- 1.3.3.3. Para un ensayo determinado, la velocidad frontal del filtro de gases se fijará en un valor único entre 20 y 80 cm/s, a menos que el sistema de dilución esté funcionando con un flujo de muestreo proporcional al caudal de la bomba con muestreo a volumen constante.
- 1.3.3.4. Se utilizarán filtros de fibra de vidrio recubiertos de fluorocarburo o filtros de membrana de fluorocarburo. Todos los tipos de filtros deberán tener una eficiencia de recogida de DOP (ftalato de dioctilo) o PAO (polialfaolefina), CS 68649-12-7 o CS 68037-01-4, del 99 % como mínimo, con una velocidad frontal del filtro de gases de al menos 5,33 cm/s, medida con arreglo a una de las normas siguientes:
 - a) U.S.A. Department of Defense Test Method Standard, MIL-STD-282 method 102.8: DOP-Smoke Penetration of Aerosol-Filter Element:
 - b) U.S.A. Department of Defense Test Method Standard, MIL-STD-282 method 502.1.1: DOP-Smoke Penetration of Gas-Mask Canisters;
 - c) Institute of Environmental Sciences and Technology, IEST-RP-CC021: Testing HEPA and ULPA Filter Media.
- 1.3.3.5. El diseño del conjunto del portafiltros deberá permitir una distribución uniforme del flujo en la superficie filtrante. La superficie filtrante será de al menos 1 075 mm².
- 1.3.4. Cámara de pesaje del filtro y balanza
- 1.3.4.1. La balanza de precisión utilizada para determinar el peso de un filtro tendrá una precisión de 2 μg (desviación estándar) y una resolución de 1 μg o mejor.

Se recomienda controlar la balanza de precisión al inicio de cada sesión de pesaje, utilizando un peso de referencia de 50 mg. Se pesará tres veces y se registrará el resultado. Si el resultado medio del pesaje se sitúa a ± 5 µg del resultado de la sesión anterior de pesaje, se considerarán válidas tanto la sesión de pesaje como la balanza.

La cámara (o sala) de pesaje cumplirá las condiciones siguientes durante todas las operaciones de acondicionamiento y pesaje del filtro:

se mantendrá la temperatura a 295 ± 3 K (22 ± 3 °C);

se mantendrá la humedad relativa a 45 ± 8 %;

se mantendrá el punto de rocío a 9,5 ± 3 °C.

Se recomienda registrar las condiciones de temperatura y humedad junto con los pesos de los filtros de muestra y de referencia.

1.3.4.2. Corrección de la flotabilidad

Se corregirán los pesos de todos los filtros para la flotabilidad en el aire.

La corrección de la flotabilidad dependerá de la densidad del medio filtrante de la muestra, la densidad del aire y la densidad del peso de calibración utilizado para calibrar la balanza. La densidad del aire dependerá de la presión, la temperatura y la humedad.

Se recomienda controlar la temperatura y el punto de rocío del entorno de pesaje a 22 ± 1 °C y a 9,5 ± 1 °C, respectivamente. No obstante, los requisitos mínimos del punto 1.3.4.1 del presente apéndice también darán como resultado una corrección aceptable de los efectos de la flotabilidad. La corrección de la flotabilidad se aplicará de la manera siguiente:

$$m_{corr} = m_{uncorr} \cdot (1 - ((\rho_{air})/(\rho_{weight})))/(1 - ((\rho_{air})/(\rho_{media})))$$

Donde:

 m_{cor} = masa de partículas corregida para flotabilidad

 m_{nocor} = masa de partículas sin corregir para flotabilidad

 ρ_{aire} = densidad del aire en el entorno de la balanza

 ρ_{peso} = densidad del peso de calibración utilizado en la balanza

 ρ_{media} = densidad del medio (filtro) de muestra de partículas con arreglo al cuadro siguiente:

Medio filtrante	$ ho_{ m media}$
Fibra de vidrio recubierta de teflón	2 300 kg/m³

 $\rho_{\mbox{\tiny aire}}$ se puede calcular de la manera siguiente:

$$\rho_{air} = \frac{P_{abs} \cdot M_{mix}}{R \cdot T_{amb}}$$

Donde:

P_{abs} = presión absoluta en el entorno de la balanza

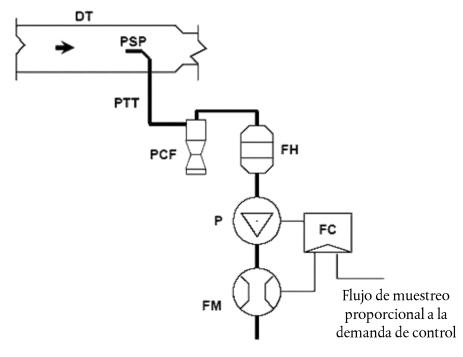
 M_{mix} = masa molar de aire en el entorno de la balanza (28,836 gmol $^{-1}$)

R = gas molar constante $(8,314 \text{ Jmol}^{-1}\text{K}^{-1})$,

T_{amb} = temperatura ambiente absoluta del entorno de la balanza

El entorno de la cámara (o sala) estará libre de cualquier contaminante ambiente (como el polvo) que pudiera entrar en el filtro de partículas durante su estabilización.

Se permitirán desviaciones limitadas de las especificaciones de la temperatura y la humedad de la sala de pesaje, siempre y cuando su duración total no supere los treinta minutos en ningún período de acondicionamiento del filtro. La sala de pesaje debe cumplir las especificaciones necesarias antes de que el personal entre en ella. Durante la operación de pesaje, no se permiten desviaciones de las condiciones establecidas.


- 1.3.4.3. Se anularán los efectos de la electricidad estática, lo que podrá lograrse conectando a tierra la balanza, mediante su colocación sobre una alfombrilla antiestática y la neutralización de los filtros de partículas antes del pesaje, utilizando un neutralizador de polonio o un dispositivo de efecto similar. También podrán anularse los efectos de la electricidad estática mediante la ecualización de la carga estática.
- 1.3.4.4. Los filtros se retirarán de la cámara con una antelación máxima de una hora antes del comienzo del ensayo.

1.4. Descripción de los sistemas recomendados

La figura A4a.Ap4/12 consiste en un dibujo esquemático del sistema de muestreo de partículas recomendado. Dado que pueden obtenerse resultados equivalentes a partir de diversas configuraciones, no es necesaria la conformidad exacta con este dibujo. Podrán utilizarse componentes adicionales tales como instrumentos, válvulas, solenoides, bombas y conmutadores para obtener información adicional y coordinar las funciones de los sistemas de componentes. Podrán excluirse otros componentes que no son necesarios para mantener la precisión con otras configuraciones del sistema si su exclusión se basa en criterios técnicos bien fundados.

Figura A4a.Ap4/12

Sistema de muestreo de partículas

Mediante la bomba (P), se extrae del túnel de dilución (DT) de flujo total, a través de la sonda de muestreo de partículas (PSP) y del tubo de transferencia de partículas (PTT), una muestra del gas de escape diluido. La muestra pasa a través del preclasificador del tamaño de las partículas (PCF) y del o los portafiltros (FH) que contienen el filtro de muestreo de partículas. El caudal de muestreo lo establece el regulador del flujo (FC).

2. PROCEDIMIENTOS DE CALIBRACIÓN Y VERIFICACIÓN

2.1. Calibración del caudalímetro

El servicio técnico se asegurará de la existencia de un certificado de calibración del caudalímetro que demuestre su conformidad con un patrón certificado en los 12 meses previos al ensayo, o desde la realización de cualquier reparación o cambio que pueda influir en la calibración.

2.2. Calibración de la balanza de precisión

El servicio técnico se asegurará de la existencia de un certificado de calibración de la balanza de precisión que demuestre su conformidad con un patrón certificado en los 12 meses previos al ensayo.

2.3. Pesaje del filtro de referencia

Para determinar los pesos específicos del filtro de referencia, se pesarán al menos dos filtros de referencia no utilizados en las ocho horas siguientes al pesaje del filtro de muestra, aunque preferiblemente al mismo tiempo. Los filtros de referencia tendrán el mismo tamaño y serán del mismo material que el filtro de muestra.

Si el peso específico de cualquier filtro de referencia varía en más de ± 5 µg entre los pesajes del filtro de muestra, este y los filtros de referencia se reacondicionarán en la sala de pesaje y, a continuación, se volverán a pesar.

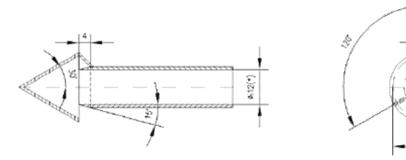
La comparación de los pesajes del filtro de referencia tendrá lugar entre los pesos específicos y la media móvil de los pesos específicos de ese filtro de referencia.

La media móvil se calculará a partir de los pesos específicos registrados en el período transcurrido desde que los filtros de referencia se colocaron en la sala de pesaje. El período medio será como mínimo de un día, pero no excederá de treinta.

Podrán realizarse varios reacondicionamientos y pesajes de los filtros de muestra y de referencia, hasta que haya transcurrido un período de 80 horas desde la medición de los gases del ensayo de emisiones.

Si antes de transcurridas las 80 horas o al cabo de 80 horas, más de la mitad de los filtros de referencia cumple el criterio de ± 5 µg, podrá considerarse válido el pesaje del filtro de muestra.

Si transcurridas las 80 horas, se utilizan dos filtros de referencia y uno de ellos no cumple el criterio de \pm 5 μ g, podrá considerarse válido el pesaje del filtro de muestra a condición de que la suma de las diferencias absolutas entre las medias específica y móvil de los dos filtros de referencia sea inferior o igual a 10 μ g.


En el caso de que menos de la mitad de los filtros de referencia cumpla el criterio de \pm 5 μ g, se descartará el filtro de muestra y se repetirá el ensayo de emisiones. Se descartarán todos los filtros de referencia y se sustituirán en un plazo de 48 horas.

En todos los demás casos, los filtros de referencia deberán sustituirse cada 30 días como mínimo, de manera que no se pese ningún filtro de muestra sin que se compare con un filtro de referencia que haya estado en la sala de pesaje durante al menos un día.

Si no se cumplen los criterios de estabilidad de la sala de pesaje establecidos en el punto 1.3.4 del presente apéndice, pero los pesajes del filtro de referencia sí cumplen los criterios anteriores, el fabricante del vehículo podrá aceptar los pesos del filtro de muestra o anular los ensayos, fijar el sistema de control de la sala de pesaje y realizar de nuevo el ensayo.

Figura A4a.Ap4/13 Configuración de la sonda de muestreo de partículas

Ø=: 248

(*) díametro interno mínimo Grosor de la pared: ~ 1 mm. Material: acero inoxidable

Apéndice 5

Equipos de medición de las emisiones de número de partículas

- 1. ESPECIFICACIÓN
- 1.1. Descripción del sistema
- 1.1.1. El sistema de muestreo de partículas consistirá en un túnel de dilución, una sonda de muestreo, un eliminador de partículas volátiles situado antes de un contador de partículas y un tubo de transferencia adecuado.
- 1.1.2. Se recomienda colocar un preclasificador del tamaño de las partículas (por ejemplo, ciclón, impactador, etc.) antes de la entrada del eliminador de partículas volátiles. No obstante, una sonda de muestreo que actúe como dispositivo adecuado de clasificación del tamaño, como el que se muestra en la figura A4a.Ap4/13, es una alternativa aceptable a un preclasificador del tamaño de las partículas.
- 1.2. Requisitos generales
- 1.2.1. El punto de muestreo de partículas estará situado dentro de un túnel de dilución.

La punta de sonda (PSP) y el tubo de transferencia de partículas (PTT) de muestreo juntos conforman el sistema de transferencia de partículas (PTS). Este último lleva la muestra desde el túnel de dilución hasta la entrada del eliminador de partículas volátiles. El sistema de transferencia de partículas deberá cumplir las condiciones siguientes:

estará instalado cerca de la línea central del túnel, a una distancia después del punto de entrada del gas equivalente a 10 a 20 veces el diámetro del túnel, orientada a contracorriente en el túnel del flujo de gas y con el eje de la punta paralelo al del túnel de dilución;

tendrá un diámetro interno ≥ 8 mm.

El gas de muestreo que pasa por el sistema de transferencia de partículas deberá cumplir las condiciones siguientes:

tendrá un número de Reynolds (Re) < 1 700.

tendrá un tiempo de estancia en el sistema de transferencia de partículas ≤ 3 segundos.

Se considerará aceptable cualquier otra configuración de muestreo del sistema de transferencia de partículas si puede demostrarse una penetración equivalente de partículas de 30 nm.

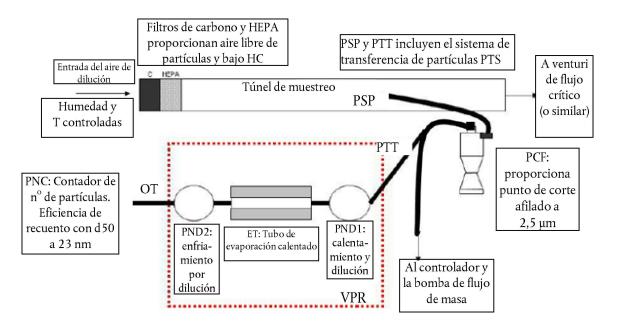
El tubo de salida (OT) que conduce la muestra diluida del eliminador de partículas volátiles a la entrada del contador de partículas tendrá las propiedades siguientes:

tendrá un diámetro interno ≥ 4 mm;

el flujo del gas de muestreo que pasa por el tubo de salida tendrá un tiempo de estancia ≤ 0,8 segundos.

Se considerará aceptable cualquier otra configuración de muestreo del tubo de salida si puede demostrarse una penetración equivalente de partículas de 30 nm.

- 1.2.2. El eliminador de partículas volátiles dispondrá de dispositivos de dilución de la muestra y eliminación de las partículas volátiles. La sonda de muestreo del flujo de gas de ensayo se colocará de tal manera dentro del tracto de dilución que se tome una muestra representativa de una mezcla homogénea aire/gas de escape.
- 1.2.3. Todas las partes del sistema de dilución y del sistema de muestreo, desde el tubo de escape hasta el contador de partículas, que estén en contacto con gas de escape bruto y diluido, deberán estar diseñadas de tal modo que se reduzca al mínimo la deposición de partículas. Todos los elementos estarán fabricados con materiales conductores de electricidad que no reaccionen con los componentes del gas de escape, y se conectarán a tierra para evitar efectos electrostáticos.
- 1.2.4. El sistema de muestreo de partículas será conforme con las buenas prácticas de muestreo de aerosoles y, a tal efecto, se evitarán los codos en ángulos agudos y los cambios bruscos de sección, se utilizarán superficies internas lisas y se reducirá al mínimo la longitud de la línea de muestreo. Se permitirán cambios de sección graduales.


- 1.3. Requisitos específicos
- 1.3.1. La muestra de partículas no pasará a través de una bomba antes de pasar por el contador de partículas.
- 1.3.2. Se recomienda utilizar un preclasificador.
- 1.3.3. La unidad de preacondicionamiento de la muestra:
- 1.3.3.1. tendrá capacidad para diluir la muestra en una o varias fases, a fin de alcanzar una concentración del número de partículas inferior al umbral superior del modo de recuento único de partículas del contador de partículas y una temperatura del gas inferior a 35 °C en la entrada de dicho contador;
- 1.3.3.2. incluirá una fase de dilución inicial calentada que produzca una muestra a una temperatura ≥ 150 °C y ≤ 400 °C, y cuyo factor de dilución sea como mínimo de 10;
- 1.3.3.3. controlará las fases calentadas a unas temperaturas nominales de funcionamiento constantes, dentro del intervalo especificado en el punto 1.3.3.2 del presente apéndice, con una tolerancia de ± 10 °C; indicará si las fases calentadas se encuentran a las temperaturas de funcionamiento adecuadas;
- 1.3.3.4. alcanzará un factor de reducción de la concentración de partículas $[f_r(d_i)]$, tal como se define en el punto 2.2.2 del presente apéndice, de las partículas de 30 y 50 nm de diámetro de movilidad eléctrica, como máximo un 30 y un 20 % superior, respectivamente, y un 5 % inferior al correspondiente a las partículas de 100 nm de diámetro de movilidad eléctrica en todo el eliminador de partículas volátiles;
- 1.3.3.5. superará también un 99,0 % de vaporización de las partículas de 30 nm de tetracontano [CH₃(CH₂)₃₀CH₃], con una concentración de entrada ≥ 10 000 cm⁻³, mediante el calentamiento y la reducción de las presiones parciales del tetracontano.
- 1.3.4. El contador de partículas:
- 1.3.4.1. funcionará en condiciones de flujo total;
- 1.3.4.2. tendrá una precisión de recuento de ± 10 % en el intervalo de 1 cm⁻³ hasta el umbral superior del modo de recuento único del contador de partículas respecto a un patrón certificado; en concentraciones inferiores a 100 cm⁻³, podrá ser necesario efectuar mediciones promediadas durante extensos períodos de muestreo para demostrar la precisión del contador de partículas con un elevado porcentaje de confianza estadística;
- 1.3.4.3. tendrá una legibilidad de al menos 0,1 partículas cm⁻³ en concentraciones inferiores a 100 cm⁻³;
- 1.3.4.4. tendrá una respuesta lineal a las concentraciones de partículas en todo el intervalo de medición en el modo de recuento único de partículas;
- 1.3.4.5. tendrá una frecuencia de envío de datos igual o superior a 0,5 Hz;
- 1.3.4.6. tendrá un tiempo de respuesta de T90 en el intervalo de concentración medido inferior a 5 segundos;
- 1.3.4.7. incorporará una función de corrección de la coincidencia de un máximo del 10 %, y podrá hacer uso de un factor de calibración interno, determinado en el punto 2.1.3 de este apéndice, pero no hará uso de ningún otro algoritmo para corregir o definir la eficacia de recuento;
- 1.3.4.8. tendrá eficacias de recuento de partículas de 23 (± 1) nm y 41 (± 1) nm de diámetro de movilidad eléctrica del 50 (± 12) % y > 90 %, respectivamente; estas eficacias de recuento podrán alcanzarse por medios internos (por ejemplo, control del diseño del instrumento) o externos (por ejemplo, preclasificación del tamaño);
- 1.3.4.9. será sustituido a la frecuencia especificada por su fabricante si utiliza un líquido de trabajo.
- 1.3.5. Cuando no se mantengan a un nivel constante conocido en el punto en el que se controla el caudal del contador de partículas, la presión y la temperatura se medirán y se notificarán en la entrada del mencionado contador a efectos de corrección de las mediciones de la concentración de partículas de acuerdo con las condiciones estándar.
- 1.3.6. La suma del tiempo de estancia en el sistema de transferencia de partículas, el eliminador de partículas volátiles y el tubo de salida, más el tiempo de respuesta T90 del contador de partículas, no excederá de 20 segundos.

1.4. Descripción de los sistemas recomendados

En el siguiente punto se describe la práctica recomendada para medir el número de partículas. No obstante, será aceptable cualquier sistema que cumpla las especificaciones de rendimiento indicadas en los puntos 1.2 y 1.3 del presente apéndice.

La figura A4a.Ap5/14 consiste en un dibujo esquemático del sistema de muestreo de partículas recomendado.

Figura A4a.Ap5/14
Esquema del sistema de muestreo de partículas recomendado

1.4.1. Descripción del sistema de muestreo

El sistema de muestreo de partículas consistirá en una punta de sonda de muestreo en el túnel de dilución (PSP), un tubo de transferencia de partículas (PTT), un preclasificador de partículas (PCF) y un eliminador de partículas volátiles (VPR) situado antes de la unidad de medición de la concentración del número de partículas (PNC). El eliminador de partículas volátiles incluye dispositivos de dilución de la muestra (diluidores del número de partículas: PND₁ y PND₂) y evaporación de las partículas (tubo de evaporación, ET). La sonda de muestreo del flujo de gas de ensayo se colocará de tal manera dentro del tracto de dilución que se tome una muestra representativa de una mezcla homogénea aire/gas de escape. La suma del tiempo de estancia en el sistema y el tiempo de respuesta T90 del contador de partículas no excederá de 20 segundos.

1.4.2. Sistema de transferencia de partículas

La punta de sonda (PSP) y el tubo de transferencia de partículas (PTT) de muestreo juntos conforman el sistema de transferencia de partículas (PTS). Este último lleva la muestra desde el túnel de dilución hasta la entrada del primer diluidor del número de partículas. El sistema de transferencia de partículas deberá cumplir las condiciones siguientes:

estará instalado cerca de la línea central del túnel, a una distancia después del punto de entrada del gas equivalente a 10 a 20 veces el diámetro del túnel, orientada a contracorriente en el túnel del flujo de gas y con el eje de la punta paralelo al del túnel de dilución;

tendrá un diámetro interno ≥ 8 mm.

El gas de muestreo que pasa por el sistema de transferencia de partículas deberá cumplir las condiciones siguientes:

tendrá un número de Reynolds (Re) < 1 700;

tendrá un tiempo de estancia en el sistema de transferencia de partículas ≤ 3 segundos.

Se considerará aceptable cualquier otra configuración de muestreo del sistema de transferencia de partículas si puede demostrarse una penetración equivalente de partículas de 30 nm de diámetro de movilidad eléctrica.

El tubo de salida (OT) que conduce la muestra diluida del eliminador de partículas volátiles a la entrada del contador de partículas tendrá las propiedades siguientes:

tendrá un diámetro interno ≥ 4 mm;

el flujo del gas de muestreo que pasa por el tubo de salida tendrá un tiempo de estancia ≤ 0,8 segundos.

Se considerará aceptable cualquier otra configuración de muestreo del tubo de salida si puede demostrarse una penetración equivalente de partículas de 30 nm de diámetro de movilidad eléctrica.

1.4.3. Preclasificador de partículas

El preclasificador de partículas recomendado estará situado antes del eliminador de partículas volátiles. El diámetro de las partículas para un punto de corte del 50 % del preclasificador será de entre 2,5 y 10 µm en el caudal volumétrico seleccionado para el muestreo del número de partículas. El preclasificador permitirá que al menos el 99 % de la concentración másica de partículas de 1 µm que entren en él pasen por su salida al flujo volumétrico seleccionado para el muestreo del número de partículas.

1.4.4. Eliminador de partículas volátiles

El eliminador de partículas volátiles comprenderá un diluidor del número de partículas (PND₁), un tubo de evaporación y un segundo diluidor del número de partículas (PND₂) en serie. Esta función de dilución consiste en reducir la concentración del número de partículas de la muestra que entra en la unidad de medición de la concentración de partículas hasta un nivel inferior al umbral superior del modo de recuento único del contador de partículas, y suprimir la nucleación en la muestra. El eliminador de partículas volátiles indicará si el PND₁ y el tubo de evaporación se encuentran a las temperaturas de funcionamiento adecuadas.

Superará también un 99,0 % de vaporización de las partículas de 30 nm de tetracontano $[CH_3(CH_2)_{38}CH_3]$, con una concentración de entrada $\geq 10~000~cm^{-3}$, mediante el calentamiento y la reducción de las presiones parciales del tetracontano. Asimismo, alcanzará un factor de reducción de la concentración de partículas (f_r) de 30 y 50 nm de diámetro de movilidad eléctrica como máximo un 30 y un 20 % superior, respectivamente, y un 5 % inferior al correspondiente a las partículas de 100 nm de diámetro de movilidad eléctrica en todo el eliminador de partículas volátiles.

1.4.4.1. Primer dispositivo de dilución del número de partículas (PND₁)

El primer dispositivo de dilución del número de partículas estará diseñado específicamente para diluir la concentración del número de partículas y funcionar a una temperatura (de pared) de entre 150 y 400 °C. El punto de referencia de la temperatura de pared deberá mantenerse a una temperatura de funcionamiento nominal constante, dentro de ese intervalo, con una tolerancia de ± 10 °C, y no superar la temperatura de pared del tubo de evaporación (punto 1.4.4.2 del presente apéndice). El diluyente debe suministrarse con aire de dilución filtrado con un filtro HEPA y poder mantener un factor de dilución de entre 10 y 200 veces.

1.4.4.2. Tubo de evaporación

En toda la longitud del tubo de evaporación se controlará una temperatura de pared superior o igual a la del primer dispositivo de dilución del número de partículas y la pared se mantendrá a una temperatura de funcionamiento nominal de entre 300 y 400 °C, con una tolerancia de ± 10 °C.

1.4.4.3. Segundo dispositivo de dilución del número de partículas (PND₂)

El PND $_2$ estará diseñado específicamente para diluir la concentración del número de partículas. El diluyente se suministrará con aire de dilución filtrado con un filtro HEPA y deberá poder mantener un factor de dilución de entre 10 y 30 veces. El factor de dilución del PND $_2$ se seleccionará en el intervalo de 10 a 15, de tal manera que la concentración del número de partículas después del segundo diluyente sea inferior al umbral superior del modo de recuento único de partículas del contador de partículas y la temperatura del gas antes de la entrada en el contador sea < 35 °C.

1.4.5. Contador del número de partículas (PNC)

El contador del número de partículas cumplirá los requisitos establecidos en el punto 1.3.4 del presente apéndice.

- 2. CALIBRACIÓN/VALIDACIÓN DEL SISTEMA DE MUESTREO DE PARTÍCULAS (¹)
- 2.1. Calibración del contador del número de partículas
- 2.1.1. El servicio técnico se asegurará de la existencia de un certificado de calibración del contador de partículas que demuestre su conformidad con un patrón certificado en los doce meses previos al ensayo de emisiones.
- 2.1.2. Asimismo, deberá recalibrarse el contador de partículas y emitirse un nuevo certificado de calibración después de cualquier mantenimiento importante.
- 2.1.3. La calibración deberá estar certificada de acuerdo con un método de calibración normalizado:
 - a) mediante comparación de la respuesta del contador de partículas con la de un electrómetro de aerosol calibrado en el muestreo simultáneo de partículas de calibración clasificadas electrostáticamente, o bien
 - b) mediante comparación de la respuesta del contador de partículas que está siendo calibrado con la de un segundo contador que ha sido calibrado directamente según el método anterior.

En el caso del electrómetro, la calibración se llevará a cabo utilizando al menos seis concentraciones estándar separadas de la manera más uniforme posible en el intervalo de medición del contador de partículas. Estos puntos incluirán un punto de concentración nominal cero alcanzado mediante la utilización de filtros HEPA como mínimo de clase H13, según la norma EN 1822:2008, o de eficacia equivalente, en la entrada de cada instrumento. Si no se aplica un factor de calibración al contador de partículas que se está calibrando, las concentraciones medidas deberán situarse dentro de un margen de ± 10 % de la concentración estándar para cada concentración utilizada, salvo para el punto cero; de lo contrario, deberá rechazarse el contador de partículas. Se calculará y registrará el gradiente de una regresión lineal de los dos conjuntos de datos. Se aplicará al contador de partículas que se está calibrando un factor de calibración recíprocamente equivalente al gradiente. La linealidad de la respuesta se determinará calculando el cuadrado del coeficiente de correlación del momento del producto de Pearson (R²) de los dos conjuntos de datos y será igual o superior a 0,97. Al calcular el gradiente y R², la regresión lineal se hará pasar por el origen (concentración cero en ambos instrumentos).

En el caso del contador de partículas, la calibración se llevará a cabo utilizando al menos seis concentraciones estándar en el intervalo de medición del contador. Al menos tres puntos tendrán concentraciones inferiores a 1 000 cm⁻³ y las concentraciones restantes estarán espaciadas linealmente entre 1 000 cm⁻³ y el intervalo máximo del contador de partículas en modo de recuento único de partículas. Estos puntos incluirán un punto de concentración nominal cero alcanzado mediante la utilización de filtros HEPA como mínimo de clase H13, según la norma EN 1822:2008, o de eficacia equivalente, en la entrada de cada instrumento. Si no se aplica un factor de calibración al contador de partículas que se está calibrando, las concentraciones medidas deberán situarse dentro de un margen de ± 10 % de la concentración estándar para cada concentración, salvo para el punto cero; de lo contrario, deberá rechazarse el contador de partículas. Se calculará y registrará el gradiente de una regresión lineal de los dos conjuntos de datos. Se aplicará al contador de partículas que se está calibrando un factor de calibración recíprocamente equivalente al gradiente. La linealidad de la respuesta se determinará calculando el cuadrado del coeficiente de correlación del momento del producto de Pearson (R²) de los dos conjuntos de datos y será igual o superior a 0,97. Al calcular el gradiente y R², la regresión lineal se hará pasar por el origen (concentración cero en ambos instrumentos).

- 2.1.4. La calibración incluirá también una comprobación, de acuerdo con los requisitos del punto 1.3.4.8 del presente apéndice, sobre la eficacia de detección del contador de partículas con partículas de 23 nm de diámetro de movilidad eléctrica. No es necesario efectuar una comprobación de la eficacia de recuento con partículas de 41 nm.
- 2.2. Calibración/validación del eliminador de partículas volátiles
- 2.2.1. En caso de unidad nueva y después de cualquier mantenimiento importante, será necesario efectuar una calibración de los factores de reducción de la concentración de partículas del eliminador de partículas volátiles en todo su intervalo de parámetros de dilución, a las temperaturas nominales de funcionamiento establecidas del aparato. El requisito de validación periódica del factor de reducción de la concentración de partículas del

⁽¹) En la siguiente dirección se ofrece un ejemplo de calibración/validación: http://www.unece.org/trans/main/wp29/wp29wgs/wp29grpe/pmpFCP.html

eliminador de partículas volátiles se limita a una comprobación de un único parámetro, típico del utilizado para la medición en vehículos dotados de filtros de partículas diésel. El servicio técnico se asegurará de la existencia de un certificado de calibración o de validación del eliminador de partículas volátiles en los seis meses previos al ensayo de emisiones. Si el eliminador de partículas volátiles incorpora alarmas de control de la temperatura, será admisible un intervalo de validación de doce meses.

El eliminador de partículas volátiles se caracterizará por un factor de reducción de la concentración de partículas sólidas de 30, 50 y 100 nm de diámetro de movilidad eléctrica. Los factores de reducción de la concentración $[f_r(d)]$ de partículas de 30 y 50 nm de diámetro de movilidad eléctrica serán como máximo un 30 y un 20 % superiores, respectivamente, y un 5 % inferiores al correspondiente a las partículas de 100 nm de diámetro de movilidad eléctrica. A efectos de validación, el factor medio de reducción de la concentración de partículas se encontrará dentro de un intervalo de \pm 10 % del factor medio de reducción de la concentración de partículas $(\overline{f_r})$ determinado durante la calibración primaria del eliminador de partículas volátiles.

2.2.2. El aerosol de ensayo utilizado en estas mediciones consistirá en partículas sólidas de 30, 50 y 100 nm de diámetro de movilidad eléctrica y una concentración mínima de 5 000 partículas·cm⁻³ en la entrada del eliminador de partículas volátiles. Las concentraciones de partículas se medirán antes y después de los componentes.

El factor de reducción de la concentración de partículas para cada tamaño de partícula $[f_r(d_i)]$ se calculará de la manera siguiente:

$$f_r(d_i) = \frac{N_{in}(d_i)}{N_{out}(d_i)}$$

Donde:

 $N_{in}(d_i)$ = concentración del número de partículas antes del componente en el caso de las partículas de diámetro d_i

 $N_{out}(d_i)$ = concentración del número de partículas después del componente en el caso de las partículas de diámetro d_i

d_i = diámetro de movilidad eléctrica de las partículas (30, 50 o 100 nm)

 $N_{in}(d_i)$ y $N_{out}(d_i)$ se corregirán de acuerdo con las mismas condiciones.

La reducción media de la concentración de partículas $(\overline{f_r})$ en un parámetro de dilución determinado se calculará de la manera siguiente:

$$\overline{f_r} = \frac{f_r(30nm) + f_r(50nm) + f_r(100nm)}{3}$$

Se recomienda calibrar y validar el eliminador de partículas volátiles como una unidad completa.

- 2.2.3. El servicio técnico se asegurará de la existencia de un certificado de validación del eliminador de partículas volátiles que demuestre su eficacia en los seis meses previos al ensayo de emisiones. Si el eliminador de partículas volátiles incorpora alarmas de control de la temperatura, será admisible un intervalo de validación de 12 meses. El eliminador de partículas volátiles demostrará eliminar más de un 99,0 % de partículas de tetracontano (CH₃(CH₂)₃₈CH₃) de un mínimo de 30 nm de diámetro de movilidad eléctrica con una concentración de entrada ≥ 10 000 cm⁻³ cuando funciona en su posición de dilución mínima y a la temperatura de funcionamiento recomendada por los fabricantes.
- 2.3. Procedimientos de control del sistema de recuento de partículas
- 2.3.1. Antes de cada ensayo, el contador de partículas indicará una concentración medida inferior a 0,5 partículas·cm⁻³ tras colocar un filtro HEPA como mínimo de clase H13, según la norma EN 1822:2008, o de eficacia equivalente, en la entrada de todo el sistema de muestreo de partículas (eliminador de partículas volátiles y contador de partículas).
- 2.3.2. El control mensual del flujo introducido en el contador de partículas, realizado con un caudalímetro calibrado, indicará un valor medido dentro de un margen del 5 % del caudal másico nominal del contador de partículas.

- 2.3.3. Cada día, tras la aplicación de un filtro HEPA de como mínimo clase H13, según la norma EN 1822:2008, o de eficacia equivalente, en la entrada del contador de partículas, este indicará una concentración ≤ 0,2 cm⁻³. El contador de partículas mostrará un aumento de las concentraciones medidas de al menos 100 partículas·cm⁻³ tras quitar el filtro HEPA y ser sometido a aire ambiente y volverá a indicar concentraciones ≤ 0,2 cm⁻³ tras colocar de nuevo el mencionado filtro.
- 2.3.4. Antes del inicio de cada ensayo, se confirmará que el sistema de medición indica que el eventual tubo de evaporación ha alcanzado su temperatura de funcionamiento adecuada.
- 2.3.5. Antes del inicio de cada ensayo, se confirmará que el sistema de medición indica que el diluidor PND₁ ha alcanzado su temperatura de funcionamiento adecuada.

Apéndice 6

Verificación de la inercia simulada

1. OBJETO

El método descrito en el presente apéndice permite verificar que la simulación de la inercia total del dinamómetro se lleva a cabo satisfactoriamente en la fase de circulación del ciclo de funcionamiento. El fabricante del dinamómetro determinará un método para comprobar las especificaciones con arreglo al punto 3 del presente apéndice.

2. PRINCIPIO

2.1. Elaboración de las ecuaciones de trabajo

Dado que el dinamómetro estará sujeto a variaciones de la velocidad de rotación del rodillo o rodillos, la fuerza en la superficie de estos podrá expresarse mediante la fórmula siguiente:

$$F = I \cdot \gamma = I_M \cdot \gamma + F_1$$

Donde:

F = fuerza en la superficie del rodillo o rodillos

I = inercia total del dinamómetro (inercia equivalente del vehículo: véase el cuadro A4a/3 del presente anexo)

I_M = inercia de las masas mecánicas del dinamómetro

γ = aceleración tangencial en la superficie del rodillo

 F_1 = fuerza de inercia

Nota: Se adjunta una explicación de esta fórmula referente a los dinamómetros con simulación mecánica de las inercias.

Así pues, la inercia total se expresa mediante la fórmula siguiente:

$$I = I_m + F_1/\gamma$$

Donde:

I_m podrá calcularse o medirse mediante métodos tradicionales

F₁ podrá medirse en el dinamómetro

y podrá calcularse a partir de la velocidad periférica de los rodillos

La inercia total (I) se determinará durante un ensayo de aceleración o desaceleración con valores superiores o iguales a los obtenidos durante un ciclo de funcionamiento.

2.2. Aclaración en relación con el cálculo de la inercia total

Los métodos de ensayo y cálculo permitirán determinar la inercia total (I) con un error relativo ($\Delta I/I$) inferior a \pm 2 %.

3. ESPECIFICACIÓN

- 3.1. La masa de la inercia total simulada (I) deberá seguir siendo igual al valor teórico de la inercia equivalente (véase el cuadro A4a/3), dentro de los límites siguientes:
- 3.1.1. ± 5 % del valor teórico de cada valor instantáneo;
- 3.1.2. ± 2 % del valor teórico del valor medio calculado para cada secuencia del ciclo.

El límite establecido en el punto 3.1.1 del presente apéndice se elevará hasta ± 50 % durante un segundo en el momento del arranque y, en el caso de los vehículos con cambio manual, durante dos segundos en el momento del cambio de velocidad.

4. PROCEDIMIENTO DE VERIFICACIÓN

- 4.1. La verificación se llevará a cabo durante los ensayos, a lo largo del ciclo definido en el punto 6.1 del presente anexo de este Reglamento.
- 4.2. No obstante, la verificación descrita anteriormente no será necesaria cuando se cumplan los requisitos del punto 3 anterior, con aceleraciones instantáneas que sean, al menos, tres veces superiores o inferiores a los valores obtenidos en las secuencias del ciclo teórico.

Apéndice 7

Medición de la resistencia al avance del vehículo

Método de medición en carretera de la resistencia de un vehículo al avance: simulación en el banco dinamométrico

1. FINALIDAD DE LOS MÉTODOS

Los métodos definidos a continuación tienen por objeto medir la resistencia al avance de un vehículo que circule a una velocidad constante en carretera y simular dicha resistencia en un dinamómetro, con arreglo a las condiciones establecidas en el punto 6.2.1 del presente anexo de este Reglamento.

2. DESCRIPCIÓN DE LA CARRETERA

La carretera será horizontal y de una longitud suficiente para poder efectuar las mediciones que se especifican en el presente apéndice. La pendiente se mantendrá constante en ± 0,1 % y no superará el 1,5 %.

3. CONDICIONES ATMOSFÉRICAS

3.1. Viento

Durante el ensayo, la velocidad media del viento deberá ser inferior a 3 m/s, con ráfagas de menos de 5 m/s. Además, la componente transversal del viento en la carretera deberá ser inferior a 2 m/s. La velocidad del viento se medirá 0.7 m por encima de la superficie de la carretera.

3.2. Humedad

La carretera deberá estar seca.

3.3. Presión y temperatura

La densidad del aire en el momento del ensayo no se desviará en más de \pm 7,5 % de las condiciones de referencia: P = 100 kPa y T = 293,2 K.

4. PREPARACIÓN DEL VEHÍCULO (1)

4.1. Selección del vehículo de ensayo

Cuando no se midan todas las variantes de un tipo de vehículo, se aplicarán los siguientes criterios para la selección del vehículo de ensayo.

4.1.1. Carrocería

Cuando existan diferentes tipos de carrocerías, el ensayo se realizará en la menos aerodinámica. El fabricante facilitará la información necesaria para la selección.

4.1.2. Neumáticos

La elección de los neumáticos se basará en la resistencia a la rodadura. Se elegirán los neumáticos cuya resistencia a la rodadura sea la más elevada, medida conforme a ISO 28580.

Si existen más de tres tipos de resistencia a la rodadura, se elegirá aquel neumático cuya resistencia a la rodadura sea la segunda más elevada.

Las características de resistencia a la rodadura de los neumáticos con los que se hayan equipado los vehículos de producción reflejarán las de los neumáticos utilizados para la homologación de tipo.

4.1.3. Masa de ensayo

La masa de ensayo será la masa de referencia del vehículo con el rango de inercia más elevado.

⁽¹) En el caso de los vehículos eléctricos híbridos, mientras no se hayan establecido prescripciones técnicas uniformes, el fabricante se pondrá de acuerdo con el servicio técnico en cuanto a la categoría del vehículo a la hora de realizar el ensayo que se define en el presente apéndice.

4.1.4. Motor

El vehículo de ensayo dispondrá del intercambiador de calor más grande.

4.1.5. Transmisión

Se realizará un ensayo por cada uno de los tipos de transmisión siguientes:

transmisión delantera,

transmisión trasera,

transmisión permanente en las cuatro ruedas,

transmisión parcial en las cuatro ruedas,

cambio automático,

cambio manual.

4.2. Rodaje

El vehículo se encontrará en estado normal de funcionamiento y ajuste tras haber sido sometido a rodaje durante al menos 3 000 km. El rodaje de los neumáticos se habrá realizado al mismo tiempo que el del vehículo o los neumáticos deberán tener entre un 90 y un 50 % de la profundidad inicial del dibujo.

4.3. Verificaciones

Se llevarán a cabo las verificaciones siguientes conforme a las especificaciones del fabricante para el uso en cuestión:

Ruedas, tapacubos, neumáticos (marca, tipo y presión), geometría del eje frontal, ajuste de los frenos (eliminación de los rozamientos parásitos), lubricación de los ejes frontal y trasero, reglaje de la suspensión y del nivel del vehículo, etc.

4.4. Preparación para el ensayo

- 4.4.1. Se cargará el vehículo con arreglo a su masa de referencia. El nivel del vehículo será el que se obtenga cuando el centro de gravedad de la carga esté situado a medio camino entre los puntos R de los asientos exteriores delanteros y en una línea recta que atraviese dichos puntos.
- 4.4.2. En los ensayos en carretera, las ventanas del vehículo estarán cerradas. Todas las cubiertas de climatización, faros, etc., estarán en posición de no funcionamiento.
- 4.4.3. El vehículo deberá estar limpio.
- 4.4.4. Inmediatamente antes del ensayo, se pondrá el vehículo a su temperatura normal de funcionamiento de manera adecuada.
- 5. MÉTODOS
- 5.1. Variación de la energía durante el método de desaceleración en punto muerto
- 5.1.1. En carretera
- 5.1.1.1. Equipo de ensayo y error

Se medirá el tiempo con un error inferior a ± 0,1 segundos.

Se medirá la velocidad con un error inferior a ± 2 %.

5.1.1.2. Procedimiento de ensayo

- 5.1.1.2.1. Se acelerará el vehículo hasta una velocidad superior en 10 km/h a la velocidad de ensayo V elegida.
- 5.1.1.2.2. Se situará la palanca de cambios en punto muerto.

5.1.1.2.3. Se medirá el tiempo (t₁) que necesita el vehículo para desacelerar desde

$$V_2 = V + \Delta V \text{ km/h} \text{ a } V_1 = V - \Delta V \text{ km/h}$$

- 5.1.1.2.4. Se efectuará el mismo ensayo en la dirección opuesta: t₂.
- 5.1.1.2.5. Se tomará la media T de los dos tiempos t₁ y t₂.
- 5.1.1.2.6. Se repetirán estos ensayos varias veces, hasta que la precisión estadística (p) de la media:

$$T = \frac{1}{n} \sum_{i=1}^{n} T_i$$
 no sea superior al 2 % (p \leq ± 2 %)

La precisión estadística (p) estará definida por:

$$p = \left(\frac{t \cdot s}{\sqrt{n}}\right) \cdot \frac{100}{T}$$

Donde:

t = coeficiente dado por el cuadro que figura a continuación

n = número de ensayos

$$s \quad \text{= desviación estándar } s = \sqrt{\sum_{i=1}^n \frac{\left(T_i - T\right)^2}{n-1}}$$

n	4	5	6	7	8	9	10	11	12	13	14	15
t	3,2	2,8	2,6	2,5	2,4	2,3	2,3	2,2	2,2	2,2	2,2	2,2
$\frac{t}{\sqrt{n}}$	1,6	1,25	1,06	0,94	0,85	0,77	0,73	0,66	0,64	0,61	0,59	0,57

5.1.1.2.7. Se calculará la potencia mediante la fórmula siguiente:

$$P = \frac{M \cdot V \cdot \Delta V}{500 \cdot T}$$

Donde:

P = potencia (kW)

V = velocidad del ensayo (m/s)

 ΔV = desviación de la velocidad con respecto a la velocidad V (m/s), con arreglo al punto 5.1.1.2.3 del presente apéndice

M = masa de referencia (kg)

T = tiempo (s)

5.1.1.2.8. La potencia (P) determinada en pista se corregirá con arreglo a las condiciones ambientales de referencia como sigue:

 $P_{\text{corregida}} = K \cdot P_{\text{medida}}$

$$K = \frac{R_{\text{R}}}{R_{\text{T}}} \cdot \left[1 + K_{\text{R}}(t - t_0)\right] + \frac{R_{\text{AERO}}}{R_{\text{T}}} \cdot \frac{(\rho_0)}{\rho}$$

Donde:

R_R = resistencia a la rodadura a velocidad V

 R_{aero} = resistencia aerodinámica a velocidad V

 R_T = resistencia total en conducción = $R_R + R_{aero}$

 K_R = factor de corrección de la temperatura de la resistencia a la rodadura, igual a 8,64 × 10^{-3} /°C, o factor de corrección del fabricante aprobado por la autoridad

t = temperatura ambiente del ensayo en carretera (°C)

t₀ = temperatura ambiente de referencia = 20 °C

ρ = densidad del aire en condiciones de ensayo

 ρ_0 = densidad del aire en condiciones de referencia (20 °C, 100 kPa)

Las relaciones R_R/R_T y R_{aero}/R_T vendrán especificadas por el fabricante del vehículo con arreglo a los datos normalmente disponibles en la empresa.

Si dichos datos no estuvieran disponibles, podrán utilizarse, previo acuerdo del fabricante y el servicio técnico correspondiente, las cifras de la relación entre la resistencia a la rodadura y la resistencia total que resulten de la fórmula siguiente:

$$\frac{R_R}{R_T} = a \cdot M + b$$

Donde:

M = masa del vehículo (kg)

Para cada velocidad, los coeficientes a y b figuran en el cuadro siguiente:

V (km/h)	a	ь
20	7,24 · 10 ^{- 5}	0,82
40	1,59 · 10-4	0,54
60	1,96 · 10-4	0,33
80	1,85 · 10-4	0,23
100	1,63 · 10-4	0,18
120	1,57 · 10-4	0,14

5.1.2. En el dinamómetro

5.1.2.1. Equipo de medición y precisión

El equipo será idéntico al utilizado en carretera.

- 5.1.2.2. Procedimiento de ensayo
- 5.1.2.2.1. Se instalará el vehículo en el dinamómetro de ensayo.
- 5.1.2.2.2. Se regulará la presión de los neumáticos (en frío) de las ruedas motrices con arreglo a los requisitos del dinamómetro.
- 5.1.2.2.3. Se regulará la inercia equivalente del dinamómetro.
- 5.1.2.2.4. Se pondrán el vehículo y el dinamómetro a temperatura de funcionamiento mediante un método adecuado.
- 5.1.2.2.5. Se realizarán las operaciones descritas en el punto 5.1.1.2 del presente apéndice (excepto lo dispuesto en sus puntos 5.1.1.2.4 y 5.1.1.2.5), sustituyendo M por I en la fórmula del punto 5.1.1.2.7 del mismo.

5.1.2.2.6. Se regulará el freno para reproducir la potencia corregida (punto 5.1.1.2.8 del presente apéndice) y para tener en cuenta la diferencia entre la masa del vehículo (M) en pista y la masa del ensayo de inercia equivalente (I) que habrá de utilizarse. Para ello, podrá calcularse el tiempo medio corregido de desaceleración en punto muerto de V₂ a V₁ y reproducirse el mismo tiempo en el dinamómetro mediante la relación siguiente:

$$T_{corrected} = \frac{T_{measured}}{K} \cdot \frac{I}{M}$$

K = valor especificado en el punto 5.1.1.2.8 del presente apéndice.

- 5.1.2.2.7. Se determinará la potencia P_a que va a absorber el dinamómetro, para permitir que la misma potencia (punto 5.1.1.2.8 del presente apéndice) se reproduzca para el mismo vehículo en días diferentes.
- 5.2. Método de medición del par a velocidad constante
- 5.2.1. En carretera
- 5.2.1.1. Equipo de medición y error

La medición del par se llevará a cabo con un dispositivo de medición adecuado cuya precisión se sitúe en ± 2 %.

La medición de la velocidad tendrá una precisión de ± 2 %.

- 5.2.1.2. Procedimiento de ensayo
- 5.2.1.2.1. Se pondrá el vehículo a la velocidad constante V elegida.
- 5.2.1.2.2. Se registrarán el par C_t y la velocidad durante al menos 20 segundos. La precisión del sistema de registro de datos será como mínimo de ± 1 Nm en el caso del par y de ± 0,2 km/h en el caso de la velocidad.
- 5.2.1.2.3. Las diferencias en el par C_t y la velocidad con respecto al tiempo no superarán el 5 % en cada segundo del período de medición.
- 5.2.1.2.4. El par $C_{\rm tl}$ será el par medio calculado a partir de la fórmula siguiente:

$$C_{t1} = \frac{1}{\Delta t} \int\limits_{}^{t+\Delta t} C(t) dt$$

- 5.2.1.2.5. El ensayo se realizará tres veces en cada dirección. Se determinará el par medio a partir de estas seis mediciones para la velocidad de referencia. Si la velocidad media se desvía en más de 1 km/h de la velocidad de referencia, se utilizará una regresión lineal para calcular el par medio.
- 5.2.1.2.6. Se determinará la media de los dos valores C_{t1} y C_{t2} , es decir, C_{t} .
- 5.2.1.2.7. El par medio C_T determinado en pista se corregirá con arreglo a las condiciones ambientales de referencia como sigue:

$$C_{Tcorregido} = K \cdot C_{Tmedido}$$

donde K tiene el valor especificado en el punto 5.1.1.2.8 del presente apéndice.

- 5.2.2. En el dinamómetro
- 5.2.2.1. Equipo de medición y error

El equipo será idéntico al utilizado en carretera.

- 5.2.2.2. Procedimiento de ensayo
- 5.2.2.2.1. Se llevarán a cabo las operaciones descritas en los puntos 5.1.2.2.1 a 5.1.2.2.4 del presente apéndice.
- 5.2.2.2.2. Se llevarán a cabo las operaciones descritas en los puntos 5.2.1.2.1 a 5.2.1.2.4 del presente apéndice.
- 5.2.2.2.3. Se regulará la unidad de absorción de potencia de manera que se reproduzca el par total corregido en pista del punto 5.2.1.2.7 de este apéndice.
- 5.2.2.2.4. Se llevarán a cabo las mismas operaciones del punto 5.1.2.2.7 del presente apéndice con los mismos fines.

ANEXO 5

ENSAYO DE TIPO II

(Ensayo de emisiones de monóxido de carbono en régimen de ralentí)

1. INTRODUCCIÓN

En el presente anexo se describe el procedimiento para llevar a cabo el ensayo de tipo II definido en el apartado 5.3.2 del presente Reglamento.

2. CONDICIONES DE MEDICIÓN

- 2.1. Se utilizará el combustible de referencia, cuyas especificaciones figuran en los anexos 10 y 10 bis del presente Reglamento.
- 2.2. La temperatura ambiente durante el ensayo se situará entre 293 y 303 K (20 y 30 °C). Se calentará el motor hasta que la temperatura de los refrigerantes y lubricantes, así como la presión del lubricante, hayan alcanzado el punto de equilibro.
- 2.2.1. Los vehículos alimentados bien con gasolina, bien con GLP o gas natural/biometano se someterán a ensayo con el combustible o combustibles de referencia utilizados en el ensayo de tipo I.
- 2.3. En el caso de los vehículos con cambio manual o semiautomático, el ensayo se efectuará con la palanca de cambios en punto muerto y el embrague sin pisar.
- 2.4. En el caso de los vehículos con cambio automático, el ensayo se efectuará con el selector de velocidades en posición de punto muerto o de estacionamiento.
- 2.5. Elementos para el reglaje del ralentí

2.5.1. Definición

A efectos del presente Reglamento, se entenderá por «elementos para el reglaje del ralentí», los mandos que permiten modificar las condiciones del régimen de ralentí del motor y que un mecánico puede manejar fácilmente utilizando únicamente las herramientas enumeradas en el punto 2.5.1.1 del presente anexo. En concreto, no se considerarán elementos de reglaje los dispositivos de calibración de los flujos de combustible y aire cuando su configuración implique la eliminación de los indicadores de bloqueo, operación que normalmente solo puede realizar un mecánico profesional.

- 2.5.1.1. Herramientas que pueden utilizarse para el manejo de los elementos de reglaje del ralentí: destornillador (ordinario o cruciforme), llave (de estrella, plana o regulable), alicates y llaves Allen.
- 2.5.2. Determinación de los puntos de medición
- 2.5.2.1. En primer lugar, en el momento de la configuración se procederá a una medición de conformidad con las condiciones establecidas por el fabricante.
- 2.5.2.2. Para cada elemento de reglaje que varíe continuamente, se determinará un número suficiente de posiciones características.
- 2.5.2.3. La medición del contenido de monóxido de carbono de los gases de escape se efectuará en todas las posiciones posibles de los elementos de reglaje, pero, en el caso de los elementos que varíen continuamente, únicamente se tendrán en cuenta las posiciones definidas en el punto 2.5.2.2 del presente anexo.
- 2.5.2.4. Se considerará satisfactorio el ensayo de tipo II cuando se cumpla, al menos, una de las condiciones siguientes:
- 2.5.2.4.1. ninguno de los valores medidos de conformidad con el punto 2.5.2.3 del presente anexo supera los valores límite;
- 2.5.2.4.2. el contenido máximo obtenido de la variación continua de uno de los elementos de reglaje mientras los otros se mantienen fijos no supera el valor límite; esta condición se cumple para las diferentes combinaciones de los elementos de reglaje diferentes de aquel que varía continuamente.
- 2.5.2.5. Las posibles posiciones de los elementos de reglaje quedarán limitadas:
- 2.5.2.5.1. por un lado, por el mayor de los dos valores siguientes: el régimen de ralentí más bajo que puede alcanzar el motor y la velocidad recomendada por el fabricante menos 100 rev/min;

- 2.5.2.5.2. por otro lado, por el menor de los tres valores siguientes:
 - el mayor régimen que puede alcanzar el motor accionando los elementos del ralentí,
 - el régimen recomendado por el fabricante más 250 rev/min,
 - el régimen de conexión de los embragues automáticos.
- 2.5.2.6. Además, los parámetros incompatibles con el correcto funcionamiento del motor no deberán adoptarse como parámetros de medición. En concreto, cuando el motor esté equipado con varios carburadores, todos ellos tendrán la misma configuración.
- 3. MUESTREO DE GASES
- 3.1. La sonda de muestreo se introducirá en el tubo de escape hasta una profundidad de al menos 300 mm en el tubo que empalma el escape con la bolsa de muestreo y lo más cerca posible del escape.
- 3.2. La concentración de CO (C_{CO}) y CO_2 (C_{CO2}) se determinará a partir de los valores indicados o registrados por el instrumento de medición, utilizando curvas de calibración adecuadas.
- 3.3. La concentración corregida de monóxido de carbono en el caso de un motor de cuatro tiempos será:

$$C_{CO_{corr}} = C_{CO} \frac{15}{C_{CO} + C_{CO2}}$$
 (% vol.)

- 3.4. En el caso de los motores de cuatro tiempos, no será necesario corregir la C_{CO} (véase el punto 3.2 del presente anexo) medida de conformidad con la fórmula del punto 3.3 del presente anexo cuando el total de las concentraciones medidas ($C_{CO} + C_{CO2}$) sea, como mínimo:
 - a) para la gasolina
- 15 %
- b) para el GLP
- 13,5 %
- c) para el gas natural/biome- 11,5 %

ANEXO 6

ENSAYO DE TIPO III

(Verificación de las emisiones de gases del cárter)

1. INTRODUCCIÓN

En el presente anexo se describe el procedimiento para llevar a cabo el ensayo de tipo III definido en el punto 5.3.3 del presente Reglamento.

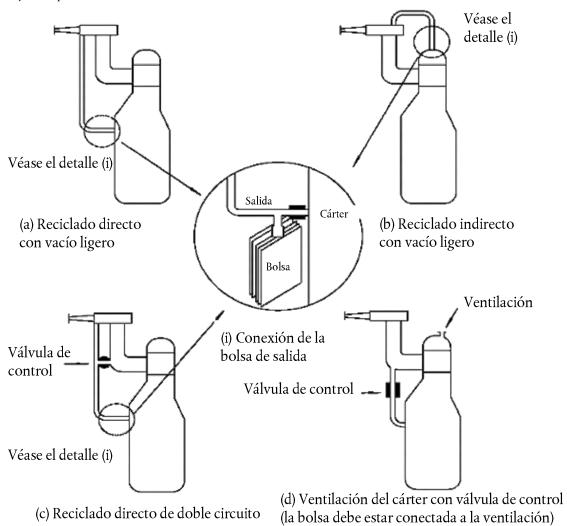
2. DISPOSICIONES GENERALES

- 2.1. El ensayo de tipo III se efectuará en un vehículo con motor de encendido por chispa que haya sido sometido a los ensayos de tipos I y II, según proceda.
- 2.2. Entre los motores que se someterán a ensayo estarán los motores estancos, salvo los diseñados de tal manera que incluso una ligera fuga pueda acarrear fallos de funcionamiento inaceptables (los motores de cilindros horizontales opuestos, por ejemplo).

CONDICIONES DE ENSAYO

- 3.1. El ralentí se regulará de conformidad con las recomendaciones del fabricante.
- 3.2. Las mediciones se llevarán a cabo en las tres condiciones de funcionamiento del motor siguientes:

Número de condición	Velocidad del vehículo (km/h)
1	Ralentí
2	50 ± 2 (en tercera velocidad o en directa)
3	50 ± 2 (en tercera velocidad o en directa)


Número de condición	Potencia absorbida por el freno
1	Ninguna
2	La correspondiente a la configuración del ensayo de tipo I a 50 km/h
3	La correspondiente a la condición nº 2, multiplicada por un coeficiente de 1,7

4. MÉTODO DE ENSAYO

- 4.1. En las condiciones de funcionamiento enumeradas en el punto 3.2 del presente anexo, se verificará que el sistema de ventilación de los gases del cárter cumple su función.
- 5. MÉTODO DE VERIFICACIÓN DEL SISTEMA DE VENTILACIÓN DE LOS GASES DEL CÁRTER
- 5.1. Los orificios del motor se dejarán en el estado en que se encuentren.
- 5.2. La presión en el cárter se medirá en un punto adecuado; a través del orificio de la varilla del aceite, mediante un manómetro de tubo inclinado.
- 5.3. El vehículo se considerará conforme si en todas las condiciones de medición definidas en el punto 3.2 del presente anexo la presión medida en el cárter no supera la presión atmosférica que prevalece en el momento de la medición.
- 5.4. En el caso del ensayo efectuado según el método descrito anteriormente, la presión en el colector de admisión se medirá con una precisión de ± 1 kPa.

- 5.5. La velocidad del vehículo indicada en el dinamómetro se medirá con una precisión de ± 2 km/h.
- 5.6. La presión en el cárter se medirá con una precisión de ± 0,01 kPa.
- 5.7. Si en alguna de las condiciones de medición definidas en el punto 3.2 del presente anexo, la presión medida en el cárter supera la presión atmosférica, se realizará, cuando el fabricante así lo solicite, un ensayo adicional de acuerdo con la definición del punto 6 del mismo.
- 6. MÉTODO DE ENSAYO ADICIONAL
- 6.1. Los orificios del motor se dejarán en el estado en que se encuentren.
- 6.2. Se conectará al orificio de la varilla del aceite una bolsa flexible, impermeable a los gases del cárter y con una capacidad de aproximadamente 5 litros. Se vaciará la bolsa antes de cada medición.
- 6.3. Se cerrará la bolsa antes de cada medición. A continuación, se conectará al cárter durante cinco minutos para cada una de las condiciones de medición prescritas en el punto 3.2 del presente anexo.
- 6.4. El vehículo se considerará conforme cuando la bolsa no se infle de forma visible en ninguna de las condiciones de medición definidas en el punto 3.2 del presente anexo.
- 6.5. Observaciones
- 6.5.1. Cuando, debido a la arquitectura del motor, no sea posible realizar el ensayo según el método descrito en los puntos 6.1 a 6.4 del presente anexo, las medidas se efectuarán según ese mismo método, pero con las siguientes modificaciones:
- 6.5.2. antes del ensayo, se obturarán todos los orificios excepto el necesario para la recuperación de los gases;
- 6.5.3. la bolsa se colocará en una posición adecuada, que no dé lugar a una pérdida de presión adicional, y se instalará en el circuito de reciclado del dispositivo, directamente en el orificio de empalme del motor (véase el diagrama siguiente):

Ensayo de tipo III

ANEXO 7

ENSAYO DE TIPO IV

(Determinación de las emisiones de evaporación de los vehículos con motor de encendido por chispa)

1. INTRODUCCIÓN

En el presente anexo se describe el procedimiento para llevar a cabo el ensayo de tipo IV definido en el apartado 5.3.4 del presente Reglamento.

Este procedimiento describe el método para determinar la pérdida de hidrocarburos por evaporación desde el sistema de combustible de los vehículos con motor de encendido por chispa.

2. DESCRIPCIÓN DEL ENSAYO

El ensayo de emisiones de evaporación (figura A7/1) tiene por objeto determinar las emisiones de evaporación de hidrocarburos debidas a la fluctuación de las temperaturas diurnas, la parada en caliente durante el estacionamiento y la conducción urbana. El ensayo consta de las siguientes fases:

- 2.1. preparación del ensayo, incluido un ciclo de conducción urbano (parte 1) y extraurbano (parte 2);
- 2.2. determinación de las pérdidas por parada en caliente;
- 2.3. determinación de las pérdidas diurnas.

Las emisiones másicas de hidrocarburos procedentes de las pérdidas por parada en caliente y de las pérdidas diurnas se sumarán para proporcionar un resultado global para el ensayo.

3. VEHÍCULO Y COMBUSTIBLE

3.1. Vehículo

3.1.1. El vehículo deberá encontrarse en buenas condiciones mecánicas, haber sido sometido a rodaje y haber recorrido como mínimo 3 000 km antes del ensayo. El sistema de control de las emisiones de evaporación estará conectado y deberá haber estado funcionando correctamente durante ese tiempo. El filtro o filtros de carbón activo deberán haberse sometido a un uso normal y no podrán haber sido purgados ni cargados en exceso.

3.2. Combustible

- 3.2.1. Se utilizará el combustible de referencia adecuado, definido en el anexo 10 o 10 bis del presente Reglamento.
- 4. EQUIPO PARA EL ENSAYO DE EMISIONES DE EVAPORACIÓN

4.1. Banco dinamométrico

El banco dinamométrico deberá cumplir los requisitos del apéndice 1 del anexo 4 bis del presente Reglamento.

4.2. Recinto para la medición de las emisiones de evaporación

El recinto destinado a la medición de las emisiones de evaporación deberá ser una cámara rectangular, estanca a los gases y con capacidad para contener el vehículo que se somete a ensayo. El vehículo deberá ser accesible desde todos los lados, y el recinto, mientras se encuentre cerrado, deberá ser estanco a los gases con arreglo al apéndice 1 del presente anexo. La superficie interna del recinto deberá ser impermeable y no reactiva a los hidrocarburos. El sistema de acondicionamiento de la temperatura deberá poder regular la temperatura interna del aire del recinto a fin de cumplir durante todo el ensayo el perfil establecido de temperatura/tiempo, con una tolerancia media de 1 K durante el tiempo del ensayo.

Se regulará el sistema de control a fin de obtener un modelo de temperatura suave, que presente el menor riesgo posible de excesos, oscilaciones e inestabilidad en relación con el perfil deseado de temperatura ambiente a largo plazo. Las temperaturas de la superficie interna no deberán ser inferiores a 278 K (5 °C) ni superiores a 328 K (55 °C) en ningún momento durante el ensayo de emisiones diurno.

El diseño de las paredes deberá permitir una buena disipación del calor. Las temperaturas de la superficie interna no deberán ser inferiores a 293 K (20 °C) ni superiores a 325 K (52 °C) durante la fase de parada en caliente.

Para solucionar el problema de las variaciones de volumen debidas a los cambios de temperatura del recinto, podrá utilizarse un recinto de volumen variable o un recinto de volumen fijo.

4.2.1. Recinto de volumen variable

El recinto de volumen variable se dilata y contrae en respuesta a las variaciones de temperatura de la masa de aire que contiene. Dos métodos posibles de ajustar el volumen interior consisten en emplear paneles móviles o un sistema de fuelles, en el cual una o varias bolsas impermeables colocadas en el interior del recinto se dilatan y contraen en respuesta a las variaciones de la presión interna mediante un intercambio de aire con el exterior del recinto. Cualquier sistema de ajuste del volumen deberá mantener la integridad del recinto, de conformidad con el apéndice 1 del presente anexo, a lo largo de todo el rango especificado de temperaturas.

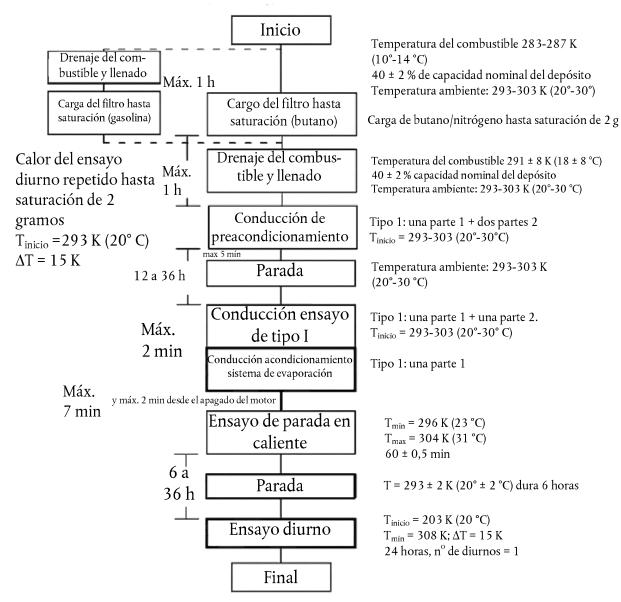
Cualquier método de ajuste del volumen deberá limitar la diferencia entre la presión interna del recinto y la presión barométrica a un valor máximo de ± 5 kPa.

Deberá poder cerrarse el recinto a un volumen fijo. El recinto de volumen variable deberá poder adaptarse a un cambio de + 7 % a partir de su «volumen nominal» (véase el punto 2.1.1 del apéndice 1 del presente anexo), teniendo en cuenta la variación de temperatura y presión barométrica durante el ensayo.

4.2.2. Recinto de volumen fijo

El recinto de volumen fijo estará constituido por paneles rígidos que mantengan un volumen fijo y cumplan los requisitos que figuran a continuación.

- 4.2.2.1. El recinto estará provisto de una salida del flujo de aire que lo evacue a velocidad baja y constante a lo largo de todo el ensayo. La entrada del flujo de aire podrá compensar esta evacuación mediante la admisión de aire ambiente. El aire de entrada se filtrará con carbón activado a fin de establecer un nivel de hidrocarburos relativamente constante. Cualquier método de ajuste del volumen deberá mantener la diferencia entre la presión interna del recinto y la presión barométrica entre 0 y 5 kPa.
- 4.2.2.2. El equipo deberá poder medir la masa de hidrocarburos de las corrientes de entrada y salida de aire con una resolución de 0,01 g. Podrá utilizarse un sistema de muestreo mediante bolsas para recoger una muestra proporcional del aire que sale del recinto y entra en él. En su defecto, las corrientes de entrada y salida podrán analizarse continuamente por medio de un analizador de ionización de llama en línea e integrarse en las mediciones del flujo a fin de obtener un registro continuo de la masa de hidrocarburos evacuada.


Figura A7/1

Determinación de las emisiones de evaporación

Período de rodaje de 3 000 km (sin purga ni carga excesivas)

Verificación del estado de envejecimiento del filtro o filtros

Limpieza del vehículo al vapor (en su caso)

Notas:

- 1. Familias de control de las emisiones de evaporación; aclaraciones.
- 2. Las emisiones de escape podrán medirse durante el ciclo de conducción del ensayo de tipo I, pero no se utilizarán para fines legislativos. El ensayo legislativo de emisiones de escape sigue siendo independiente.
- 4.3. Sistemas analíticos
- 4.3.1. Analizador de hidrocarburos
- 4.3.1.1. El seguimiento de la atmósfera en el interior de la cámara se realizará mediante un detector de hidrocarburos de tipo de ionización de llama. El gas de muestra se extraerá del punto medio de una de las paredes laterales o del techo de la cámara y cualquier flujo de gas en derivación volverá al recinto, preferentemente en un punto situado inmediatamente después del ventilador mezclador.

- 4.3.1.2. El analizador de hidrocarburos deberá tener un tiempo de respuesta inferior a 1,5 segundos al 90 % del valor final. Su estabilidad deberá ser superior al 2 % del fondo de escala a cero y a 80 ± 20 % del fondo de escala durante un período de 15 minutos en todos los rangos de funcionamiento.
- 4.3.1.3. La repetibilidad del analizador, expresada como una desviación estándar, deberá ser superior a ± 1 % de desviación del fondo de escala a cero y a 80 ± 20 % del fondo de escala en todos los rangos utilizados.
- 4.3.1.4. Los rangos de funcionamiento del analizador se elegirán de forma que proporcionen la mejor resolución en los procedimientos de medición, calibración y control de la estanquidad.
- 4.3.2. Sistema de registro de datos del analizador de hidrocarburos
- 4.3.2.1. El analizador de hidrocarburos estará equipado con un dispositivo para registrar las señales eléctricas de salida, mediante un registrador de banda o mediante otro sistema de procesamiento de datos, al menos una vez por minuto. Este sistema deberá poseer unas características operativas equivalentes al menos a la señal que está siendo registrada y deberá registrar los resultados permanentemente. El registro presentará una indicación positiva del inicio y el final de la parada en caliente o del ensayo de emisiones diurno (incluidos el inicio y el final de los períodos de muestreo, así como el tiempo transcurrido entre el comienzo y el final de cada ensayo).
- 4.4. Calentamiento del depósito de combustible (aplicable únicamente a la opción de carga del filtro con gasolina)
- 4.4.1. El combustible del depósito o depósitos del vehículo se calentará mediante una fuente de calor controlable; puede ser adecuada, por ejemplo, una resistencia de calentamiento de 2 000 W. El sistema de calentamiento deberá calentar uniformemente las paredes del depósito por debajo del nivel del combustible, de manera que no produzca el recalentamiento local de este. El calor no se aplicará al vapor que se encuentra en el depósito por encima del combustible.
- 4.4.2. El dispositivo de calentamiento del depósito permitirá calentar uniformemente el combustible hasta 14 K a partir de 289 K (16 °C) en 60 minutos, con el sensor de temperatura en la posición descrita en el punto 5.1.1 del presente anexo. El sistema de calentamiento deberá poder controlar la temperatura del combustible en ± 1,5 K de la temperatura requerida durante el proceso de calentamiento del depósito.
- 4.5. Registro de la temperatura
- 4.5.1. La temperatura de la cámara se registrará en dos puntos mediante sensores de temperatura que se conectarán de forma que permitan obtener un valor medio. Los puntos de medición se extenderán aproximadamente 0,1 m hacia el interior del recinto a partir de la línea central vertical de cada pared lateral, a una altura de $0,9 \pm 0,2$ m.
- 4.5.2. Las temperaturas del depósito o depósitos de combustible se registrarán mediante un sensor colocado en el depósito de combustible con arreglo a lo especificado en el punto 5.1.1 del presente anexo en caso de elegirse la opción de carga del filtro con gasolina (punto 5.1.5 del mismo).
- 4.5.3. Durante la medición de las emisiones de evaporación, las temperaturas se registrarán o se introducirán en un sistema de procesamiento de datos con una frecuencia de al menos una vez por minuto.
- 4.5.4. La precisión del sistema de registro de la temperatura será de ± 1,0 K y la temperatura deberá poder establecerse en ± 0,4 K.
- 4.5.5. El sistema de registro o de procesamiento de datos deberá tener una capacidad de resolución de ± 15 segundos.
- 4.6. Registro de la presión
- 4.6.1. Durante la medición de las emisiones de evaporación, la diferencia Δp entre la presión barométrica en la zona de ensayo y la presión en el interior del recinto se registrará o se introducirá en un sistema de procesamiento de datos con una frecuencia de al menos una vez por minuto.

- 4.6.2. La precisión del sistema de registro de la presión será de ± 2 kPa y la presión deberá poder establecerse en ± 0,2 kPa.
- 4.6.3. El sistema de registro o de procesamiento de datos deberá tener una capacidad de resolución de ± 15 segundos.
- 4.7. Ventiladores
- 4.7.1. Mediante el uso de uno o varios ventiladores o soplantes con la puerta o puertas abiertas de la cámara estanca para la determinación de la evaporación (SHED), deberá ser posible reducir hasta el nivel ambiente la concentración de hidrocarburos en la cámara.
- 4.7.2. La cámara deberá tener uno o varios ventiladores o soplantes de una capacidad de entre 0,1 y 0,5 m³/min que permitan mezclar por completo la atmósfera del recinto. Durante las mediciones deberá ser posible alcanzar una temperatura y una concentración de hidrocarburos constantes. El vehículo que se encuentre en el recinto no estará sometido a una corriente directa de aire procedente de los ventiladores o los soplantes.
- 4.8. Gases
- 4.8.1. Los siguientes gases puros estarán disponibles para calibración y funcionamiento:

aire sintético purificado (pureza: < 1 ppm de equivalentes de C_1 , \leq 1 ppm CO, \leq 400 ppm CO₂, \leq 0,1 ppm NO), con

contenido de oxígeno entre el 18 y el 21 % en volumen;

gas combustible para el analizador de hidrocarburos (40 ± 2 % de hidrógeno y helio de compensación

con menos de 1 ppm de hidrocarburos equivalentes de C₁ y menos de 400 ppm CO₂);

propano (C₃H₈): 99,5 % de pureza mínima;

butano (C₄H₁₀): 98 % de pureza mínima;

nitrógeno (N2): 98 % de pureza mínima.

- 4.8.2. El gas de calibración y el gas patrón deberán contener mezclas de propano (C₃H₈) y aire sintético purificado. La concentración real de un gas de calibración se situará en el 2 % de las cifras establecidas. La precisión de los gases diluidos obtenidos al utilizar un separador de gas deberá ser de ± 2 % del valor real. Las concentraciones mencionadas en el apéndice 1 del presente anexo podrán obtenerse también con un separador de gas mediante dilución con aire sintético.
- 4.9. Equipo adicional
- 4.9.1. La humedad absoluta en la zona de ensayo deberá poder medirse con un margen de ± 5 %.
- 5. PROCEDIMIENTO DE ENSAYO
- 5.1. Preparación del ensayo
- 5.1.1. El vehículo se preparará mecánicamente antes del ensayo:
 - a) el sistema de escape del vehículo no presentará ninguna fuga;
 - b) el vehículo podrá limpiarse al vapor antes del ensayo;
 - c) en caso de elegirse la opción de carga del filtro con gasolina (punto 5.1.5 del presente anexo), el depósito de combustible del vehículo estará equipado con un sensor que permita medir la temperatura en el punto medio del combustible cuando el depósito esté lleno al 40 % de su capacidad;

- d) podrán instalarse en el sistema de alimentación accesorios, adaptadores o dispositivos adicionales que permitan un drenaje completo del depósito de combustible; para ello, no será necesario modificar la estructura del depósito;
- e) el fabricante podrá proponer un método de ensayo que tenga en cuenta la pérdida de hidrocarburos por evaporación procedente únicamente del sistema de combustible del vehículo.
- 5.1.2. El vehículo se situará en la zona de ensayo, donde la temperatura ambiente deberá estar comprendida entre 293 y 303 K (20 y 30 °C).
- 5.1.3. Se verificará el estado de envejecimiento del filtro o filtros. Esto puede hacerse demostrando que ha acumulado un mínimo de 3 000 km. Si no puede demostrarse, se empleará el procedimiento descrito a continuación. En el caso de un sistema de filtros múltiples, cada filtro se someterá al procedimiento por separado.
- 5.1.3.1. Se retirará el filtro del vehículo. Al hacerlo, se tomarán precauciones para evitar daños a los componentes y a la integridad del sistema de alimentación.
- 5.1.3.2. Se comprobará el peso del filtro.
- 5.1.3.3. Se conectará el filtro a un depósito de combustible, que puede ser un depósito externo, lleno de combustible de referencia hasta el 40 % del volumen del depósito o depósitos.
- 5.1.3.4. La temperatura del combustible en el depósito se situará entre 283 y 287 K (10 y 14 °C).
- 5.1.3.5. Se calentará el depósito de combustible (externo) de 288 a 318 K (15 a 45 °C) (con un aumento de 1 °C cada nueve minutos).
- 5.1.3.6. Si el filtro alcanza la saturación antes de que la temperatura haya alcanzado 318 K (45 °C), se apagará la fuente de calor. A continuación, se pesará el filtro. Si el filtro no ha alcanzado la saturación durante el calentamiento a 318 K (45 °C), se repetirá el procedimiento a partir del punto 5.1.3.3 del presente anexo hasta que la alcance.
- 5.1.3.7. Podrá verificarse la saturación con arreglo a los puntos 5.1.5 y 5.1.6 del presente anexo, o con ayuda de otro sistema de muestreo y de análisis que permita detectar la emisión de hidrocarburos procedentes de la saturación del filtro.
- 5.1.3.8. Se purgará el filtro con 25 ± 5 litros por minuto con el aire de emisiones del laboratorio hasta alcanzar 300 intercambios del volumen del lecho.
- 5.1.3.9. Se comprobará el peso del filtro.
- 5.1.3.10. Se repetirán nueve veces las etapas del procedimiento recogidas en los puntos 5.1.3.4 a 5.1.3.9 del presente anexo. Podrá concluirse el ensayo con anterioridad, una vez realizados al menos tres ciclos de envejecimiento, si el peso del filtro se ha estabilizado después de los últimos ciclos.
- 5.1.3.11. Se conectará nuevamente el filtro de emisiones de evaporación y se pondrá de nuevo el vehículo en condiciones normales de funcionamiento.
- 5.1.4. Se empleará uno de los métodos contemplados en los puntos 5.1.5 y 5.1.6 del presente anexo para preacondicionar el filtro de evaporación. En el caso de los vehículos equipados con filtros múltiples, se preacondicionará cada filtro por separado.
- 5.1.4.1. Se medirán las emisiones del filtro a fin de determinar la saturación.
 - Se entenderá por saturación el punto en el que la cantidad acumulada de hidrocarburos emitidos sea igual a 2 gramos.
- 5.1.4.2. Podrá verificarse la saturación utilizando el recinto de emisiones de evaporación conforme se establece en los puntos 5.1.5 y 5.1.6 del presente anexo. También podrá determinarse la saturación por medio de un filtro de evaporación auxiliar conectado a continuación del filtro del vehículo. El filtro auxiliar se purgará adecuadamente con aire seco antes de cargarse.

5.1.4.3. La cámara de medición deberá purgarse durante varios minutos inmediatamente antes del ensayo, hasta que se obtenga un fondo estable. Simultáneamente, se pondrán en funcionamiento los ventiladores mezcladores.

El analizador de hidrocarburos se pondrá a cero y se ajustará con gas patrón inmediatamente antes del ensayo.

- 5.1.5. Carga del filtro por calentamiento repetido hasta la saturación
- 5.1.5.1. El depósito o depósitos del vehículo o vehículos se vaciarán usando el sistema o sistemas de drenaje. Esta operación se realizará sin que se purguen ni se carguen de manera anormal los dispositivos de control de emisiones de evaporación instalados en el vehículo. Para ello, será suficiente, en general, con retirar el tapón del combustible.
- 5.1.5.2. El depósito o depósitos de combustible se volverán a llenar con el combustible de ensayo a una temperatura comprendida entre 283 y 287 K (entre 10 y 14 °C) y hasta 40 ± 2 % de su capacidad volumétrica normal. A continuación, se colocará el tapón o tapones de combustible del vehículo.
- 5.1.5.3. En el plazo de una hora a partir del momento en que se ha llenado de nuevo el depósito, el vehículo se colocará, con el motor apagado, en el recinto de emisiones de evaporación. El sensor de temperatura del depósito de combustible se conectará al sistema de registro de la temperatura. Se colocará una fuente de calor de manera adecuada con respecto al depósito o depósitos de combustible y se conectará al controlador de temperatura. Las características de la fuente de calor se especifican en el punto 4.4 del presente anexo. En el caso de los vehículos equipados con más de un depósito de combustible, todos los depósitos deberán calentarse de la forma que se describe a continuación. Las temperaturas de los depósitos deberán ser idénticas, con un margen de ± 1,5 K.
- 5.1.5.4. Podrá calentarse artificialmente el combustible hasta alcanzar la temperatura diurna inicial de 293 K (20 °C) ± 1 K
- 5.1.5.5. Cuando la temperatura del combustible alcance al menos 292 K (19 °C), se tomarán inmediatamente las medidas siguientes: se desconectará el soplante de purga, se cerrarán herméticamente las puertas del recinto y se iniciarán las mediciones del nivel de hidrocarburos en el recinto.
- 5.1.5.6. Cuando la temperatura del combustible en el depósito alcance 293 K (20 °C), se iniciará un período de calentamiento lineal de 15 K (15 °C). El combustible se calentará de manera que la temperatura durante el calentamiento se ajuste a la función siguiente en ± 1,5 K. Se registrarán el tiempo transcurrido y el aumento de la temperatura.

$$T_r = T_0 + 0.2333 \cdot t$$

Donde:

 T_r = temperatura requerida (K)

T_o = temperatura inicial (K)

t = tiempo transcurrido desde el inicio del período de calentamiento, en minutos

- 5.1.5.7. Tan pronto como se produzca la saturación, o cuando la temperatura del combustible alcance 308 K (35 °C), en función de lo que ocurra primero, se apagará la fuente de calor, se abrirán las puertas del recinto y se retirará el tapón o tapones del depósito de combustible del vehículo. Si no se ha producido la saturación cuando la temperatura del combustible alcance 308 K (35 °C), se retirará del vehículo la fuente de calor, se retirará el vehículo del recinto de emisiones de evaporación y se repetirá todo el procedimiento descrito en el punto 5.1.7 hasta que se produzca la saturación.
- 5.1.6. Carga con butano hasta el punto de saturación
- 5.1.6.1. Si se utiliza el recinto para determinar la saturación (véase el punto 5.1.4.2 del presente anexo), el vehículo se colocará, con el motor apagado, en el recinto de emisiones de evaporación.
- 5.1.6.2. Se preparará el filtro de emisiones de evaporación para la operación de carga del mismo. El filtro solo se retirará del vehículo cuando el acceso a su emplazamiento normal sea tan difícil que la operación de carga solo pueda efectuarse de manera razonable retirándolo. Al hacerlo, se tomarán precauciones para evitar daños a los componentes y a la integridad del sistema de alimentación.

- 5.1.6.3. Se cargará el filtro con una mezcla compuesta por 50 % de butano y 50 % de nitrógeno en volumen, a razón de 40 gramos de butano por hora.
- 5.1.6.4. Tan pronto como el filtro alcance la saturación, se desconectará la fuente de vapor.
- 5.1.6.5. Se conectará de nuevo el filtro de emisiones de evaporación y se pondrá de nuevo el vehículo en condiciones normales de funcionamiento.
- 5.1.7. Drenaje del combustible y llenado del depósito
- 5.1.7.1. El depósito o depósitos del vehículo se vaciarán usando el sistema o sistemas de drenaje. Esta operación se realizará sin que se purguen ni se carguen de manera anormal los dispositivos de control de emisiones de evaporación instalados en el vehículo. Para ello, será suficiente, en general, con retirar el tapón del combustible.
- 5.1.7.2. El depósito o depósitos de combustible se volverán a llenar con el combustible de ensayo a una temperatura comprendida entre 291 ± 8 K (18 ± 8 °C) y 40 + 2 % de su capacidad volumétrica normal. A continuación, se colocará el tapón o tapones de combustible del vehículo.
- 5.2. Conducción de preacondicionamiento
- 5.2.1. En el plazo de una hora a partir del momento en que se ha completado la carga del filtro con arreglo al punto 5.1.5 o 5.1.6 del presente anexo, se colocará el vehículo en el banco dinamométrico para ser sometido a un ciclo de conducción de la parte 1 y a dos ciclos de la parte 2 del ensayo de tipo I, conforme a lo dispuesto en el anexo 4 *bis* del presente Reglamento. Durante esta operación no se tomarán muestras de las emisiones de escape.
- 5.3. Estabilización
- 5.3.1. En el plazo de cinco minutos a partir del momento en que se ha completado la operación de preacondicionamiento descrita en el punto 5.2.1 del presente anexo, se cerrará completamente el capó y se retirará el vehículo del banco dinamométrico para situarlo en la zona de estabilización. Se aparcará el vehículo durante un mínimo de 12 horas y un máximo de 36. Al término de este plazo, el aceite del motor y el líquido de refrigeración habrán alcanzado la temperatura de la zona, con un margen de ± 3 K.
- 5.4. Ensayo en el dinamómetro
- 5.4.1. Una vez concluido el período de estabilización, el vehículo se someterá a un ciclo completo de conducción del ensayo de tipo I, conforme se describe en el anexo 4 bis del presente Reglamento (ensayo urbano y extraurbano después de un arranque en frío). A continuación, se apagará el motor. Durante esta operación se tomarán muestras de las emisiones de escape, si bien los resultados no se utilizarán a efectos de la homologación de tipo de las emisiones de escape.
- 5.4.2. En el plazo de dos minutos a partir del momento en que finalice la conducción del ensayo de tipo I contemplada en el punto 5.4.1 del presente anexo, el vehículo se someterá a un nuevo ciclo de acondicionamiento que consistirá en un ciclo urbano (arranque en caliente) del ensayo de tipo I. A continuación, se apagará de nuevo el motor. Durante esta operación no será necesario tomar muestras de las emisiones de escape.
- 5.5. Ensayo de emisiones de evaporación por parada en caliente
- 5.5.1. Antes de completar el ensayo, se purgará la cámara de medición durante varios minutos hasta que se obtenga un fondo de hidrocarburos estable. Simultáneamente se pondrá en funcionamiento el ventilador o ventiladores mezcladores del recinto.
- 5.5.2. El analizador de hidrocarburos se pondrá a cero y se ajustará con gas patrón inmediatamente antes del ensayo.
- 5.5.3. Al finalizar el ciclo de conducción, se cerrará por completo el capó y se cortarán todas las conexiones entre el vehículo y la consola de ensayo. A continuación, se conducirá el vehículo a la cámara de medición, haciendo el menor uso posible del pedal del acelerador. Se parará el motor antes de que cualquier parte del vehículo haya penetrado en la cámara de medición. En el sistema de recogida de datos de las emisiones de evaporación, se anotará el momento en el que se desconecta el motor y se comenzará a registrar la temperatura. En ese momento se abrirán las ventanillas y el maletero del vehículo, si todavía no se han abierto.
- 5.5.4. A continuación, se empujará o desplazará de cualquier otra forma el vehículo, con el motor parado, hasta la cámara de medición.

- 5.5.5. Las puertas del recinto se cerrarán herméticamente en un plazo máximo de dos minutos a partir del momento en que se haya apagado el motor y de siete minutos a partir de la finalización del ciclo de acondicionamiento.
- 5.5.6. Una vez que se ha cerrado la cámara herméticamente, comenzará un período de parada en caliente de 60 ± 0,5 minutos. Se medirán la concentración de hidrocarburos, la temperatura y la presión barométrica con el fin de obtener los valores iniciales C_{HCI}, P_i y T_i para el ensayo de parada en caliente. Estas cifras se utilizarán para calcular las emisiones de evaporación del punto 6. La temperatura ambiente T del recinto no será inferior a 296 K ni superior a 304 K durante el período de 60 minutos de parada en caliente.
- 5.5.7. El analizador de hidrocarburos se pondrá a cero y se ajustará con gas patrón inmediatamente antes de que finalice el período de ensayo de 60 ± 0,5 minutos.
- 5.5.8. Al finalizar el período de ensayo de 60 ± 0.5 minutos, se medirá la concentración de hidrocarburos en la cámara. Se medirán, asimismo, la temperatura y la presión barométrica. Estos serán los valores finales C_{HCP} P_f y T_f correspondientes al ensayo de parada en caliente que se utilizarán para el cálculo del punto 6.
- 5.6. Estabilización
- 5.6.1. El vehículo de ensayo, con el motor apagado, se empujará o desplazará de cualquier otra forma hasta la zona de estabilización, donde se estabilizará durante un período no inferior a 6 horas ni superior a 36 entre el final del ensayo de parada en caliente y el inicio del ensayo de emisiones diurno. Durante al menos 6 horas de este período, el vehículo se estabilizará a 293 ± 2 K (20 ± 2 °C).
- 5.7. Ensayo diurno
- 5.7.1. El vehículo de ensayo se expondrá a un ciclo de temperatura ambiente conforme al perfil establecido en el apéndice 2 del presente anexo, con una desviación máxima de ± 2 K en cualquier momento. La desviación media de temperatura con respecto al perfil, calculada a partir del valor absoluto de cada desviación medida, no excederá de ± 1 K. La temperatura ambiente se medirá cada minuto como mínimo. El ciclo de temperatura comenzará cuando el tiempo T_{inic} = 0, conforme se especifica en el punto 5.7.6 del presente anexo.
- 5.7.2. La cámara de medición se purgará durante varios minutos inmediatamente antes del ensayo, hasta que se pueda obtener un fondo estable. Simultáneamente se pondrá en funcionamiento el ventilador o ventiladores mezcladores de la cámara.
- 5.7.3. El vehículo de ensayo se introducirá en la cámara de medición con el motor parado y las ventanas y el maletero abiertos. El ventilador o ventiladores mezcladores se ajustarán de manera que mantengan una velocidad mínima de circulación del aire de 8 km/h debajo del depósito de combustible del vehículo de ensayo.
- 5.7.4. El analizador de hidrocarburos se pondrá a cero y se ajustará con gas patrón inmediatamente antes del ensayo.
- 5.7.5. Se cerrarán herméticamente las puertas del recinto.
- 5.7.6. A los diez minutos del cierre hermético de las puertas, se medirán la concentración de hidrocarburos, la temperatura y la presión barométrica para obtener los valores iniciales C_{HCi} , P_i y T_i del ensayo diurno. En este punto, el tiempo $T_{inic} = 0$.
- 5.7.7. El analizador de hidrocarburos se pondrá a cero y se ajustará con gas patrón inmediatamente antes del final del ensayo.
- 5.7.8. El final del período de muestreo de las emisiones tendrá lugar 24 horas ± 6 minutos después del comienzo del muestreo inicial contemplado en el punto 5.7.6 del presente anexo. Se registrará el tiempo transcurrido. Se medirán la concentración de hidrocarburos, la temperatura y la presión barométrica para obtener los valores finales C_{HCP}, P_f y T_f del ensayo diurno utilizados para el cálculo del punto 6 del presente anexo. Finaliza así el procedimiento de ensayo de las emisiones de evaporación.

6. CÁLCULOS

6.1. Los ensayos de emisiones de evaporación descritos en el punto 5 del presente anexo permiten calcular las emisiones de hidrocarburos a partir de las fases diurna y de parada en caliente. Las pérdidas por evaporación de cada una de estas fases se calculan utilizando las concentraciones de hidrocarburos, temperaturas y presiones iniciales y finales del recinto, así como el volumen neto de este. Para ello, se utilizará la fórmula siguiente:

$$M_{\text{HC}} = k.V.10^{-4} \bigg(\frac{C_{\text{HC,f}} \cdot P_f}{T_f} - \frac{C_{\text{HC,i}} \cdot P_i}{T_i} \bigg) + M_{\text{HC,out}} - M_{\text{HC,i}}$$

Donde:

M_{HC} = masa de hidrocarburos (gramos)

M_{HC,out} = masa de hidrocarburos que salen del recinto (gramos), en caso de que se utilice un recinto de volumen fijo para el ensayo de emisiones diurno

volumen njo para er ensayo de emisiones didine

M_{HC,i} = masa de hidrocarburos que entran en el recinto (gramos), en caso de que se utilice un recinto de

volumen fijo para el ensayo de emisiones diurno

C_{HC} = concentración de hidrocarburos medida en el recinto (volumen de ppm en equivalentes de C₁)

V = volumen neto del recinto en metros cúbicos, corregido según el volumen del vehículo, con las ventanillas y el maletero abiertos (si no se hubiera determinado el volumen del vehículo, se restará

un volumen igual a 1,42 m³)

T = temperatura ambiente de la cámara (K)

P = presión barométrica (kPa)

H/C = relación hidrógeno/carbono

 $k = 1,2 \cdot (12 + H/C)$

i = valor inicial

f = valor final

H/C = 2,33 para pérdidas del ensayo diurno

H/C = 2,20 para pérdidas de parada en caliente

6.2. Resultados globales del ensayo

La masa global de hidrocarburos emitida por el vehículo será igual a:

$$M_{total} = M_{DI} + M_{HS}$$

Donde:

M_{total} = emisiones másicas globales del vehículo (gramos)

M_{DI} = emisión másica de hidrocarburos en el ensayo diurno (gramos)

M_{HS} = emisión másica de hidrocarburos en la parada en caliente (gramos)

7. CONFORMIDAD DE LA PRODUCCIÓN

7.1. En los ensayos rutinarios realizados al final del proceso de producción, el titular de la homologación podrá demostrar la conformidad mediante el muestreo de vehículos que cumplan los requisitos que figuran a continuación.

7.2. Ensayo de estanquidad

- 7.2.1. Se aislarán los conductos de ventilación del sistema de control de emisiones.
- 7.2.2. Se aplicará una presión de 370 \pm 10 mm de H_2O al sistema de combustible.

- 7.2.3. Se dejará que la presión se estabilice antes de aislar el sistema de combustible de la fuente de presión.
- 7.2.4. Tras el aislamiento del sistema de combustible, la presión no deberá descender en más de 50 mm de H₂O en cinco minutos.
- 7.3. Ensayo de ventilación
- 7.3.1. Se aislarán los conductos de ventilación del control de emisiones.
- 7.3.2. Se aplicará una presión de 370 ± 10 mm de H₂O al sistema de combustible.
- 7.3.3. Se dejará que la presión se estabilice antes de aislar el sistema de combustible de la fuente de presión.
- 7.3.4. Las salidas de ventilación de los sistemas de control de emisiones a la atmósfera se ajustarán a las condiciones de producción.
- 7.3.5. La presión del sistema de combustible descenderá por debajo de 100 mm de H_2O en no menos de 30 segundos y no más de dos minutos.
- 7.3.6. A petición del fabricante, podrá demostrarse la capacidad funcional de ventilación mediante un procedimiento alternativo equivalente. El fabricante deberá demostrar este procedimiento específico al servicio técnico durante el procedimiento de homologación.
- 7.4. Ensayo de purga
- 7.4.1. En la entrada del conducto de purga se acoplará un equipo con capacidad para detectar un caudal de aire de un litro en un minuto y se conectará, mediante una válvula de conmutación, un recipiente de presión con tamaño suficiente como para que su efecto en el sistema de purgación sea insignificante.
- 7.4.2. Alternativamente, el fabricante podrá utilizar un caudalímetro de su propia elección, siempre que lo autorice la autoridad de homologación de tipo.
- 7.4.3. El vehículo se manejará de tal manera que permita detectar cualquier característica de diseño del sistema de purga que pueda restringir la operación de purgación y anotar los detalles.
- 7.4.4. Mientras el motor funciona dentro de los límites señalados en el punto 7.4.3 del presente anexo, el flujo de aire se determinará mediante:
- 7.4.4.1. el dispositivo encendido indicado en el punto 7.4.1 del presente anexo (se observará la disminución de la presión atmosférica hasta un nivel que indique que un volumen de un litro de aire ha desembocado en el sistema de control de las emisiones de evaporación en un minuto), o
- 7.4.4.2. si se utiliza un dispositivo alternativo de medición del flujo, deberá poder detectarse un valor mínimo de un litro por minuto.
- 7.4.4.3. A petición del fabricante, podrá utilizarse un procedimiento alternativo de purgación, siempre y cuando se haya presentado al servicio técnico y este lo haya aprobado durante el procedimiento de homologación.
- 7.5. La autoridad de homologación de tipo que haya concedido la homologación de tipo podrá verificar en cualquier momento los métodos de control de la conformidad aplicables en cada unidad de producción.
- 7.5.1. El inspector tomará una muestra suficientemente amplia de la serie.
- 7.5.2. El inspector podrá someter a ensayo estos vehículos mediante la aplicación del apartado 7.1 del presente anexo.
- 7.6. Si no se cumplen los requisitos del punto 7.5 del presente anexo, la autoridad de homologación de tipo se asegurará de que se adopten todas las medidas necesarias para restablecer la conformidad de la producción lo más rápidamente posible.

Apéndice 1

Calibración de los equipos de ensayo de las emisiones de evaporación

- 1. FRECUENCIA Y MÉTODOS DE CALIBRACIÓN
- 1.1. Se calibrarán todos los equipos antes de su uso inicial y, posteriormente, con la frecuencia necesaria; en cualquier caso, un mes antes de los ensayos de homologación. Los métodos de calibración que se han de utilizar se describen en el presente apéndice.
- 1.2. Normalmente, se utilizarán las gamas de temperatura mencionadas en primer lugar. En su defecto, podrán utilizarse las temperaturas indicadas entre corchetes.
- 2. CALIBRACIÓN DEL RECINTO
- 2.1. Determinación inicial del volumen interno del recinto
- 2.1.1. Antes de su uso inicial, se determinará el volumen interno de la cámara, tal como se detalla a continuación.

Se tomarán cuidadosamente las medidas internas de la cámara, teniendo en cuenta las eventuales irregularidades tales como las piezas de refuerzo. A partir de estas medidas, se determinará el volumen interno de la cámara.

En el caso de recintos de volumen variable, estos se cerrarán a un volumen fijo, manteniéndose a una temperatura ambiente de 303 K (30 °C) [302 K (29 °C)]. Este volumen nominal será repetible en ± 0,5 % del valor indicado.

- 2.1.2. El volumen interno neto se determinará restando 1,42 m³ del volumen interno de la cámara. Alternativamente, podrá utilizarse el volumen del vehículo de ensayo con las ventanillas y el maletero abiertos.
- 2.1.3. Se verificará la cámara con arreglo al punto 2.3 del presente apéndice. Cuando la masa de propano difiera en ± 2 % de la masa inyectada, se adoptarán medidas correctivas.
- 2.2. Determinación de las emisiones de fondo de la cámara

Esta operación determinará si la cámara contiene algún material que emita cantidades significativas de hidrocarburos. El control se llevará a cabo en el momento de la puesta en servicio del recinto, tras cualquier operación en este que pudiera afectar a las emisiones de fondo y con una frecuencia mínima de una vez al año.

- 2.2.1. Los recintos de volumen variable podrán funcionar en configuración de volumen cerrado o no cerrado, con arreglo a lo descrito en el punto 2.1.1 del presente apéndice. Las temperaturas ambiente se mantendrán a 308 ± 2 K (35 ± 2 °C) [309 ± 2 K (36 ± 2 °C)] a lo largo de todo el período de 4 horas mencionado más abajo.
- 2.2.2. Los recintos de volumen fijo funcionarán con las entradas y las salidas del flujo de aire cerradas. Las temperaturas ambiente se mantendrán a 308 ± 2 K (35 ± 2 °C) [309 ± 2 K (36 ± 2 °C)] a lo largo de todo el período de 4 horas mencionado más abajo.
- 2.2.3. El recinto podrá cerrarse herméticamente y el ventilador mezclador podrá funcionar durante un período de hasta 12 horas antes de que comience el período de 4 horas de muestreo de fondo.
- 2.2.4. El analizador se calibrará (en su caso), se pondrá a cero y se ajustará con gas patrón.
- 2.2.5. Se purgará el recinto hasta obtener un valor estable de hidrocarburos y se pondrá en marcha el ventilador mezclador si todavía no se ha hecho.
- 2.2.6. A continuación, se cerrará la cámara herméticamente y se medirán la concentración de hidrocarburos de fondo, la temperatura y la presión barométrica. Estos serán los valores iniciales C_{HCi}, P_i, T_i utilizados para el cálculo de fondo del recinto.

- 2.2.7. Durante un período de 4 horas el recinto podrá permanecer cerrado y con el ventilador mezclador en marcha.
- 2.2.8. Al final de este período se utilizará el mismo analizador para medir la concentración de hidrocarburos en la cámara. Se medirán, asimismo, la temperatura y la presión barométrica. Estos serán los valores finales C_{HCP} P_f y T_f.
- 2.2.9. Se calculará el cambio en la masa de hidrocarburos del recinto durante el tiempo del ensayo con arreglo al punto 2.4 del presente apéndice, y no excederá de 0,05 gramos.
- 2.3. Ensayo de calibración y retención de hidrocarburos en la cámara

El ensayo de calibración y retención de hidrocarburos en la cámara permite verificar el volumen calculado de acuerdo con el punto 2.1 del presente apéndice y, asimismo, medir cualquier posible fuga. El porcentaje de pérdida del recinto se determinará en el momento de la puesta en servicio de este, tras cualquier operación realizada en él que pudiera afectar a su integridad y, posteriormente, con una frecuencia mínima de una vez al mes. Si se completan con éxito seis controles de retención mensuales consecutivos, el porcentaje de pérdida del recinto podrá determinarse posteriormente con una frecuencia trimestral, siempre y cuando no sean necesarias medidas correctivas.

- 2.3.1. Se purgará el recinto hasta alcanzar una concentración estable de hidrocarburos. Se pondrá en marcha el ventilador mezclador (si todavía no se ha puesto); el analizador de hidrocarburos se pondrá a cero, se calibrará (en su caso) y se ajustará con gas patrón.
- 2.3.2. En los recintos de volumen variable, el recinto se cerrará en la posición de volumen nominal. En los recintos de volumen fijo, se cerrarán las entradas y salidas de flujo de aire.
- 2.3.3. A continuación, se pondrá en funcionamiento el sistema de control de la temperatura ambiente (si todavía no se ha hecho) y se regulará a una temperatura inicial de 308 K (35 °C) [309 K (36 °C)].
- 2.3.4. Cuando el recinto se estabilice a 308 ± 2 K (35 ± 2 °C) [309 ± 2 K (36 ± 2 °C)], se cerrará herméticamente y se medirán la concentración de fondo, la temperatura y la presión barométrica. Estos serán los valores iniciales C_{HC}, P_i y T_i utilizados para la calibración del recinto.
- 2.3.5. Se inyectará en el recinto una cantidad de aproximadamente 4 gramos de propano. La masa de propano se medirá con una exactitud y una precisión de ± 2 % del valor considerado.
- 2.3.6. Podrá mezclarse el contenido de la cámara durante cinco minutos y, a continuación, se medirán la concentración de hidrocarburos, la temperatura y la presión barométrica. Estos serán los valores C_{HCP}, P_p, T_f para la calibración del recinto, así como los valores iniciales C_{HCP}, P_p, T_i para el control de la retención.
- 2.3.7. A partir de los valores considerados con arreglo a los puntos 2.3.4 y 2.3.6 y a la fórmula del punto 2.4 del presente apéndice, se calculará la masa de propano en el recinto, que se situará en ± 2 % de la masa de propano medida en el punto 2.3.5 del presente apéndice.
- 2.3.8. Los recintos de volumen variable se abrirán a partir de la configuración de volumen nominal. En el caso de los recintos de volumen fijo, se abrirán las entradas y salidas de flujo de aire.
- 2.3.9. Se iniciará entonces el proceso con el ciclo de temperatura ambiente a partir de 308 K (35 °C) hasta 293 K (20 °C) y de nuevo a 308 K (35 °C) [de 308,6 K (35,6 °C) hasta 295,2 K (22,2 °C) y de nuevo a 308,6 K (35,6 °C)] durante un período de 24 horas de acuerdo con el perfil [perfil alternativo] especificado en el apéndice 2 del presente anexo, en un plazo de 15 minutos a partir del cierre del recinto (las tolerancias se especifican en el punto 5.7.1 del presente anexo).
- 2.3.10. Al final del ciclo de 24 horas, se procederá a medir y registrar la concentración final de hidrocarburos, la temperatura y la presión barométrica. Estos serán los valores finales C_{HCP} P_f y T_f para el control de la retención de hidrocarburos.
- 2.3.11. Utilizando la fórmula que figura en el punto 2.4 del presente apéndice, se calculará entonces la masa de hidrocarburos a partir de los valores considerados en los puntos 2.3.6 y 2.3.10 del presente apéndice. Dicha masa no podrá diferir en más de un 3 % de la masa de hidrocarburos obtenida en el punto 2.3.7 del presente apéndice.

2.4. Cálculos

El cálculo de la variación de la masa neta de hidrocarburos en el interior del recinto se utiliza para determinar el fondo de hidrocarburos de la cámara, así como el porcentaje de fuga. En la siguiente fórmula para el cálculo de la variación de la masa se utilizan los valores iniciales y finales de la concentración de hidrocarburos, la temperatura y la presión barométrica.

$$M_{HC} = K.V.10^{-4} \left(\frac{C_{HC,f} \cdot P_f}{T_f} - \frac{C_{HC,i} \cdot P_i}{T_i} \right) + M_{HC,out} - M_{HC,i}$$

Donde:

 M_{HC} = masa de hidrocarburos (gramos)

M_{HC,out} = masa de hidrocarburos que salen del recinto (gramos), en caso de que se utilice un recinto de volumen fijo para el ensayo de emisiones diurno

M_{HC,i} = masa de hidrocarburos que entran en el recinto (gramos), en caso de que se utilice un recinto de volumen fijo para el ensayo de emisiones diurno

C_{HC} = concentración de hidrocarburos en el recinto (ppm carbono)

(Nota: ppm de carbono = ppm de propano × 3)

V = volumen del recinto (metros cúbicos)

T = temperatura ambiente en el recinto (K)

P = presión barométrica (kPa)

K = 17.6

i = valor inicial

f = valor final

3. VERIFICACIÓN DEL ANALIZADOR DE HIDROCARBUROS DE IONIZACIÓN DE LLAMA

3.1. Optimización de la respuesta del detector

El detector de ionización de llama se regulará de acuerdo con las instrucciones del fabricante. Para optimizar la respuesta en el rango de funcionamiento más común, se utilizará propano disuelto en aire.

3.2. Calibración del analizador de hidrocarburos

El analizador deberá calibrarse utilizando propano diluido en aire y aire sintético purificado. Véase el punto 3.2 del apéndice 3 del anexo 4 *bis* del presente Reglamento.

Se establecerá una curva de calibración con arreglo a la descripción de los puntos 4.1 a 4.5 del presente apéndice.

3.3. Control de la interferencia del oxígeno y límites recomendados

El factor de respuesta (Rf) para un tipo concreto de hidrocarburo será la relación entre el resultado de C1 del detector de ionización de llama y la concentración del cilindro de gas, expresada en ppm de C1. La concentración del gas de ensayo se situará a un nivel que permita dar una respuesta de aproximadamente el 80 % de desviación del fondo de escala para el rango de funcionamiento. La concentración se conocerá con una precisión de ± 2 % en referencia a una norma gravimétrica expresada en volumen. Además, se preacondicionará el cilindro de gas durante 24 horas a una temperatura comprendida entre 293 y 303 K (20 y 30 °C).

Los factores de respuesta se determinarán cuando se ponga en servicio un analizador y, posteriormente, en los principales intervalos de mantenimiento. El gas de referencia que deberá utilizarse es propano diluido con aire purificado, cuyo factor de respuesta se considerará igual a 1.

Los gases de ensayo que deberá utilizarse para la interferencia de oxígeno y el rango de factores de

respuesta recomendados propano y nitrógeno: $0.95 \le Rf \le 1.05$. serán

4. CALIBRACIÓN DEL ANALIZADOR DE HIDROCARBUROS

Cada uno de los rangos de funcionamiento normalmente utilizados se calibrará mediante el procedimiento que figura a continuación.

- 4.1. Se establecerá la curva de calibración mediante cinco puntos de calibración como mínimo, espaciados en el rango de funcionamiento de la forma más uniforme posible. La concentración nominal del gas de calibración que presente las concentraciones más elevadas será por lo menos el 80 % del fondo de escala.
- 4.2. Se calculará la curva de calibración mediante el método de los mínimos cuadrados. Si el grado del polinomio resultante es superior a 3, el número de puntos de calibración deberá ser al menos igual al grado del polinomio más 2.
- 4.3. La curva de calibración no diferirá en más del 2 % del valor nominal de cada uno de los gases de calibración.
- 4.4. Utilizando los coeficientes del polinomio derivados del punto 3.2 del presente apéndice, se elaborará un cuadro en el que se relacionen los valores registrados y la concentración real con intervalos que no superen el 1 % del fondo de escala. Esta operación se llevará a cabo para cada rango del analizador calibrado. El cuadro contendrá también otros datos pertinentes, tales como:
 - a) fecha de calibración, valores de gas cero y gas patrón del potenciómetro (en su caso);
 - b) escala nominal;
 - c) datos de referencia de cada gas de calibración utilizado;
 - d) valor real e indicado de cada gas de calibración utilizado y diferencias porcentuales;
 - e) combustible y tipo del detector de ionización de llama;
 - f) presión del aire del detector de ionización de llama.
- 4.5. Cuando se pueda demostrar a satisfacción del servicio técnico que otras técnicas (por ejemplo, el ordenador, el conmutador electrónico de rangos, etc.) ofrecen resultados de precisión equivalente, podrán aplicarse dichas técnicas.

Apéndice 2

Perfil de temperatura ambiente diurna para la calibración del recinto y el ensayo de emisiones diurno			Perfil alternativo de temperatura ambiente diurna para la calibración del recinto con arreglo al anexo 7, apéndice 1, puntos 1.2 y 2.3.9	
Tiempo	(horas)	Temperatura	T: 4	Temperatura
Calibración	Ensayo	(°C _i)	Tiempo (horas)	(°C _i)
13	0/24	20,0	0	35,6
14	1	20,2	1	35,3
15	2	20,5	2	34,5
16	3	21,2	3	33,2
17	4	23,1	4	31,4
18	5	25,1	5	29,7
19	6	27,2	6	28,2
20	7	29,8	7	27,2
21	8	31,8	8	26,1
22	9	33,3	9	25,1
23	10	34,4	10	24,3
24/0	11	35,0	11	23,7
1	12	34,7	12	23,3
2	13	33,8	13	22,9
3	14	32,0	14	22,6
4	15	30,0	15	22,2
5	16	28,4	16	22,5
6	17	26,9	17	24,2
7	18	25,2	18	26,8
8	19	24,0	19	29,6
9	20	23,0	20	31,9
10	21	22,0	21	33,9
11	22	20,8	22	35,1
12	23	20,2	23	3,4
			24	35,6

ANEXO 8

ENSAYO DE TIPO VI

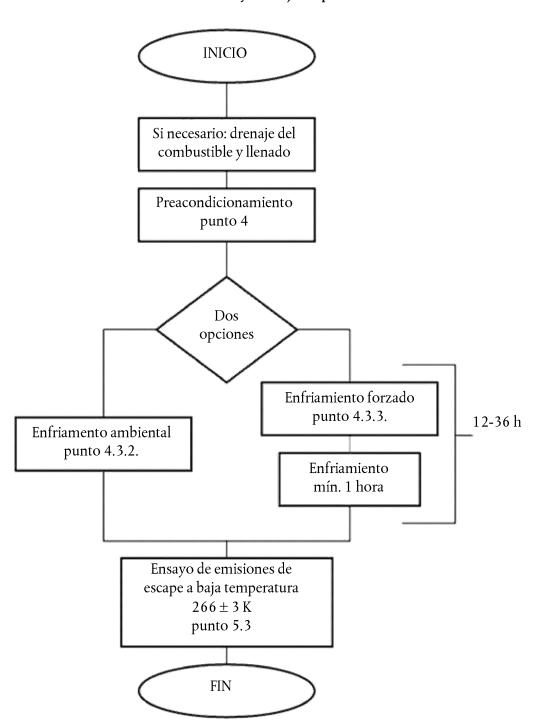
(Verificación del promedio de emisiones de escape de monóxido de carbono e hidrocarburos a baja temperatura ambiente después de un arranque en frío)

1. INTRODUCCIÓN

El presente anexo solo se aplicará a los vehículos con motor de encendido por chispa. En él se describe el equipo necesario y el procedimiento que se ha de seguir para llevar a cabo el ensayo de tipo VI definido en el punto 5.3.5 del presente Reglamento, al objeto de verificar las emisiones de monóxido de carbono e hidrocarburos a baja temperatura ambiente. Los temas que se abordan en el presente Reglamento son:

- a) el equipo necesario;
- b) las condiciones de ensayo;
- c) los procedimientos de ensayo y los datos requeridos.
- 2. EQUIPO DE ENSAYO
- 2.1. Resumen
- 2.1.1. En el presente capítulo se aborda la cuestión del equipo necesario para los ensayos de emisiones de escape a baja temperatura ambiente realizados en los vehículos con motor de encendido por chispa. El equipo necesario y las especificaciones equivaldrán a los requisitos del ensayo de tipo I, con arreglo al anexo 4 bis del presente Reglamento, y sus apéndices, cuando no se establezcan requisitos específicos para el ensayo de tipo VI. En los puntos 2.2 a 2.6 del presente anexo se describen las desviaciones aplicables al ensayo de tipo VI (ensayo a baja temperatura ambiente).
- 2.2. Banco dinamométrico
- 2.2.1. Se aplican los requisitos del apéndice 1 del anexo 4 bis del presente Reglamento. Se regulará el dinamómetro de manera que se simule el funcionamiento de un vehículo en carretera a 266 K (– 7 °C). El ajuste podrá basarse en la determinación del perfil de fuerza de resistencia al avance a 266 K (– 7 °C). Alternativamente, la resistencia al avance determinada de conformidad con el apéndice 7 del anexo 4 bis del presente Reglamento podrá ajustarse a un descenso del 10 % del tiempo de desaceleración en punto muerto. El servicio técnico podrá autorizar el uso de otros métodos para determinar la resistencia al avance.
- 2.2.2. En relación con la calibración del dinamómetro, será de aplicación lo dispuesto en el apéndice 1 del anexo 4 bis del presente Reglamento.
- 2.3. Sistema de muestreo
- 2.3.1. Se aplica lo dispuesto en los apéndices 2 y 3 del anexo 4 bis del presente Reglamento.
- 2.4. Equipo analítico
- 2.4.1. Se aplicará lo dispuesto en el apéndice 3 del anexo 4 bis del presente Reglamento, pero solo en relación con los ensayos de monóxido de carbono, dióxido de carbono e hidrocarburos totales.
- 2.4.2. En relación con las calibraciones del equipo analítico, se aplicará lo dispuesto en el anexo 4 bis del presente Reglamento.
- 2.5. Gases
- 2.5.1. Se aplicará, cuando proceda, lo dispuesto en el punto 3 del apéndice 3 del anexo 4 bis del presente Reglamento.
- 2.6. Equipo adicional
- 2.6.1. En relación con el equipo utilizado para medir el volumen, la temperatura, la presión y la humedad, se aplicará lo dispuesto en el punto 4.6 del anexo 4 bis del presente Reglamento.

- 3. SECUENCIA DE ENSAYO Y COMBUSTIBLE
- 3.1. Requisitos generales
- 3.1.1. La secuencia de ensayo recogida en la figura A8/1 muestra las etapas por las que atraviesa un vehículo cuando se somete al procedimiento de ensayo de tipo VI. El promedio de temperatura ambiente a la que se somete el vehículo de ensayo será de 266 K (– 7 °C) ± 3 K y no será inferior a 260 K (– 13 °C) ni superior a 272 K (– 1 °C).


Durante más de tres minutos consecutivos, la temperatura no podrá ser inferior a 263 K (- 10 °C) ni superior a 269 K (- 4 °C).

- 3.1.2. La temperatura de la celda registrada durante el ensayo se medirá a la salida del ventilador de refrigeración (punto 5.2.1 del presente anexo). La temperatura ambiente indicada será la media aritmética de las temperaturas de la celda medidas a intervalos constantes no superiores a un minuto.
- 3.2. Procedimiento de ensayo

El ciclo de conducción urbano (parte 1), con arreglo a la figura A4a/1 del anexo 4 bis del presente Reglamento, constará de cuatro ciclos urbanos elementales, que, en conjunto, formarán un ciclo completo de la parte 1.

- 3.2.1. El arranque del motor, el inicio del muestreo y la ejecución del primer ciclo se llevarán a cabo de conformidad con el cuadro 1 y la figura A4a/1 del anexo 4 bis del presente Reglamento.
- 3.3. Preparación para el ensayo
- 3.3.1. En relación con el vehículo de ensayo, será de aplicación lo dispuesto en el punto 3.2 del anexo 4 bis del presente Reglamento. En cuanto al reglaje de la masa de inercia equivalente en el dinamómetro, se aplicará lo dispuesto en el punto 6.2.1 del anexo 4 bis del presente Reglamento.

Figura A8/1
Procedimiento del ensayo de baja temperatura ambiente

- 3.4. Combustible de ensayo
- 3.4.1. El combustible de ensayo deberá cumplir las especificaciones que figuran en el punto 2 del anexo 10 del presente Reglamento.
- 4. PREACONDICIONAMIENTO DEL VEHÍCULO
- 4.1. Resumen
- 4.1.1. Para garantizar el carácter reproducible de los ensayos de emisiones, los vehículos de ensayo se acondicionarán de manera uniforme. El acondicionamiento consistirá en un ciclo de conducción preparatorio en el banco dinamométrico, seguido de un período de estabilización, antes del ensayo de emisiones, con arreglo al punto 4.3 del presente anexo.
- 4.2. Preacondicionamiento
- 4.2.1. El depósito o depósitos de combustible se llenarán con el combustible de ensayo especificado. Cuando el combustible contenido en el depósito o depósitos no responda a las especificaciones del punto 3.4.1 del presente anexo, se drenará antes de llenar el depósito. El combustible de ensayo estará a una temperatura inferior o igual a 289 K (+ 16 °C). De cara a las operaciones expuestas, el sistema de control de las emisiones de evaporación no se purgará ni cargará de manera anormal.
- 4.2.2. El vehículo se trasladará a la celda de ensayo y se colocará en el banco dinamométrico.
- 4.2.3. El preacondicionamiento consistirá en un ciclo de conducción completo, partes 1 y 2, con arreglo a los cuadros A4a/1 y A4a/2 y a la figura A4a/1 del anexo 4 bis del presente Reglamento. A petición del fabricante, los vehículos con motor de encendido por chispa podrán preacondicionarse con un ciclo de conducción de la parte 1 y dos ciclos de la parte 2.
- 4.2.4. Durante el preacondicionamiento, la temperatura de la celda de ensayo se mantendrá relativamente constante y no superará los 303 K (30 °C).
- 4.2.5. La presión de los neumáticos de las ruedas motrices se regulará con arreglo a las condiciones del punto 6.2.3 del anexo 4 bis del presente Reglamento.
- 4.2.6. A los diez minutos de la finalización del preacondicionamiento, se apagará el motor.
- 4.2.7. Si el fabricante así lo solicita y el servicio técnico lo autoriza, podrá permitirse un preacondicionamiento adicional en casos excepcionales. El servicio técnico también podrá optar por llevar a cabo un preacondicionamiento adicional. El preacondicionamiento adicional consistirá en uno o varios programas de conducción correspondientes a la parte 1, tal y como se describen en el cuadro A4a/1 y en la figura A4a/1 del anexo 4 bis del presente Reglamento. La extensión del preacondicionamiento adicional constará en el informe de ensayo.
- 4.3. Métodos de estabilización
- 4.3.1. El fabricante seleccionará uno de los métodos que figuran a continuación para estabilizar el vehículo antes del ensayo de emisiones.
- 4.3.2. Método estándar

El vehículo estará almacenado durante un mínimo de 12 horas y un máximo de 36 antes del ensayo de emisiones de escape a baja temperatura ambiente. La temperatura ambiente (termómetro seco) durante este período se mantendrá en una media de

266 K (-7 °C) \pm 3 K durante cada hora del período y no será inferior a 260 K (-13 °C) ni superior a 272 K (-1 °C). Además, durante más de tres minutos consecutivos, no será inferior a 263 K (-10 °C) ni superior a 269 K (-4 °C).

4.3.3. Método forzado

El vehículo estará almacenado durante un máximo de 36 horas antes del ensayo de emisiones de escape a baja temperatura ambiente.

- 4.3.3.1. Durante este tiempo, el vehículo no soportará temperaturas ambiente superiores a 303 K (30 °C).
- 4.3.3.2. El enfriamiento del vehículo podrá lograrse mediante enfriamiento forzado a la temperatura de ensayo. Si se aumenta el enfriamiento mediante ventiladores, estos se colocarán en posición vertical de manera que se consiga el enfriamiento máximo de la tracción y el motor, y no fundamentalmente el del cárter. Los ventiladores no se colocarán debajo del vehículo.
- 4.3.3.3. Solo será necesario controlar estrictamente la temperatura ambiente una vez que el vehículo se haya enfriado hasta 266 K (– 7 °C) ± 2 K, lo que se determina mediante una temperatura representativa del aceite del motor.

Una temperatura representativa del aceite del motor es la temperatura del aceite medida cerca del centro del cárter de aceite, y no en su superficie ni en el fondo del cárter. En caso de que se mida la temperatura en dos o más posiciones distintas dentro del aceite, en todas ellas deberán cumplirse los requisitos de temperatura.

4.3.3.4. Una vez enfriado hasta 266 K (– 7 °C) ± 2 K, el vehículo estará almacenado al menos una hora antes del ensayo de emisiones de escape a baja temperatura ambiente. La temperatura ambiente (termómetro seco) durante este período se mantendrá en una media de 266 K (– 7 °C) ± 3 K, y no será inferior a 260 K (– 13 °C) ni superior a 272 K (– 1 °C).

Además, durante más de tres minutos consecutivos, la temperatura no podrá ser inferior a 263 K (- 10 °C) ni superior a 269 K (- 4 °C).

4.3.4. Si el vehículo se estabiliza a 266 K (– 7 °C) en una zona separada y se traslada a la celda de ensayo a través de una zona cálida, deberá reestabilizarse en dicha celda durante un período correspondiente al menos a seis veces el período en el que ha estado expuesto a temperaturas más cálidas. La temperatura ambiente (termómetro seco) durante este período se mantendrá en una media de 266 K (– 7 °C) ± 3 K, y no será inferior a 260 K (– 13 °C) ni superior a 272 K (– 1 °C).

Además, durante más de tres minutos consecutivos, la temperatura no podrá ser inferior a 263 K (- 10 °C) ni superior a 269 K (- 4 °C).

- 5. PROCEDIMIENTO DEL DINAMÓMETRO
- 5.1. Resumen
- 5.1.1. El muestreo de emisiones se realizará mediante un procedimiento de ensayo que consistirá en el ciclo de la parte 1 (anexo 4 bis del presente Reglamento, cuadro A4a/1 y figura A4a/1). El arranque del motor, el muestreo inmediato, la ejecución del ciclo de la parte 1 y el apagado del motor forman un ensayo completo a baja temperatura ambiente, con un tiempo de ensayo total de 780 segundos. Las emisiones de escape se diluirán en el aire ambiente y se tomará una muestra permanentemente proporcional para análisis. Se analizará el contenido de hidrocarburos, monóxido de carbono y dióxido de carbono de los gases de escape recogidos en la bolsa. Se analizará de manera similar el contenido de monóxido de carbono, hidrocarburos totales y dióxido de carbono de una muestra paralela del aire de dilución.
- 5.2. Funcionamiento del dinamómetro
- 5.2.1. Ventilador de refrigeración
- 5.2.1.1. Se colocará un ventilador de refrigeración de manera que el aire se dirija adecuadamente al radiador (refrigeración del agua) o a la entrada de aire (refrigeración del aire) y al vehículo.
- 5.2.1.2. En el caso de los vehículos con el motor en la parte delantera, el ventilador se colocará delante del vehículo, a menos de 300 mm de este. En el caso de los vehículos con el motor en la parte trasera, o si la disposición anteriormente descrita no fuese práctica, el ventilador se colocará de manera que el vehículo reciba una cantidad de aire suficiente para enfriarlo.

- 5.2.1.3. La velocidad del ventilador será tal que, en un rango de funcionamiento de 10 a 50 km/h como mínimo, la velocidad lineal del aire a la salida del soplante se sitúe en ± 5 km/h con respecto a la velocidad correspondiente de los rodillos. La selección final del soplante tendrá las siguientes características:
 - a) superficie: al menos 0,2 m²;
 - b) altura del borde inferior respecto del suelo: aproximadamente 20 cm.

A modo de alternativa, la velocidad del aire lineal del soplante será como mínimo de 6 m/s (21,6 km/h). A petición del fabricante, podrá modificarse la altura del ventilador de refrigeración en el caso de los vehículos especiales (furgonetas, todoterrenos, etc.).

- 5.2.1.4. Se utilizará la velocidad del vehículo medida a partir del rodillo o rodillos del dinamómetro (punto 1.2.6 del apéndice 1 del anexo 4 bis del presente Reglamento).
- 5.2.2. Reservado
- 5.2.3. Si es necesario, podrán ejecutarse ciclos de ensayo preliminares para determinar la mejor manera de accionar los mandos del freno y el acelerador a fin de lograr un ciclo que se aproxime al ciclo teórico dentro de los límites establecidos, o para poder ajustar el sistema de muestreo. Este tipo de conducción se llevará a cabo antes del «ARRANQUE», con arreglo a la figura A8/1.
- 5.2.4. La humedad del aire se mantendrá lo suficientemente baja como para evitar la condensación en el rodillo o rodillos del dinamómetro.
- 5.2.5. Se calentará a fondo el dinamómetro, como recomiende el fabricante y utilizando procedimientos o métodos de control que garanticen la estabilidad de la potencia friccional residual.
- 5.2.6. El tiempo que transcurra entre el calentamiento del dinamómetro y el inicio del ensayo de emisiones no será superior a 10 minutos cuando los soportes del dinamómetro no se calienten independientemente. Si los soportes del dinamómetro se calientan independientemente, el ensayo de emisiones dará comienzo como máximo 20 minutos después del calentamiento del dinamómetro.
- 5.2.7. Cuando la potencia del dinamómetro deba ajustarse manualmente, se regulará en la hora que preceda a la fase del ensayo de emisiones de escape. El vehículo de ensayo no podrá utilizarse para llevar a cabo el reglaje. Los dinamómetros que utilicen un control automático para fijar potencias preseleccionadas podrán regularse en cualquier momento antes del comienzo del ensayo de emisiones.
- 5.2.8. Antes de que comience el programa de conducción del ensayo de emisiones, la temperatura de la celda será de 266 K (– 7 °C) ± 2 K, según las mediciones efectuadas en la corriente de aire del ventilador de refrigeración a una distancia máxima de 1,5 m del vehículo.
- 5.2.9. Durante el funcionamiento del vehículo estarán apagados la calefacción y el desempañador.
- 5.2.10. Se registrará la distancia total recorrida o las revoluciones de los rodillos que se hayan medido.
- 5.2.11. Los vehículos con tracción en las cuatro ruedas se someterán a ensayo en modo de funcionamiento de tracción en dos ruedas. La resistencia al avance en el reglaje del dinamómetro se determinará mientras el vehículo se encuentre en el modo de funcionamiento para el que básicamente esté diseñado.
- 5.3. Realización del ensayo
- 5.3.1. En relación con el arranque del motor, la realización del ensayo y la toma de muestras de las emisiones, será de aplicación lo dispuesto en el punto 6.4 del anexo 4 bis del presente Reglamento, salvo lo dispuesto en el punto 6.4.1.2. El muestreo comenzará antes o al inicio del procedimiento de arranque del motor y terminará al concluir el período final de ralentí del último ciclo elemental de la parte 1 (ciclo de conducción urbano), transcurridos 780 segundos.
 - El primer ciclo de conducción comenzará con 11 segundos de ralentí nada más poner en marcha el motor.
- 5.3.2. En relación con el análisis de las emisiones de muestreo, será de aplicación lo dispuesto en el punto 6.5 del anexo 4 bis del presente Reglamento, salvo lo dispuesto en el punto 6.5.2. A la hora de analizar las muestras de escape, el servicio técnico velará por impedir la condensación de vapor de agua en las bolsas de muestreo de gases de escape.

- 5.3.3. En relación con el cálculo de las emisiones másicas, será de aplicación lo dispuesto en el apartado 6.6 del anexo 4 bis del presente Reglamento.
- 6. OTROS REQUISITOS
- 6.1. Estrategia irracional de control de las emisiones
- 6.1.1. Toda estrategia irracional para el control de las emisiones que dé lugar a la disminución de la eficacia de los sistemas de control de las emisiones en condiciones normales de funcionamiento a baja temperatura podrá considerarse un dispositivo de manipulación, en la medida en que no esté prevista en los ensayos normalizados de emisiones.

ANEXO 9

ENSAYO DE TIPO V

(Descripción del ensayo de resistencia para verificar la durabilidad de los dispositivos anticontaminantes)

1. INTRODUCCIÓN

- 1.1. En el presente anexo se describe el ensayo destinado a verificar la durabilidad de los dispositivos anticontaminantes instalados en los vehículos con motor de encendido por chispa o por compresión. Los requisitos de durabilidad se demostrarán utilizando una de las tres opciones especificadas en los puntos 1.2, 1.3 y 1.4 siguientes.
- 1.2. El ensayo de durabilidad del vehículo completo consiste en una prueba de envejecimiento de 160 000 km, efectuada en pista de ensayo, carretera o banco dinamométrico.
- 1.3. El fabricante podrá optar por llevar a cabo un ensayo de durabilidad de envejecimiento en banco. Los requisitos técnicos de dicho ensayo se establecen en el punto 2.2 del presente anexo.
- 1.4. Como alternativa a los ensayos de durabilidad, el fabricante podrá optar por aplicar los factores de deterioro asignados del cuadro 3 del punto 5.3.6.2 del presente Reglamento.
- 1.5. A petición del fabricante, el servicio técnico podrá realizar el ensayo de tipo I antes de haber completado el ensayo de durabilidad del vehículo completo o de envejecimiento en banco, mediante la utilización de los factores de deterioro asignados que figuran en el cuadro 3 del punto 5.3.6.2 del presente Reglamento. Al finalizar el ensayo de durabilidad del vehículo completo o de envejecimiento en banco, el servicio técnico podrá modificar los resultados de la homologación de tipo Indicados en el anexo 2 del presente Reglamento mediante la sustitución de los factores de deterioro asignados que figuran en el cuadro anterior por los medidos en el ensayo de durabilidad del vehículo completo o de envejecimiento en banco.
- 1.6. Los factores de deterioro se determinarán siguiendo los procedimientos de los puntos 1.2 y 1.3 del presente anexo, o bien utilizando los valores asignados que figuran en el cuadro del punto 1.4 del mismo. Los factores de deterioro se utilizarán para establecer el cumplimiento de los requisitos de los límites de emisiones adecuados que figuran en el cuadro 1 del punto 5.3.1.4 del presente Reglamento durante la vida útil del vehículo.
- 2. REQUISITOS TÉCNICOS
- 2.1. Como alternativa al ciclo de funcionamiento descrito en el punto 6.1 para el ensayo de durabilidad del vehículo completo, el fabricante del vehículo podrá utilizar el ciclo estándar en carretera descrito en el apéndice 3 del presente anexo. Este ciclo de ensayo se llevará a cabo hasta que el vehículo haya recorrido 160 000 km como mínimo.
- 2.2. Ensayo de durabilidad de envejecimiento en banco
- 2.2.1. Además de los requisitos técnicos para el ensayo de envejecimiento en banco contemplado en el punto 1.3 del presente anexo, se aplicarán los requisitos técnicos especificados en el presente punto 2.
 - El combustible que debe utilizarse durante el ensayo será el especificado en el punto 4.
- 2.3. El ensayo de durabilidad de envejecimiento en banco que se empleará será el adecuado para el tipo de motor, conforme se detalla en los puntos 2.3.1 y 2.3.2 del presente anexo.
- 2.3.1. Vehículos con motor de encendido por chispa
- 2.3.1.1. El procedimiento de envejecimiento en banco que se expone a continuación será aplicable a los vehículos de encendido por chispa, incluidos los vehículos híbridos que utilicen un catalizador como principal dispositivo de control de las emisiones de postratamiento.
 - El procedimiento de envejecimiento en banco requiere la instalación de un sistema de catalizador con sensor de oxígeno en el banco de envejecimiento del catalizador.
 - El envejecimiento en el banco se llevará a cabo siguiendo el ciclo estándar del banco durante el período calculado a partir de la ecuación del tiempo de envejecimiento en banco. La ecuación del tiempo de envejecimiento en banco requiere, como valor, las temperaturas registradas por el catalizador con los tiempos correspondientes, medidas en el ciclo estándar en carretera, que se describe en el apéndice 3 del presente anexo.

- 2.3.1.2. Ciclo estándar del banco (CEB). El envejecimiento estándar del catalizador en el banco se llevará a cabo tras el CEB. El ciclo estándar del banco se realizará durante el período calculado a partir de la ecuación del tiempo de envejecimiento en banco. El ciclo estándar del banco se describe en el apéndice 1 del presente anexo.
- 2.3.1.3. Temperaturas registradas por el catalizador con sus tiempos correspondientes. La temperatura del catalizador se medirá durante al menos dos ciclos completos del ciclo estándar del banco, tal como se describe en el apéndice 3 del presente anexo.

La temperatura del catalizador se medirá en el punto cuya temperatura sea más elevada del catalizador más caliente del vehículo de ensayo. Alternativamente, la temperatura podrá medirse en otro punto, siempre y cuando se ajuste de tal modo que represente la temperatura medida en el punto más caliente basándose en criterios técnicos bien fundados.

La temperatura del catalizador se medirá a una frecuencia mínima de 1 Hz (una medición por segundo).

Los resultados de las temperaturas medidas en el catalizador se tabularán en un histograma que recoja grupos de temperaturas que no difieran en más de 25 °C.

2.3.1.4. El tiempo de envejecimiento en el banco se calculará utilizando la ecuación correspondiente como sigue:

te para una serie de temperaturas = th e[(R/Tr) - (R/Tv)]

te total = suma de te en todos los grupos de temperaturas

tiempo de envejecimiento en banco = A (te total)

Donde:

A = 1,1 Este

= 1,1 Este valor ajusta el tiempo de envejecimiento del catalizador a fin de tener en cuenta el deterioro procedente de otras fuentes distintas del envejecimiento térmico del catalizador

CutuiiZ

= Reactividad térmica del catalizador = 17 500

th

R

= Tiempo (en horas) medido en la serie prescrita de temperaturas del histograma de temperatura del catalizador del vehículo, ajustado sobre la base de una vida útil completa; así, por ejemplo, si el histograma representase 400 km y la vida útil fuese de 160 000 km, todos los valores de tiempo del histograma se multiplicarían por 400 (160 000/400)

te total

= Tiempo equivalente (en horas) para envejecer el catalizador a la temperatura de referencia efectiva en el banco de envejecimiento del catalizador utilizando el ciclo de envejecimiento del catalizador para producir la misma cantidad de deterioro experimentado por el catalizador a causa de la desactivación térmica durante 160 000 km

te para una serie

= Tiempo equivalente (en horas) para envejecer el catalizador a la temperatura de referencia efectiva en el banco de envejecimiento del catalizador utilizando el ciclo de envejecimiento del catalizador para producir la misma cantidad de deterioro experimentado por el catalizador a causa de la desactivación térmica a la serie de temperaturas en el punto medio durante 160 000 km

Tr

= Temperatura de referencia efectiva (en K) del catalizador en el banco del catalizador al realizar el ciclo de envejecimiento en el banco. La temperatura efectiva es la temperatura constante que daría lugar a la misma cantidad de envejecimiento que las distintas temperaturas experimentadas durante el ciclo de envejecimiento en el banco

Tv

- = Temperatura en el punto medio (en K) de la serie de temperaturas del histograma de temperaturas del catalizador en carretera del vehículo
- 2.3.1.5. Temperatura de referencia efectiva en el ciclo de envejecimiento en banco. Para el diseño del sistema de catalización y el banco de envejecimiento que vayan a utilizarse, se determinará la temperatura de referencia efectiva del ciclo estándar del banco utilizando los procedimientos siguientes:
 - a) medir las temperaturas y los tiempos correspondientes registrados por el sistema de catalización en el banco de envejecimiento del catalizador siguiendo el ciclo de envejecimiento en banco. La temperatura del catalizador se medirá en el punto del catalizador más caliente del sistema cuya temperatura sea más elevada. Alternativamente, la temperatura podrá medirse en otro punto, siempre y cuando se ajuste de tal modo que represente la temperatura medida en el punto más caliente.

- La temperatura del catalizador se medirá a una frecuencia mínima de 1 Hz (una medición por segundo) durante al menos 20 minutos de envejecimiento en banco. Los resultados de las temperaturas medidas en el catalizador se tabularán en un histograma que recoja grupos de temperaturas que no difieran en más de $10\,^\circ$ C.
- b) se utilizará la ecuación del tiempo de envejecimiento en banco para calcular la temperatura de referencia efectiva mediante cambios iterativos de la temperatura de referencia efectiva hasta que el tiempo de envejecimiento calculado equivalga al tiempo real representado en el histograma de temperaturas del catalizador o lo sobrepase. La temperatura resultante es la temperatura de referencia efectiva en el ciclo estándar del banco para ese sistema de catalización y ese banco de envejecimiento.
- 2.3.1.6. Banco de envejecimiento del catalizador. El banco de envejecimiento del catalizador seguirá el ciclo estándar del banco y ofrecerá el caudal de escape, los componentes de escape y la temperatura de escape adecuados en la parte frontal del catalizador.
 - Todos los equipos y procedimientos de envejecimiento en el banco registrarán la información adecuada (como las mediciones de las proporciones A/C y de las temperaturas registradas por el catalizador con sus tiempos correspondientes) a fin de garantizar que efectivamente se ha producido el envejecimiento suficiente.
- 2.3.1.7. Ensayos requeridos. Para calcular los factores de deterioro deben realizarse, en el vehículo de ensayo, al menos dos ensayos de tipo I antes de proceder al envejecimiento del equipo de control de emisiones en el banco, y al menos otros dos ensayos de tipo I una vez que el equipo de emisiones envejecido en el banco se haya vuelto a instalar
 - El fabricante podrá llevar a cabo ensayos adicionales. El cálculo de los factores de deterioro se realizará de acuerdo con el método de cálculo especificado en el punto 7 del presente anexo.
- 2.3.2. Vehículos con motor de encendido por compresión
- 2.3.2.1. El siguiente procedimiento de envejecimiento en banco es aplicable a los vehículos de encendido por compresión, incluidos los vehículos híbridos.
 - El procedimiento de envejecimiento en banco requiere la instalación del sistema de postratamiento en el banco de envejecimiento del sistema de postratamiento.
 - El envejecimiento en el banco se lleva a cabo siguiendo el ciclo estándar en banco diésel (CEBD) durante el número de ciclos de regeneración/desulfurización calculado a partir de la ecuación de la duración del envejecimiento en banco (DEB).
- 2.3.2.2. El envejecimiento estándar en el banco se lleva a cabo siguiendo el ciclo estándar en banco diésel. Este se realizará durante el período calculado a partir de la ecuación de la duración del envejecimiento en banco. El ciclo estándar en banco diésel se describe en el apéndice 2 del presente anexo.
- 2.3.2.3. Datos de regeneración. Los intervalos de regeneración se medirán durante al menos 10 ciclos completos del ciclo estándar en carretera, tal como se describe en el apéndice 3 del presente anexo. Como alternativa, podrán utilizarse los intervalos obtenidos a partir de la determinación de K₁.
 - Si procede, se considerarán también los intervalos de desulfurización basados en los datos del fabricante.
- 2.3.2.4. Duración del envejecimiento en banco diésel. La duración del envejecimiento en banco se calcula utilizando la ecuación de la duración del envejecimiento en banco como sigue:
 - Duración del envejecimiento en banco = número de ciclos de regeneración o desulfurización (de los dos, el más largo) equivalentes a 160 000 km de conducción.
- 2.3.2.5. Banco de envejecimiento. El banco de envejecimiento seguirá el ciclo estándar en banco diésel y ofrecerá el caudal de escape, los componentes de escape y la temperatura de escape adecuados en la entrada del sistema de postratamiento.
 - El fabricante registrará el número de ciclos de regeneración/desulfurización (si procede) a fin de garantizar que se ha producido realmente el envejecimiento suficiente.
- 2.3.2.6. Ensayos requeridos. Para calcular los factores de deterioro deben realizarse al menos dos ensayos de tipo I antes de proceder al envejecimiento del equipo de control de emisiones en el banco, y al menos otros dos ensayos de tipo I una vez que el equipo de emisiones envejecido en el banco se haya vuelto a instalar. El fabricante podrá llevar a cabo ensayos adicionales. El cálculo de los factores de deterioro se realizará de acuerdo con el método de cálculo especificado en el punto 7 del presente anexo y con los requisitos adicionales incluidos en el presente Reglamento.

3. VEHÍCULO DE ENSAYO

3.1. El vehículo deberá encontrarse en buenas condiciones mecánicas; el motor y los dispositivos anticontaminantes deberán ser nuevos. Podrá ser el mismo vehículo que el presentado para el ensayo de tipo I; dicho ensayo deberá realizarse después de que el vehículo haya recorrido al menos 3 000 km del ciclo de envejecimiento descrito en el punto 6.1 del presente anexo.

4. COMBUSTIBLE

El ensayo de durabilidad se efectuará con un combustible adecuado disponible en el mercado.

5. MANTENIMIENTO Y REGLAJES DEL VEHÍCULO

El mantenimiento, los reglajes y el uso de los mandos del vehículo de ensayo deberán ser los recomendados por el fabricante.

- 6. FUNCIONAMIENTO DEL VEHÍCULO EN PISTA, EN CARRETERA O EN EL BANCO DINAMOMÉTRICO
- 6.1. Ciclo de funcionamiento

Durante el funcionamiento en pista, en carretera o en banco de ensayo de rodillos, la distancia se cubrirá de acuerdo con el siguiente programa de conducción (figura A9/1):

- 6.1.1. el programa del ensayo de durabilidad constará de 11 ciclos de 6 km cada uno;
- 6.1.2. durante los 9 primeros ciclos, el vehículo se detendrá cuatro veces a mitad del ciclo, con el motor en régimen de ralentí, durante 15 segundos cada vez;
- 6.1.3. aceleración y desaceleración normales;
- 6.1.4. 5 desaceleraciones a mitad de cada ciclo, que hagan descender la velocidad del ciclo hasta 32 km/h; a continuación, se acelerará de nuevo gradualmente el vehículo hasta alcanzar la velocidad del ciclo;
- 6.1.5. el décimo ciclo se efectuará a una velocidad constante de 89 km/h;
- 6.1.6. el undécimo ciclo empezará con la aceleración máxima desde el punto de parada hasta alcanzar 113 km/h; a medio camino, se frenará normalmente hasta que el vehículo se detenga. Esta operación irá seguida de un período de ralentí de 15 segundos y una segunda aceleración máxima

A continuación, se iniciará de nuevo el plan de conducción desde el principio.

En el cuadro A9/1 se recoge la velocidad máxima para cada ciclo.

Cuadro A9/1

Velocidad máxima para cada ciclo

Ciclo	Velocidad del ciclo en km/h
1	64
2	48
3	64

Ciclo	Velocidad del ciclo en km/h
4	64
5	56
6	48
7	56
8	72
9	56
10	89
11	113

Figura A9/1

Programa de conducción

1,1 Parar y después acelerar hasta la velocidad impuesta 0,6 Desacelerar hasta 32 km/h y 2,1 Desacelerar hasta después acelerar hasta la 32 km/h y después velocidad impuesta acelerar hasta la 0 y 6 kilómetros Salida - llegada velocidad impuesta Parar y después acelerar hasta la velocidad impuesta Desacelerar hasta 32 km/h y 3,1 Desacelerar hasta 5,3 después acelerar hasta la velocidad 32 km/h y después impuesta acelerar hasta la 4,7 Parar y después acelerar hasta velocidad impuesta la velocidad impuesta 4,2 Desacelerar hasta 32 km/h y después acelerar hasta la velocidad impuestad 3. Parar y después acelerar hasta la velocidad impuesta

6.2. El ensayo de durabilidad o, si el fabricante así lo ha decidido, el ensayo de durabilidad modificado se realizarán hasta que el vehículo haya recorrido 160 000 km como mínimo.

- 6.3. Equipo de ensayo
- 6.3.1. Banco dinamométrico
- 6.3.1.1. Cuando el ensayo de durabilidad se realice en un banco dinamométrico, éste deberá permitir el desarrollo normal de los ciclos descritos en el punto 6.1 del presente anexo. En concreto, el banco deberá estar equipado con sistemas que simulen la inercia y la resistencia al avance.
- 6.3.1.2. Se regulará el freno de manera que absorba la potencia ejercida en las ruedas motrices a una velocidad constante de 80 km/h. Los métodos que se apliquen para determinar dicha potencia y para regular el freno serán los descritos en el apéndice 7 del anexo 4 bis del presente Reglamento.
- 6.3.1.3. El sistema de refrigeración del vehículo deberá permitir que este funcione a temperaturas similares a las que se dan en carretera (aceite, agua, sistema de escape, etc.).
- 6.3.1.4. Se considerará, en su caso, que el resto de los reglajes y características del banco de ensayo son idénticos a los descritos en el anexo 4 bis del presente Reglamento (inercia, por ejemplo, que podrá ser mecánica o electrónica).
- 6.3.1.5. Cuando resulte necesario, podrá trasladarse el vehículo a un banco diferente para proceder a los ensayos de medición de emisiones.
- 6.3.2. Ensayo en pista o en carretera

Cuando el ensayo de durabilidad se realice en pista o en carretera, la masa de referencia del vehículo deberá ser, como mínimo, igual a la utilizada en los ensayos en banco dinamométrico.

7. MEDICIÓN DE LAS EMISIONES DE CONTAMINANTES

Al inicio del ensayo (0 km) y cada 10 000 ± 400 km o menos, a intervalos regulares hasta haber recorrido 160 000 km, las emisiones de escape se medirán de conformidad con el ensayo de tipo I, de acuerdo con la definición del punto 5.3.1 del presente Reglamento. Los valores límite que han de respetarse son los establecidos en el punto 5.3.1.4 del presente Reglamento.

En el caso de los vehículos equipados con sistemas de regeneración periódica, definidos en el punto 2.20 del presente Reglamento, se verificará que el vehículo no se acerca a un período de regeneración. Si no es así, se conducirá el vehículo hasta que finalice la regeneración. Si durante la medición de las emisiones tiene lugar una regeneración, se realizará un nuevo ensayo (con preacondicionamiento incluido) y no se tendrá en cuenta el primer resultado.

Todos los resultados de las emisiones de escape se representarán gráficamente como una función de la distancia recorrida en el sistema, redondeada al kilómetro más próximo, y, a través de estos valores, se trazará la línea recta más idónea obtenida mediante el método de los mínimos cuadrados. Este cálculo no tendrá en cuenta los resultados del ensayo a 0 km.

Los datos sólo podrán aceptarse para el cálculo del factor de deterioro si los puntos interpolados en la línea correspondientes a 6 400 y 160 000 km se encuentran por encima de los límites mencionados.

Los datos también podrán ser aceptados cuando la línea recta más idónea atraviese un límite aplicable con una pendiente negativa (es decir, cuando el punto interpolado correspondiente a 6 400 km sea más alto que el correspondiente a 160 000 km), pero el punto real correspondiente a 160 000 km se encuentre por debajo del límite.

Se calculará un factor multiplicativo de deterioro de las emisiones de escape para cada uno de los contaminantes, de la manera siguiente:

$$D.E.F. = \frac{Mi_2}{Mi_1}$$

Donde:

Mi₁ = emisión másica del contaminante i (g/km), interpolada a 6 400 km

Mi, = emisión másica del contaminante i (g/km), interpolada a 160 000 km

Los valores interpolados se calcularán con una precisión de, al menos, cuatro cifras decimales, antes de dividirlos entre sí para obtener el factor de deterioro. El resultado se redondeará a tres cifras decimales.

Si el factor de deterioro fuese inferior a 1, se considerará igual a 1.

A petición del fabricante, se calculará un factor aditivo de deterioro de las emisiones de escape para cada uno de los contaminantes, de la manera siguiente:

D.E.F. =
$$Mi_2 - Mi_1$$

Apéndice 1

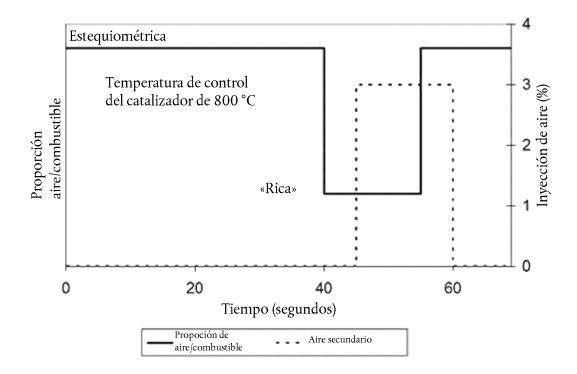
Ciclo estándar del banco (CEB)

1. INTRODUCCIÓN

El procedimiento de durabilidad del envejecimiento estándar consiste en el envejecimiento de un sistema de catalización/sensor de oxígeno en un banco de envejecimiento que sigue el ciclo estándar del banco (CEB) descrito en el presente apéndice. El CEB requiere el uso de un banco de envejecimiento equipado con un motor como fuente de gases de alimentación del catalizador. El CEB es un ciclo de 60 segundos, el cual se repite tantas veces como sea necesario en el banco de envejecimiento, a fin de lograr el envejecimiento durante el período requerido. El CEB se define sobre la base de la temperatura del catalizador, la proporción aire/combustible (A/C) en el motor y la cantidad de aire secundario inyectado que se añade delante del primer catalizador.

2. CONTROL DE LA TEMPERATURA DEL CATALIZADOR

- 2.1. La temperatura del catalizador se medirá en el lecho del catalizador, en el punto en el que se produzca la temperatura más elevada del catalizador más caliente. Alternativamente, podrá medirse la temperatura del gas de alimentación y convertirse a la temperatura del lecho del catalizador, utilizando una transformación lineal calculada a partir de los datos de correlación obtenidos sobre el diseño del catalizador y el banco de envejecimiento que vayan a utilizarse en el proceso de envejecimiento.
- 2.2. Controlar la temperatura del catalizador en funcionamiento estequiométrico (de 1 a 40 segundos en el ciclo) hasta un mínimo de 800 ± 10 °C seleccionando el régimen del motor, la carga y el reglaje de la chispa del motor adecuados. Controlar la temperatura máxima alcanzada por el catalizador durante el ciclo hasta 890 ± 10 °C, seleccionando la proporción A/C adecuada del motor durante la fase «rica» descrita en el cuadro A9.Ap1/2.
- 2.3. Si la temperatura de control baja utilizada no es 800 °C, la temperatura de control elevada deberá ser superior en 90 °C a la temperatura de control baja.


Cuadro A9.Ap1/2

Ciclo estándar del banco (CEB)

Tiempo (segundos)	Proporción aire/combustible del motor	Inyección de aire secun- dario
1-40	Estequiométrica, con carga, reglaje de la chispa y régimen del motor controlados para alcanzar una temperatura mínima del catalizador de 800 °C	Ninguna
41-45	«Rica» (proporción A/C seleccionada para alcanzar una temperatura máxima del catalizador durante la totalidad del ciclo de 890 °C o superior en 90 °C a la temperatura de control más baja)	Ninguna
46-55	«Rica» (proporción A/C seleccionada para alcanzar una temperatura máxima del catalizador durante la totalidad del ciclo de 890 °C o superior en 90 °C a la temperatura de control más baja)	3 ± 1 %
56-60	Estequiométrica, con carga, reglaje de la chispa y régimen del motor controlados para alcanzar una temperatura mínima del catalizador de 800 °C	3 ± 1 %

Figura A9.Ap1/2

Ciclo estándar del banco

- 3. EQUIPOS Y PROCEDIMIENTOS DEL BANCO DE ENVEJECIMIENTO
- 3.1. Configuración del banco de envejecimiento. El banco de envejecimiento ofrecerá el caudal de escape, la temperatura, la proporción de aire/combustible, los componentes de escape y la inyección de aire secundario adecuados en la parte frontal de entrada del catalizador.

El banco de envejecimiento estándar consiste en un motor, un controlador del motor y un dinamómetro del motor. Pueden aceptarse otras configuraciones (por ejemplo, la totalidad del vehículo en un dinamómetro o un quemador que ofrezca las condiciones de escape correctas), siempre que se reúnan las condiciones de entrada del catalizador y las características de control especificadas en el presente apéndice.

Un banco de envejecimiento único podrá tener el caudal de escape dividido en varias corrientes, siempre que cada una de las corrientes de escape cumpla los requisitos del presente apéndice. Si el banco cuenta con más de una corriente de escape, se podrán envejecer simultáneamente los múltiples sistemas de catalización.

3.2. Instalación del sistema de escape. En el banco se instalará la totalidad del sistema de catalizador(es) y sensor(es) de oxígeno, junto con todos los tubos de escape que conecten estos componentes. Por lo que respecta a los motores que cuenten con corrientes de escape múltiples (como algunos motores V6 y V8), cada bloque del sistema de escape se instalará separadamente en el banco en paralelo.

En cuanto a los sistemas de escape que contienen múltiples catalizadores en línea, la totalidad del sistema de catalización, incluidos todos los catalizadores, todos los sensores de oxígeno y los tubos de escape asociados, se instalarán como una unidad para su envejecimiento. Alternativamente, se podrá envejecer por separado cada uno de los catalizadores durante el período adecuado.

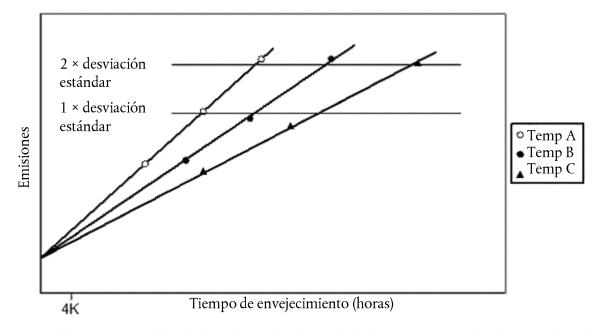
3.3. Medición de la temperatura. Para medir la temperatura del catalizador se utilizará un termopar que se colocará en el lecho del catalizador, en el punto en el que se produzca la temperatura más elevada del catalizador más caliente. Alternativamente, podrá medirse la temperatura del gas de alimentación justo delante de la entrada al catalizador y convertirse a la temperatura del lecho del catalizador utilizando una transformación lineal calculada a partir de los datos de correlación obtenidos sobre el diseño del catalizador y el banco de envejecimiento que vayan a utilizarse en el proceso de envejecimiento. La temperatura del catalizador se almacenará digitalmente a una frecuencia de 1 Hz (una medición por segundo).

- 3.4. Medición aire/combustible. Se velará por que la medición de la proporción aire/combustible (A/C) (por ejemplo, en un sensor de oxígeno de rango amplio) se realice lo más cerca posible de las bridas de entrada y salida del catalizador. La información procedente de estos sensores se almacenará digitalmente a una frecuencia de 1 Hz (una medición por segundo).
- 3.5. Equilibrio del caudal de escape. Se tomarán medidas para garantizar que a través de cada sistema de catalización sometido a envejecimiento en el banco fluya la cantidad adecuada de gases de escape (medidos en gramos/ segundo a partir de estequiometría, con una tolerancia de ± 5 g/s).
 - El caudal adecuado se determinará sobre la base del caudal de escape que se produciría en el motor de origen del vehículo, con el régimen del motor y la carga constantes seleccionados para el envejecimiento en el banco, conforme al punto 3.6.
- 3.6. Configuración. Se seleccionan el régimen del motor, la carga y el reglaje de la chispa para lograr una temperatura de 800 ± 10 °C en el lecho del catalizador en funcionamiento estequiométrico constante.

Se ajustará el sistema de inyección de aire para lograr el flujo de aire necesario para obtener un 3.0 ± 0.1 % de oxígeno en la corriente de escape estequiométrica constante justo delante del primer catalizador. La lectura que suele obtenerse en el punto de medición A/C de entrada (requerido en el punto 3.4 del presente apéndice) es lambda 1.16 (que es aproximadamente un 3 % de oxígeno).

Con la inyección de aire en funcionamiento, se ajustará la proporción de A/C «rica» para obtener una temperatura de 890 ± 10 °C en el lecho del catalizador. El valor A/C que suele obtenerse en este paso es lambda 0,94 (aproximadamente un 2 % de CO).

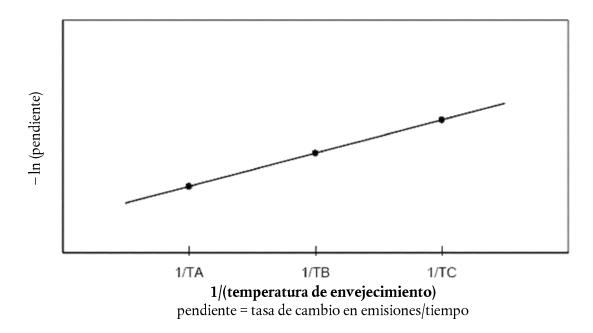
- 3.7. Ciclo de envejecimiento. Los procedimientos estándar de envejecimiento en banco se basan en el CEB. Se repite el CEB hasta que se obtiene la cantidad de envejecimiento calculado a partir de la ecuación del tiempo de envejecimiento en banco (TEB).
- 3.8. Aseguramiento de la calidad. Las temperaturas y la proporción de A/C mencionadas en los puntos 3.3 y 3.4 del presente apéndice se revisarán periódicamente (como mínimo cada 50 horas) durante el envejecimiento. Se harán los ajustes necesarios para garantizar que se sigue adecuadamente el CEB durante todo el proceso de envejecimiento.


Una vez completado el envejecimiento, las temperaturas registradas por el catalizador con sus tiempos correspondientes obtenidas durante el proceso de envejecimiento se tabularán en un histograma que recoja grupos de temperaturas que no difieran en más de 10 °C. La ecuación del TEB y la temperatura de referencia efectiva calculada para el ciclo de envejecimiento con arreglo al punto 2.3.1.4 del presente anexo, se utilizarán para determinar si se ha producido de hecho la cantidad adecuada de envejecimiento térmico del catalizador. El envejecimiento en el banco se extenderá si el efecto térmico del tiempo de envejecimiento calculado no representa, como mínimo, el 95 % del objetivo de envejecimiento térmico.

- 3.9. Puesta en marcha y apagado. Se debe evitar que la temperatura máxima del catalizador para el deterioro rápido (por ejemplo, 1 050 °C) no se produzca durante la puesta en marcha o el apagado. Para ello, podrán utilizarse procedimientos especiales para la puesta en marcha y el apagado a baja temperatura.
- 4. DETERMINACIÓN EXPERIMENTAL DEL FACTOR R PARA LOS PROCEDIMIENTOS DE DURABILIDAD DEL ENVEJECIMIENTO EN BANCO
- 4.1. El factor R es el coeficiente de reactividad térmica utilizado en la ecuación del TEB. Los fabricantes podrán determinar experimentalmente el valor de R utilizando los procedimientos siguientes.
- 4.1.1. Utilizando el ciclo del banco y el equipo de envejecimiento en banco aplicables, envejecer varios catalizadores (un mínimo de tres con el mismo diseño) a distintas temperaturas de control que oscilen entre la temperatura normal de funcionamiento y la temperatura límite a partir de la cual puedan resultar dañados. Medir las emisiones [o la ineficiencia catalizadora (1 eficiencia catalizadora)] de cada componente de escape. Velar por que el ensayo final arroje datos comprendidos entre una y dos veces la emisión estándar.
- 4.1.2. Estimar el valor de R y calcular la temperatura de referencia efectiva (Tr) para el ciclo de envejecimiento en banco para cada temperatura de control de acuerdo con el punto 2.3.1.4 del presente anexo.
- 4.1.3. Trazar las emisiones (o la ineficiencia catalizadora) frente al tiempo de envejecimiento para cada catalizador. A partir de los datos, calcular la línea de mínimos cuadrados que mejor se ajuste. Para que el conjunto de datos pueda ser útil para este fin, dichos datos deben aproximarse a la intersección entre 0 y 6 400 km. Véase la figura A9.Ap1/3 como ejemplo.

ES

4.1.4. Calcular la pendiente de la línea mejor ajustada para cada temperatura de envejecimiento.


Figura A9.Ap1/3 Ejemplo de envejecimiento del catalizador

- 4.1.5. Trazar el logaritmo natural (ln) de la pendiente de cada una de las líneas mejor ajustadas (determinada en el punto 4.1.4 del presente apéndice) a lo largo del eje vertical, frente a la inversa de la temperatura de envejecimiento [1/(temperatura de envejecimiento, K)] a lo largo del eje horizontal. Calcular las líneas de mínimos cuadrados que mejor se ajusten a partir de los datos. La pendiente de la línea es el factor R. Véase la figura A9. Ap1/4 como ejemplo.
- 4.1.6. Comparar el factor R con el valor inicial que se utilizó en el punto 4.1.2 del presente apéndice. Si el factor R calculado difiere del valor inicial en más de un 5 %, elegir un nuevo factor R que se encuentre entre los valores inicial y calculado, y repetir a continuación los pasos de los puntos 4.1.2 a 4.1.6 del presente apéndice para derivar un nuevo factor R. Repetir este proceso hasta que el factor R calculado se encuentre dentro de un 5 % del factor R inicialmente supuesto.
- 4.1.7. Comparar el factor R determinado separadamente para cada componente de escape. Utilizar el factor R más bajo (el peor caso) para la ecuación del TEB.

Figura A9.Ap1/4

Determinación del factor R

Apéndice 2

Ciclo estándar en banco diésel

1. INTRODUCCIÓN

En el caso de los filtros de partículas, el número de regeneraciones es crítico para el proceso de envejecimiento. Este proceso también es importante para los sistemas que requieren ciclos de desulfurización (como los catalizadores de almacenamiento de NO_v).

El procedimiento de durabilidad del envejecimiento estándar en banco diésel consiste en el envejecimiento de un sistema de postratamiento en un banco de envejecimiento que sigue el ciclo estándar del banco descrito en el presente apéndice. El ciclo estándar en banco diésel (CEBD) requiere el uso de un banco de envejecimiento equipado con un motor como fuente de gases de alimentación para el sistema.

Durante el CEBD, las estrategias de regeneración/desulfurización del sistema permanecerán en condiciones normales de funcionamiento.

- 2. El ciclo estándar en banco diésel reproduce el régimen del motor y las condiciones de carga que en el ciclo estándar de carretera (CEC) Se consideran adecuadas para el período con respecto al cual se ha de determinar la durabilidad. a fin de acelerar el proceso de envejecimiento, los ajustes del motor en el banco de ensayo pueden modificarse para reducir los tiempos de carga del sistema. así, por ejemplo, puede modificarse el reglaje de la inyección de combustible o la estrategia de egr.
- 3. EQUIPOS Y PROCEDIMIENTOS DEL BANCO DE ENVEJECIMIENTO
- 3.1. El banco de envejecimiento estándar consiste en un motor, un controlador del motor y un dinamómetro del motor. Pueden aceptarse otras configuraciones (por ejemplo, la totalidad del vehículo en un dinamómetro o un quemador que ofrezca las condiciones de escape correctas), siempre que se reúnan las condiciones de entrada del sistema de postratamiento y las características de control especificadas en el presente apéndice.
 - Un banco de envejecimiento único podrá tener el caudal de escape dividido en varias corrientes, siempre que cada una de las corrientes de escape cumpla los requisitos del presente apéndice. Si el banco cuenta con más de una corriente de escape, podrán envejecerse simultáneamente los múltiples sistemas de postratamiento.
- 3.2. Instalación del sistema de escape En el banco se instalará la totalidad del sistema de postratamiento, junto con todos los tubos de escape que conecten estos componentes. Por lo que respecta a los motores que cuenten con corrientes de escape múltiples (como algunos motores V6 y V8), cada bloque del sistema de escape se instalará en el banco por separado.
 - El conjunto del sistema de postratamiento se instalará como una unidad para el envejecimiento. Alternativamente, se podrá envejecer por separado cada uno de los componentes individuales durante el período adecuado.

Apéndice 3

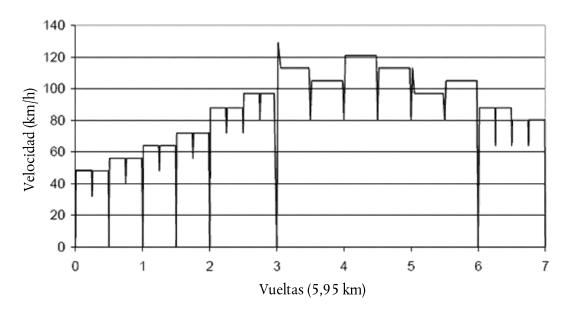
Ciclo estándar en carretera

1. INTRODUCCIÓN

El ciclo estándar de carretera (CEC) es un ciclo de acumulación de kilometraje. El ensayo del vehículo puede realizarse en una pista de ensayo o en un dinamómetro de acumulación de kilometraje.

El ciclo consiste en dar 7 vueltas a un circuito de 6 km. La longitud de la vuelta puede modificarse para adaptarse a la longitud de la pista de ensayo de acumulación de kilometraje.

Ciclo estándar de carretera (CEC)


Vuelta	Descripción	Valores típicos de aceleración (m/s²)
1	(Arranque del motor) ralentí durante 10 segundos	0
1	Aceleración moderada a 48 km/h	1,79
1	Velocidad constante a 48 km/h durante ¼ de vuelta	0
1	Desaceleración moderada a 32 km/h	- 2,23
1	Aceleración moderada a 48 km/h	1,79
1	Velocidad constante a 48 km/h durante ¼ de vuelta	0
1	Desaceleración moderada a parada	- 2,23
1	Ralentí durante 5 segundos	0
1	Aceleración moderada a 56 km/h	1,79
1	Velocidad constante a 56 km/h durante ¼ de vuelta	0
1	Desaceleración moderada a 40 km/h	- 2,23
1	Aceleración moderada a 56 km/h	1,79
1	Velocidad constante a 56 km/h durante ¼ de vuelta	0
1	Desaceleración moderada a parada	- 2,23
2	Ralentí durante 10 segundos	0
2	Aceleración moderada a 64 km/h	1,34
2	Velocidad constante a 64 km/h durante ¼ de vuelta	0
2	Desaceleración moderada a 48 km/h	- 2,23
2	Aceleración moderada a 64 km/h	1,34
2	Velocidad constante a 64 km/h durante ¼ de vuelta	0

Vuelta	Descripción	Valores típicos de aceleración (m/s²)
2	Desaceleración moderada a parada	- 2,23
2	Ralentí durante 5 segundos	0
2	Aceleración moderada a 72 km/h	1,34
2	Velocidad constante a 72 km/h durante ¼ de vuelta	0
2	Desaceleración moderada a 56 km/h	-2,23
2	Aceleración moderada a 72 km/h	1,34
2	Velocidad constante a 72 km/h durante ¼ de vuelta	0
2	Desaceleración moderada a parada	- 2,23
3	Ralentí durante 10 segundos	0
3	Aceleración brusca a 88 km/h	1,79
3	Velocidad constante a 88 km/h durante ¼ de vuelta	0
3	Desaceleración moderada a 72 km/h	- 2,23
3	Aceleración moderada a 88 km/h	0,89
3	Velocidad constante a 88 km/h durante ¼ de vuelta	0
3	Desaceleración moderada a 72 km/h	- 2,23
3	Aceleración moderada a 97 km/h	0,89
3	Velocidad constante a 97 km/h durante ¼ de vuelta	0
3	Desaceleración moderada a 80 km/h	- 2,23
3	Aceleración moderada a 97 km/h	0,89
3	Velocidad constante a 97 km/h durante ¼ de vuelta	0
3	Desaceleración moderada a parada	- 1,79
4	Ralentí durante 10 segundos	0
4	Aceleración brusca a 129 km/h	1,34
4	Desaceleración en punto muerto a 113 km/h	- 0,45
4	Velocidad constante a 113 km/h durante ½ vuelta	0
4	Desaceleración moderada a 80 km/h	- 1,34
4	Aceleración moderada a 105 km/h	0,89
4	Velocidad constante a 105 km/h durante ½ vuelta	0

Vuelta	Descripción	Valores típicos de aceleración (m/s²)
4	Desaceleración moderada a 80 km/h	- 1,34
5	Aceleración moderada a 121 km/h	0,45
5	Velocidad constante a 121 km/h durante ½ vuelta	0
5	Desaceleración moderada a 80 km/h	- 1,34
5	Aceleración ligera a 113 km/h	0,45
5	Velocidad constante a 113 km/h durante ½ vuelta	0
5	Desaceleración moderada a 80 km/h	- 1,34
6	Aceleración moderada a 113 km/h	0,89
6	Desaceleración en punto muerto a 97 km/h	- 0,45
6	Velocidad constante a 97 km/h durante ½ vuelta	0
6	Desaceleración moderada a 80 km/h	- 1,79
6	Aceleración moderada a 104 km/h	0,45
6	Velocidad constante a 104 km/h durante ½ vuelta	0
6	Desaceleración moderada a parada	- 1,79
7	Ralentí durante 45 segundos	0
7	Aceleración brusca a 88 km/h	1,79
7	Velocidad constante a 88 km/h durante ¼ de vuelta	0
7	Desaceleración moderada a 64 km/h	- 2,23
7	Aceleración moderada a 88 km/h	0,89
7	Velocidad constante a 88 km/h durante ¼ de vuelta	0
7	Desaceleración moderada a 64 km/h	- 2,23
7	Aceleración moderada a 80 km/h	0,89
7	Velocidad constante a 80 km/h durante ¼ de vuelta	0
7	Desaceleración moderada a 64 km/h	- 2,23
7	Aceleración moderada a 80 km/h	0,89
7	Velocidad constante a 80 km/h durante ¼ de vuelta	0
7	Desaceleración moderada a parada	- 2,23

La figura siguiente representa gráficamente el CEC.

Ciclo estándar en carretera

ANEXO 10

ESPECIFICACIONES DE LOS COMBUSTIBLES DE REFERENCIA

- 1. ESPECIFICACIONES DE LOS COMBUSTIBLES DE REFERENCIA PARA LA REALIZACIÓN DE ENSAYOS EN VEHÍCULOS CON RESPECTO A LOS LÍMITES DE EMISIÓN
- 1.1. Datos técnicos de los combustibles de referencia que han de utilizarse en los ensayos de vehículos equipados con motor de encendido por chispa.

Tipo: gasolina (E5)

Parámetro	Unidad	Lími	tes (1)	W-1-1-1
Рагапіенто	Unidad	Mínimo	Máximo	Método de ensayo
Índice de octanos investigado (RON)		95,0	_	EN 25164 prEN ISO 5164
Índice de octanos motor (MON)		85,0	_	EN 25163 prEN ISO 5163
Densidad a 15 °C	kg/m³	743	756	EN ISO 3675 EN ISO 12185
Presión de vapor	kPa	56,0	60,0	EN ISO 13016-1 (DVPE)
Contenido en agua	% v/v		0,015	ASTM E 1064
Destilación:				
— evaporado a 70 °C	% v/v	24,0	44,0	EN ISO 3405
— evaporado a 100 °C	% v/v	48,0	60,0	EN ISO 3405
— evaporado a 150 ℃	% v/v	82,0	90,0	EN ISO 3405
— punto final de destilación	°C	190	210	EN ISO 3405
Residuo	% v/v	_	2,0	EN ISO 3405
Análisis de hidrocarburos:				
— Olefinas	% v/v	3,0	13,0	ASTM D 1319
— Compuestos aromáticos	% v/v	29,0	35,0	ASTM D 1319
— Benceno	% v/v	_	1,0	EN 12177
— Saturados	% v/v	Informe		ASTM 1319
Relación carbono/hidrógeno		Informe		
Relación carbono/oxígeno		Informe		
PerÍodo de inducción (²)	minutos	480	_	EN ISO 7536
Contenido de oxígeno (3)	% m/m	Informe		EN 1601

Parámetro	Unidad	Límit	Método de ensayo	
rarametro	Official	Mínimo	Máximo	Metodo de elisayo
Goma existente	mg/ml	_	0,04	EN ISO 6246
Contenido de azufre (*)	mg/kg		10	EN ISO 20846 EN ISO 20884
Corrosión de la tira de cobre		_	Clase 1	EN ISO 2160
Contenido de plomo	mg/l	_	5	EN 237
Contenido de fósforo (5)	mg/l	_	1,3	ASTM D 3231
Etanol (3)	% v/v	4,7	5,3	EN 1601 EN 13132

- (¹) Los valores indicados en la especificación son «valores reales». Para establecer los valores límite, se han aplicado los términos de la norma ISO 4259, «Productos petrolíferos. Determinación y aplicación de los datos de precisión en relación a los métodos de ensayo»; y para fijar un valor mínimo, se ha tenido en cuenta una diferencia mínima de 2R sobre cero; para fijar un valor máximo y un valor mínimo, la diferencia mínima es 4R (R = reproducibilidad).
 - Pese a esta medida, que es necesaria por razones técnicas, el fabricante del combustible procurará obtener un valor cero cuando el valor máximo estipulado sea 2R y un valor medio cuando se indiquen límites máximo y mínimo. Si fuera necesario aclarar si un combustible cumple los requisitos de las especificaciones, se aplicarían los términos de la norma ISO 4259.
- (2) El combustible podrá contener antioxidantes y desactivadores de metales utilizados normalmente para estabilizar el caudal de la gasolina en las refinerías, pero no llevará ningún aditivo detergente/dispersante ni aceites disolventes.
- (3) A condición de que cumpla la especificación de la norma EN 15376, el etanol es el único compuesto oxigenado que se añadirá intencionadamente a este combustible de referencia.
- (4) Se declarará el contenido real de azufre del combustible utilizado en el ensayo de tipo I.
- (5) No se añadirán de manera intencionada a este combustible de referencia compuestos que contengan fósforo, hierro, manganeso o plomo.

Tipo: gasolina (E10)

Parámetro	Unidad	Lími	M(4-1-1	
rarametro	Onidad	Mínimo	Máximo	Método de ensayo
Índice de octanos investigado (RON) (2)		95,0	98,0	EN ISO 5164
Índice de octanos motor (MON) (2)		85,0	89,0	EN ISO 5163
Densidad a 15 °C	kg/m³	743,0	756,0	EN ISO 12185
Presión de vapor (DVPE)	kPa	56,0	60,0	EN 13016-1
Contenido en agua	% m/m	máx. 0,05 Aspecto a – 7 °C: claro y brillante		EN 12937
Destilación:				
— evaporado a 70 °C	% v/v	34,0	46,0	EN ISO 3405
— evaporado a 100 °C	% v/v	54,0	62,0	EN ISO 3405
— evaporado a 150 °C	% v/v	86,0	94,0	EN ISO 3405

n ′ .	Unidad	Lími	tes (1)	- Método de ensayo
Parámetro	Unidad	Mínimo	Máximo	
— punto final de ebullición	°C	170	195	EN ISO 3405
Residuo	% v/v	_	2,0	EN ISO 3405
Análisis de hidrocarburos:				
— olefinas	% v/v	6,0	13,0	EN 22854
— compuestos aromáticos	% v/v	25,0	32,0	EN 22854
— benceno	% v/v	_	1,00	EN 22854 EN 238
— saturados	% v/v	Informe		EN 22854
Relación carbono/hidrógeno		Informe		
Relación carbono/oxígeno		Info	orme	
Período de inducción (3)	minutos	480	_	EN ISO 7536
Contenido de oxígeno (4)	% m/m	3,3	3,7	EN 22854
Goma lavada por solvente (contenido de goma existente)	mg/100 ml	_	4	EN ISO 6246
Contenido de azufre (5)	mg/kg	_	10	EN ISO 20846 EN ISO 20884
Corrosión del cobre, 3 horas, 50 °C		_	Clase 1	EN ISO 2160
Contenido de plomo	mg/l	_	5	EN 237
Contenido de fósforo (6)	mg/l	_	1,3	ASTM D 3231
Etanol (4)	% v/v	9,0	10,0	EN 22854

⁽¹) Los valores indicados en la especificación son «valores reales». Para establecer los valores límite, se han aplicado los términos de la norma ISO 4259, «Productos petrolíferos. Determinación y aplicación de los datos de precisión en relación a los métodos de ensayo»; y para fijar un valor mínimo, se ha tenido en cuenta una diferencia mínima de 2R sobre cero; para fijar un valor máximo y un valor mínimo, la diferencia mínima es 4R (R = reproducibilidad). Pese a esta medida, que es necesaria por razones técnicas, el fabricante del combustible procurará obtener un valor cero cuando el valor máximo estipulado sea 2R y un valor medio cuando se indiquen límites máximo y mínimo. Si fuera necesario aclarar si un combustible cumple los requisitos de las especificaciones, se aplicarían los términos de la norma ISO 4259.

⁽²⁾ Se sustraerá un factor de corrección de 0,2 del MON y el RON para el cálculo del resultado final de conformidad con la norma EN 228:2008.

⁽³⁾ El combustible podrá contener antioxidantes y desactivadores de metales utilizados normalmente para estabilizar el caudal de la gasolina en las refinerías, pero no llevará ningún aditivo detergente/dispersante ni aceites disolventes.

⁽⁴⁾ El etanol es el único compuesto oxigenado que se añadirá intencionadamente al combustible de referencia. El etanol utilizado se ajustará a la norma EN 15376.

⁽⁵⁾ Se declarará el contenido real de azufre del combustible utilizado en el ensayo de tipo I.

⁽⁶⁾ No se añadirán de manera intencionada a este combustible de referencia compuestos que contengan fósforo, hierro, manganeso o plomo.

Tipo: etanol (E85)

D (TT -1 1	Lími	ites (1)	Mátodo de angares (2)
Parámetro	Unidad	Mínimo	Máximo	Método de ensayo (²)
Índice de octanos investigado (RON)		95,0	_	EN ISO 5164
Índice de octanoa motor (MON)		85,0	_	EN ISO 5163
Densidad a 15 °C	kg/m³	Info	orme	ISO 3675
Presión de vapor	kPa	40,0	60,0	EN ISO 13016-1 (DVPE)
Contenido de azufre (3) (4)	mg/kg	_	10	EN ISO 20846 EN ISO 20884
Estabilidad frente a la oxidación	minutos	360		EN ISO 7536
Contenido de goma existente (lavada por solvente)	mg/(100 ml)	_	5	EN ISO 6246
Aspecto (se determinará a temperatura am- biente o a 15 °C, la que sea supe- rior de las dos)		Claro y brillante, visiblemente libre de contaminantes suspendidos o precipitados		Inspección visual
Etanol y alcoholes superiores (7)	% v/v	83	85	EN 1601 EN 13132 EN 14517
Alcoholes superiores (C3-C8)	% v/v	_	2,0	
Metanol	% v/v		0,5	
Gasolina (5)	% v/v	Re	esto	EN 228
Fósforo	mg/l	0,2	3 (6)	ASTM D 3231
Contenido en agua	% v/v		0,3	ASTM E 1064
Contenido de cloruro inorgánico	mg/l		1	ISO 6227
рНе		6,5	9,0	ASTM D 6423
Corrosión de la lámina de cobre (3 h a 50 °C)	Clasificación	Clase 1		EN ISO 2160
Acidez (como ácido acético CH ₃ COOH)	% m/m (mg/l)	_	0,005 (40)	ASTM D 1613

Parámetro	Unidad -	Lími	Mátodo do opsavo (2)	
i arametro		Mínimo	Máximo	Método de ensayo (²)
Relación carbono/hidrógeno		Informe		
Relación carbono/oxígeno		Informe		

- (¹) Los valores indicados en la especificación son «valores reales». Para establecer los valores límite, se han aplicado los términos de la norma ISO 4259, «Productos petrolíferos. Determinación y aplicación de los datos de precisión en relación a los métodos de ensayo»; y para fijar un valor mínimo, se ha tenido en cuenta una diferencia mínima de 2R sobre cero; para fijar un valor máximo y un valor mínimo, la diferencia mínima es 4R (R = reproducibilidad).
 - Pese a esta medida, que es necesaria por razones técnicas, el fabricante del combustible procurará obtener un valor cero cuando el valor máximo estipulado sea 2R y un valor medio cuando se indiquen límites máximo y mínimo. Si fuera necesario aclarar si un combustible cumple los requisitos de las especificaciones, se aplicarían los términos de la norma ISO 4259.
- (2) En caso de litigio, los procedimientos para resolverlo y la interpretación de los resultados a los que se ha de recurrir se basarán en la precisión del método de ensayo descrita en la norma EN ISO 4259.
- (3) En casos de litigio nacional concerniente al contenido de azufre, las normas EN ISO 20846 o EN ISO 20884 se considerarán similares a la referencia incluida en el anexo nacional de la norma EN 228.
- (4) Se declarará el contenido real de azufre del combustible utilizado en el ensayo de tipo I.
- (5) El contenido de gasolina sin plomo puede determinarse como 100 menos la suma del contenido en porcentaje de agua y alcoholes.
- (6) No se añadirán de manera intencionada a este combustible de referencia compuestos que contengan fósforo, hierro, manganeso o plomo.
- (7) A condición de que cumpla la especificación de la norma EN 15376, el etanol es el único compuesto oxigenado que se añadirá intencionadamente a este combustible de referencia.

1.2. Datos técnicos del combustible de referencia que ha de utilizarse en los ensayos de vehículos equipados con motor de encendido por compresión

Tipo: gasóleo (B5)

Parámetro	Unidad	Lími	Mátada da angaya	
гагапіенго	Offidad	Mínimo	Máximo	– Método de ensayo
Índice de cetano (²)		52,0	54,0	EN ISO 5165
Densidad a 15 °C	kg/m³	833	837	EN ISO 3675
Destilación:				
— punto 50 %	°C	245	_	EN ISO 3405
— punto 95 %	°C	345	350	EN ISO 3405
— punto final de ebullición	°C	_	370	EN ISO 3405
Punto de inflamación	°C	55	_	EN 22719
Punto de obstrucción del filtro en frío	°C	_	- 5	EN 116
Viscosidad a 40 °C	mm²/s	2,3	3,3	EN ISO 3104
Hidrocarburos aromáticos policíclicos	% m/m	2,0	6,0	EN 12916
Contenido de azufre (3)	mg/kg	_	10	EN ISO 20846 EN ISO 20884

Parámetro	Unidad	Lími	Maria I	
rarametro	Offidad	Mínimo	Máximo	Método de ensayo
Corrosión de la tira de cobre		_	Clase 1	EN ISO 2160
Carbono Conradson en el residuo (10 % DR)	% m/m	_	0,2	EN ISO 10370
Contenido de cenizas	% m/m	_	0,01	EN ISO 6245
Contenido en agua	% m/m	_	0,02	EN ISO 12937
Número de neutralización (ácido fuerte)	mg KOH/g	_	0,02	ASTM D 974
Estabilidad frente a la oxidación (4)	mg/ml	_	0,025	EN ISO 12205
Lubricidad (diámetro de la huella de desgaste HFRR a 60 °C)	μm	_	400	EN ISO 12156
Estabilidad frente a la oxidación a 110 °C (4) (6)	h	20,0		EN 14112
FAME (5)	% v/v	4,5	5,5	EN 14078

- (¹) Los valores indicados en la especificación son «valores reales». Para establecer los valores límite, se han aplicado los términos de la norma ISO 4259, «Productos del petróleo: determinación y aplicación de datos de precisión en relación con los métodos de prueba»; y para fijar un valor mínimo, se ha tenido en cuenta una diferencia mínima de 2R sobre cero; para fijar un valor máximo y un valor mínimo, la diferencia mínima es 4R (R = reproducibilidad).
 - Pese a esta medida, que es necesaria por razones técnicas, el fabricante del combustible procurará obtener un valor cero cuando el valor máximo estipulado sea 2R y un valor medio cuando se indiquen límites máximo y mínimo. Si fuera necesario aclarar si un combustible cumple los requisitos de las especificaciones, se aplicarían los términos de la norma ISO 4259.
- (2) El rango del índice de cetano no se ajusta a los requisitos de un margen mínimo de 4R. No obstante, en caso de litigio entre el proveedor y el usuario del combustible, podrán aplicarse los términos de la norma ISO 4259 para resolver dicho litigio siempre que se efectúen varias mediciones, en número suficiente para conseguir la precisión necesaria, antes que determinaciones individuales.
- (3) Se declarará el contenido real de azufre del combustible utilizado en el ensayo de tipo I.
- (*) Aunque la estabilidad frente a la oxidación esté controlada, es probable que la vida útil sea limitada. Se consultará al proveedor sobre las condiciones de conservación y la duración en almacén.
- (5) El contenido de ésteres metílicos de ácidos grasos (FAME) ha de cumplir la especificación de la norma EN 14214.
- (6) La estabilidad frente a la oxidación puede demostrarse mediante las normas EN ISO 12205 o EN 14112. Dicho requisito se revisará sobre la base de las evaluaciones de la estabilidad oxidativa y los límites de ensayo de CEN/TC19.

Tipo: gasóleo (B7)

Parámetro	Unidad -	Lími	Maria I	
rarametro		Mínimo	Máximo	Método de ensayo
Índice de cetano		46,0		EN ISO 4264
Número de cetano (²)		52,0	56,0	EN ISO 5165
Densidad a 15 °C	kg/m³	833,0	837,0	EN ISO 12185

Parámetro	Unidad	Lím	Maria I	
Parametro	Unidad	Mínimo	Máximo	- Método de ensayo
Destilación:				
— punto 50 %	°C	245,0	_	EN ISO 3405
— punto 95 %	°C	345,0	360,0	EN ISO 3405
— punto final de ebullición	°C	_	370,0	EN ISO 3405
Punto de inflamación	°C	55	_	EN ISO 2719
Punto de enturbiamiento	°C	_	- 10	EN 23015
Viscosidad a 40 °C	mm²/s	2,30	3,30	EN ISO 3104
Hidrocarburos aromáticos policíclicos	% m/m	2,0	4,0	EN 12916
Contenido de azufre	mg/kg	_	10,0	EN ISO 20846 EN ISO 20884
Corrosión del cobre, 3 horas, 50 °C		_	Clase 1	EN ISO 2160
Carbono Conradson en el residuo (10 % DR)	% m/m	_	0,20	EN ISO 10370
Contenido de cenizas	% m/m	_	0,010	EN ISO 6245
Contaminación total	mg/kg	_	24	EN 12662
Contenido en agua	mg/kg	_	200	EN ISO 12937
Índice de acidez	mg KOH/g	_	0,10	EN ISO 6618
Lubricidad (diámetro de la huella de desgaste HFRR a 60 °C)	μm	_	400	EN ISO 12156
Estabilidad a la oxidación a 110 °C (³)	h	20,0		EN 15751
FAME (4)	% v/v	6,0	7,0	EN 14078

⁽¹) Los valores indicados en la especificación son «valores reales». Para establecer los valores límite, se han aplicado los términos de la norma ISO 4259, «Productos del petróleo: determinación y aplicación de datos de precisión en relación con los métodos de prueba»; y para fijar un valor mínimo, se ha tenido en cuenta una diferencia mínima de 2R sobre cero; para fijar un valor máximo y un valor mínimo, la diferencia mínima es 4R (R = reproducibilidad). Pese a esta medida, que es necesaria por razones técnicas, el fabricante del combustible procurará obtener un valor cero cuando el valor máximo estipulado sea 2R y un valor medio cuando se indiquen límites máximo y mínimo. Si fuera necesario aclarar si un combustible cumple los requisitos de las especificaciones, se aplicarían los términos de la norma ISO 4259.

⁽²⁾ El rango del número de cetano no se ajusta a los requisitos de un margen mínimo de 4R. No obstante, en caso de litigio entre el proveedor y el usuario del combustible, podrán aplicarse los términos de la norma ISO 4259 para resolver dicho litigio siempre que se efectúen varias mediciones, en número suficiente para conseguir la precisión necesaria, antes que determinaciones individuales.

⁽³⁾ Aunque la estabilidad frente a la oxidación esté controlada, es probable que la vida útil sea limitada. Se consultará al proveedor sobre las condiciones de conservación y la duración en almacén.

⁽⁴⁾ El contenido de ésteres metílicos de ácidos grasos (FAME) ha de cumplir la especificación de la norma EN 14214.

2. CARACTERÍSTICAS TÉCNICAS DEL CARBURANTE DE REFERENCIA UTILIZADO PARA SOMETER A ENSAYO A VEHÍCULOS EQUIPADOS CON MOTORES DE ENCENDIDO POR CHISPA A BAJAS TEMPERATURAS AMBIENTE (ENSAYO DE TIPO VI)

Tipo: gasolina (E5)

Parámetro	Unidad	Lími	Minds Is Is success	
Рагапіенто	Unidad	Mínimo	Máximo	Método de ensayo
Índice de octanos investigado (RON)		95,0	_	EN 25164 Pr. EN ISO 5164
Índice de octanos motor (MON)		85,0	_	EN 25163 Pr. EN ISO 5163
Densidad a 15 °C	kg/m³	743	756	EN ISO 3675 EN ISO 12185
Presión de vapor	kPa	56,0	95,0	EN ISO 13016-1 (DVPE)
Contenido en agua	% v/v		0,015	ASTM E 1064
Destilación:				
— evaporado a 70 °C	% v/v	24,0	44,0	EN ISO 3405
— evaporado a 100 °C	% v/v	50,0	60,0	EN ISO 3405
— evaporado a 150 °C	% v/v	82,0	90,0	EN ISO 3405
— punto final de ebullición	°C	190	210	EN ISO 3405
Residuo	% v/v	_	2,0	EN ISO 3405
Análisis de hidrocarburos:				
olefinas	% v/v	3,0	13,0	ASTM D 1319
compuestos aromáticos	% v/v	29,0	35,0	ASTM D 1319
benceno	% v/v	_	1,0	EN 12177
saturados	% v/v	Informe		ASTM 1319
Relación carbono/hidrógeno		Informe		
Relación carbono/oxígeno		Informe		
Período de inducción (²)	minutos	480	_	EN ISO 7536

Parámetro	Unidad	Lími	Mar 1 - 1	
гагапіенто	Unidad	Mínimo	Máximo	Método de ensayo
Contenido de oxígeno (3)	% m/m	Info	orme	EN 1601
Goma existente	mg/ml	_	0,04	EN ISO 6246
Contenido de azufre (4)	mg/kg	— 10		EN ISO 20846 EN ISO 20884
Corrosión de la tira de cobre		I	Clase 1	EN ISO 2160
Contenido de plomo	mg/l	_ 5		EN 237
Contenido de fósforo (5)	mg/l	— 1,3		ASTM D 3231
Etanol (3)	% v/v	4,7	5,3	EN 1601 EN 13132

- (¹) Los valores indicados en la especificación son «valores reales». Para establecer los valores límite, se han aplicado los términos de la norma ISO 4259, «Productos petrolíferos. Determinación y aplicación de los datos de precisión en relación a los métodos de ensayo»; y para fijar un valor mínimo, se ha tenido en cuenta una diferencia mínima de 2R sobre cero; para fijar un valor máximo y un valor mínimo, la diferencia mínima es 4R (R = reproducibilidad).
 Pese a esta medida, que es necesaria por razones técnicas, el fabricante del combustible procurará obtener un valor cero
 - cuando el valor máximo estipulado sea 2R y un valor medio cuando se indiquen límites máximo y mínimo. Si fuera necesario aclarar si un combustible cumple los requisitos de las especificaciones, se aplicarían los términos de la norma ISO 4259.
- (²) El combustible podrá contener antioxidantes y desactivadores de metales utilizados normalmente para estabilizar el caudal de la gasolina en las refinerías, pero no llevará ningún aditivo detergente/dispersante ni aceites disolventes.
- (3) A condición de que cumpla la especificación de la norma EN 15376, el etanol es el único compuesto oxigenado que se añadirá intencionadamente al combustible de referencia.
- (4) Se declarará el contenido real de azufre del combustible utilizado en el ensayo de tipo VI.
- (5) No se añadirán de manera intencionada a este combustible de referencia compuestos que contengan fósforo, hierro, manganeso o plomo.

Tipo: gasolina (E10)

Parámetro	Unidad	Lími) (1 1 1	
1 drametro	Omdad	Mínimo	Máximo	Método de ensayo
Índice de octanos investigado (RON) (²)		95,0	98,0	EN ISO 5164
Índice de octanos motor (MON) (²)		85,0	89,0	EN ISO 5163
Densidad a 15 °C	kg/m³	743,0	756,0	EN ISO 12185
Presión de vapor (DVPE)	kPa	56,0	95,0	EN 13016-1
Contenido en agua		máx. 0,05 Aspecto a – 7 °C: claro y brillante		EN 12937

Parámetro	Unidad	Lími	tes (1)	Método de ensayo
rurumetro	Onlada	Mínimo	Máximo	Wetodo de ensaye
Destilación:				
— evaporado a 70 °C	% v/v	34,0	46,0	EN ISO 3405
— evaporado a 100 °C	% v/v	54,0	62,0	EN ISO 3405
— evaporado a 150 °C	% v/v	86,0	94,0	EN ISO 3405
— punto final de ebullición	°C	170	195	EN ISO 3405
Residuo	% v/v	_	2,0	EN ISO 3405
Análisis de hidrocarburos:				
— olefinas	% v/v	6,0	13,0	EN 22854
— compuestos aromáticos	% v/v	25,0	32,0	EN 22854
— benceno	% v/v	_	1,00	EN 22854 EN 238
— saturados	% v/v	Informe		EN 22854
Relación carbono/hidrógeno		Informe		
Relación carbono/oxígeno		Info	orme	
Período de inducción (³)	minutos	480	_	EN ISO 7536
Contenido de oxígeno (4)	% m/m	3,3	3,7	EN 22854
Goma lavada por solvente (contenido de goma existente)	mg/100 ml	_	4	EN ISO 6246
Contenido de azufre (5)	mg/kg	_ 10		EN ISO 20846 EN ISO 20884
Corrosión del cobre, 3 horas, 50 °C		_	Clase 1	EN ISO 2160
Contenido de plomo	mg/l	_	5	EN 237

Parámetro	Unidad	Lími	Método de ensayo	
	Offidad	Mínimo	Máximo	Metodo de ensayo
Contenido de fósforo (6)	mg/l	_	1,3	ASTM D 3231
Etanol (4)	% v/v	9,0	10,0	EN 22854

- (1) Los valores indicados en la especificación son «valores reales». Para establecer los valores límite, se han aplicado los términos de la norma ISO 4259, «Productos petrolíferos. Determinación y aplicación de los datos de precisión en relación a los métodos de ensayo»; y para fijar un valor mínimo, se ha tenido en cuenta una diferencia mínima de 2R sobre cero; para fijar un valor máximo y un valor mínimo, la diferencia mínima es 4R (R = reproducibilidad). Pese a esta medida, que es necesaria por razones técnicas, el fabricante del combustible procurará obtener un valor cero cuando el valor máximo estipulado sea 2R y un valor medio cuando se indiquen límites máximo y mínimo. Si fuera necesario aclarar si un combustible cumple los requisitos de las especificaciones, se aplicarían los términos de la norma ISO 4259. Se sustraerá un factor de corrección de 0,2 del MON y el RON para el cálculo del resultado final de conformidad con la
- norma EN 228:2008.
- El combustible podrá contener antioxidantes y desactivadores de metales utilizados normalmente para estabilizar el caudal de la gasolina en las refinerías, pero no llevará ningún aditivo detergente/dispersante ni aceites disolventes.
- (4) El etanol es el único compuesto oxigenado que se añadirá intencionadamente al combustible de referencia. El etanol utilizado se ajustará a la norma EN 15376.
- Se declarará el contenido real de azufre del combustible utilizado en el ensayo de tipo I.
- No se añadirán de manera intencionada a este combustible de referencia compuestos que contengan fósforo, hierro, manganeso o plomo.

Tipo: etanol (E75)

Derference	Unidad	Lími	N.C. 1 1 (2)	
Parámetro	Unidad	Mínimo	Máximo	Método de ensayo (²)
Índice de octanos investigado (RON)		95	_	EN ISO 5164
Índice de octanos motor (MON)		85	_	EN ISO 5163
Densidad a 15 °C	kg/m³	Info	orme	EN ISO 12185
Presión de vapor	kPa	50	60	EN ISO 1 30 16-1 (DVPE)
Contenido de azufre (³) (⁴)	mg/kg	_	10	EN ISO 20846 EN ISO 20884
Estabilidad a la oxidación	minutos	360	_	EN ISO 7536
Contenido de goma existente (lavada por solvente)	mg/100 ml	_	4	EN ISO 6246
El aspecto se determinará a temperatura ambiente o a 15 °C, la más alta de las dos		Claro y brillante, visiblemente libre de contaminantes suspendidos o precipitados		Inspección visual
Etanol y alcoholes superiores (7)	% v/v	70	80	EN 1601 EN 13132 EN 1451 7

D ()	rr · 1 · 1	Lími	200	
Parámetro	Unidad	Mínimo	Máximo	Método de ensayo (²)
Alcoholes superiores (C ₃ -C ₈)	% v/v	_	2	
Metanol		_	0,5	
Gasolina (5)	% v/v	Re	esto	EN 228
Fósforo	mg/l	0,3 (6)		EN 15487 ASTM D 3231
Contenido en agua	% v/v	_	0,3	ASTM E 1064 EN 15 489
Contenido de cloruro inorgánico	mg/1	_	1	ISO 6227 EN 15492
рНе		6,5	9	ASTM D 6423 EN 15490
Corrosión de la lámina de cobre (3 h a 50 °C)	Clasificación	Clase I		EN ISO 2160
Acidez	% m/m		0,005	ASTM 0161 3
(como ácido acético CH ₃ COOH)	mg/1		40	EN 15491
Relación carbono/hidrógeno		Informe		
Relación carbono/oxígeno		Informe		

- (¹) Los valores indicados en las especificaciones son «valores reales». Para establecer los valores límite, se han aplicado los términos de la norma ISO 4259, «Productos petrolíferos. Determinación y aplicación de los datos de precisión en relación a los métodos de ensayo». Para fijar un valor mínimo, se ha tenido en cuenta una diferencia mínima de 2R sobre cero. Para fijar un valor máximo y un valor mínimo, la diferencia mínima es de 4R (R = reproducibilidad). Pese a tratarse de un procedimiento necesario por razones técnicas, el fabricante del combustible procurará obtener un valor cero cuando el valor máximo estipulado sea 2R y un valor medio cuando se indiquen límites máximo y mínimo. Si fuera necesario aclarar si un combustible cumple los requisitos de las especificaciones, se aplicarán los términos de la norma ISO 4259.
- (2) En caso de litigio, los procedimientos para resolverlo y la interpretación de los resultados a los que se ha de recurrir se basarán en la precisión del método de ensayo descrita en la norma EN ISO 4259.
- (3) En casos de litigio nacional concerniente al contenido de azufre, las normas EN ISO 20846 o EN ISO 20884 se considerarán similares a la referencia incluida en el anexo nacional de la norma EN 228.
- (4) Se declarará el contenido real de azufre del combustible utilizado en el ensayo de tipo VI.
- (5) El contenido de gasolina sin plomo puede determinarse como 100 menos la suma del contenido en porcentaje de agua y alcoholes.
- (6) No se añadirán de manera intencionada a este combustible de referencia compuestos que contengan fósforo, hierro, manganeso o plomo.
- (7) A condición de que cumpla la especificación de la norma EN 15376, el etanol es el único compuesto oxigenado que se añadirá intencionadamente a este combustible de referencia.

ANEXO 10 bis

ESPECIFICACIONES DE LOS COMBUSTIBLES GASEOSOS DE REFERENCIA

- ESPECIFICACIONES DE LOS COMBUSTIBLES GASEOSOS DE REFERENCIA
- 1.1. Datos técnicos de los combustibles de GLP de referencia utilizados para la realización de ensayos en vehículos con respecto a los límites de emisión que figuran en el cuadro 1 del punto 5.3.1.4 del presente Reglamento — Ensayo de tipo I

Tipo: GLP

Parámetro	Unidad	Combustible A	Combustible B	Método de ensayo
Composición:				ISO 7941
Contenido de C ₃	% vol	30 ± 2	85 ± 2	
Contenido de C ₄	% vol	Resto (1)	Resto (1)	
< C ₃ , > C ₄	% vol	máx. 2	máx. 2	
Olefinas	% vol	máx. 12	máx. 15	
Residuo de evaporación	mg/kg	máx. 50	máx. 50	ISO 13757 o EN 15470
Agua a 0 °C		Exención	Exención	EN 15469
Contenido total de azufre	mg/kg	máx. 50	máx. 50	EN 24260 o ASTM 6667
Sulfuro de hidrógeno		Ninguno	Ninguno	ISO 8819
Corrosión de la lámina de cobre	Clasificación	Clase 1	Clase 1	ISO 6251 (²)
Olor		Característico	Característico	
Índice de octanos motor (MON)		89 mín.	89 mín.	EN 589, anexo B

1.2. Datos técnicos de los combustibles de referencia del gas natural o el biometano

Tipo: gas natural/biometano

Características	Unidades	Fundamento	Lím	nites	Método de ensayo	
			Mínimo	Máximo		
Combustible de referencia G ₂₀						
Composición:						
Metano	% mol	100	99	100	ISO 6974	
Resto (¹)	% mol	_	_	1	ISO 6974	

 ⁽¹) El resto debe leerse de la manera siguiente: resto = 100 − C₃ ≤ C₃ ≥ C₄.
 (²) Este método puede no determinar con exactitud la presencia de materiales corrosivos si la muestra contiene inhibidores de corrosión u otras sustancias químicas que disminuyan la corrosividad de la muestra respecto a la lámina de cobre. Por consiguiente, se prohíbe la adición de dichos compuestos con la única finalidad de sesgar el método de ensayo.

Características	Unidades	Fundamento	Lím	Método de ensayo			
Caracteristicas	Official		Mínimo	Máximo	Wietodo de elisayo		
N_2	% mol				ISO 6974		
Contenido de azufre	mg/m³ (²)	_		10	ISO 6326-5		
Índice de Wobbe (neto)	MJ/m³ (³)	48,2	47,2	49,2			
Combustible de referencia G ₂₅	Combustible de referencia G ₂₅						
Composición:							
Metano	% mol	86	84	88	ISO 6974		
Resto (¹)	% mol	_	_	1	ISO 6974		
N_2	% mol	14	12	16	ISO 6974		
Contenido de azufre	mg/m³ (²)	_	_	10	ISO 6326-5		
Índice de Wobbe (neto)	MJ/m ³ (³)	39,4	38,2	40,6			

1.3. Datos técnicos del hidrógeno para motores de combustión interna

Tipo: hidrógeno para motores de combustión interna

Características	Unidades	Lím	Mátada da angaya	
Caracteristicas	Offidades	Mínimo	Máximo	Método de ensayo
Pureza del hidrógeno	% mol	98	100	ISO 14687-1
Hidrocarburos totales	μmol/mol	0	100	ISO 14687-1
Agua (¹)	μmol/mol	0	(2)	ISO 14687-1
Oxígeno	μmol/mol	0	(2)	ISO 14687-1
Argón	μmol/mol	0	(2)	ISO 14687-1
Nitrógeno	μmol/mol	0	(2)	ISO 14687-1
CO	μmol/mol	0	1	ISO 14687-1
Azufre	μmol/mol	0	2	ISO 14687-1
Partículas permanentes (3)				ISO 14687-1

⁽¹) Gases inertes (que no sean N₂) + C₂ + C₂₊. (²) Valor a determinar a 293,2 K (20 °C) y 101,3 kPa. (³) Valor a determinar a 273,2 K (0 °C) y 101,3 kPa.

Combinación de agua, oxígeno, nitrógeno y argón: 1,900 µmol/mol. El hidrógeno no contendrá polvo, arena, suciedad, gomas, aceites u otras sustancias en cantidades suficientes para dañar el equipo de la estación de alimentación del vehículo (motor).

1.4. Datos técnicos del hidrógeno para vehículos con pilas de combustible

Tipo: hidrógeno para vehículos con pilas de combustible

Constalation	Unidades	Líı	NC 1 1	
Características	Unidades	Mínimo	Máximo	Método de ensayo
Combustible de hidrógeno (1)	% mol	99,99	100	ISO 14687-2
Gases totales (2)	μmol/mol	0	100	
Hidrocarburos totales	μmol/mol	0	2	ISO 14687-2
Agua	μmol/mol	0	5	ISO 14687-2
Oxígeno	μmol/mol	0	5	ISO 14687-2
Helio (He), Nitrógeno (N ₂) y Argón (Ar)	μmol/mol	0	100	ISO 14687-2
CO ₂	μmol/mol	0	2	ISO 14687-2
СО	μmol/mol	0	0,2	ISO 14687-2
Compuestos de azufre totales	μmol/mol	0	0,004	ISO 14687-2
Formaldehído (HCHO)	μmol/mol	0	0,01	ISO 14687-2
Ácido fórmico (HCOOH)	μmol/mol	0	0,2	ISO 14687-2
Amoníaco (NH ₃)	μmol/mol	0	0,1	ISO 14687-2
Compuestos halogenados totales	μmol/mol	0	0,05	ISO 14687-2
Tamaño de las partículas	μm	0	10	ISO 14687-2
Concentración de partículas	μg/l	0	1	ISO 14687-2

⁽¹) La tasa de combustible de hidrógeno se determina restando el contenido total de constituyentes gaseosos distintos del hidrógeno enumerados en el cuadro (gases totales), expresado en porcentaje de moles, de 100 % de moles. El resultado obtenido es inferior a la suma de los límites máximos admisibles de todos los constituyentes distintos del hidrógeno que figuran en el cuadro.

1.5. Datos técnicos de los combustibles de GN/biometano

Tipo: H2GN

Los combustibles de hidrógeno y gas natural/biometano que componen una mezcla H2GN deben cumplir por separado sus características correspondientes expresadas en el presente anexo.

⁽²⁾ El valor de los gases totales es la suma de los valores correspondientes a los constituyentes distintos del hidrógeno enumerados en el cuadro, excepto las partículas.

ANEXO 11

DIAGNÓSTICO A BORDO PARA VEHÍCULOS DE MOTOR

1. INTRODUCCIÓN

El presente anexo se refiere a los aspectos funcionales de los sistemas de diagnóstico a bordo para el control de emisiones de los vehículos de motor.

2. DEFINICIONES

A efectos del presente anexo, se entenderá por:

- 2.1. «Diagnóstico a bordo», el sistema de diagnóstico a bordo para el control de emisiones que puede determinar la zona probable de mal funcionamiento por medio de códigos de fallo almacenados en la memoria del ordenador.
- 2.2. «Tipo de vehículo», la categoría de vehículos de motor que no difieran entre sí en características esenciales del motor y del sistema de diagnóstico a bordo.
- 2.3. «Familia de vehículos», el agrupamiento de vehículos de un fabricante que, en razón de su diseño, se espera que tengan características similares en cuanto a las emisiones de escape y el sistema de diagnóstico a bordo. Cada uno de los vehículos de la familia deberá cumplir los requisitos del presente Reglamento de conformidad con el apéndice 2 del presente anexo.
- 2.4. «Sistema de control de emisiones», el controlador electrónico de gestión del motor y cualquier componente del sistema de escape o de evaporación relacionado con las emisiones que suministre una señal de entrada o reciba una señal de salida de dicho controlador.
- 2.5. «Indicador de mal funcionamiento», el indicador óptico o acústico que informa claramente al conductor del vehículo en caso de mal funcionamiento de cualquier componente relacionado con las emisiones y conectado al sistema de diagnóstico a bordo, o del propio sistema de diagnóstico a bordo.
- 2.6. «Mal funcionamiento», el fallo de un componente o sistema relacionado con las emisiones a consecuencia del cual estas superen los límites señalados en el punto 3.3.2 del presente anexo o la incapacidad del sistema de diagnóstico a bordo para cumplir los requisitos básicos de supervisión del presente anexo.
- 2.7. «Aire secundario», el aire introducido en el sistema de escape por medio de una bomba o una válvula aspiradora, o por cualquier otro medio, destinado a facilitar la oxidación del HC y el CO contenidos en la corriente de gases de escape.
- 2.8. «Fallo de encendido del motor», la falta de combustión en el cilindro de un motor de encendido por chispa debido a la ausencia de chispa, a la medición inadecuada del combustible, a la compresión deficiente o a cualquier otra causa. En lo referente a la supervisión del diagnóstico a bordo, es el porcentaje de fallos de encendido en un número total de arranques (declarado por el fabricante) a consecuencia del cual las emisiones superan los límites señalados en el punto 3.3.2 del presente anexo o el porcentaje que puede acarrear el sobrecalentamiento del catalizador o catalizadores de escape y ocasionar daños irreversibles.
- 2.9. «Ensayo de tipo I», el ciclo de conducción (partes 1 y 2) utilizado para las homologaciones en lo que respecta a las emisiones, tal como se específica en los cuadros A4a/1 y A4a/2 del anexo 4 bis del presente Reglamento.
- 2.10. «Ciclo de conducción», el arranque del motor, el modo de conducción en el que, si existiera mal funcionamiento, este sería detectado y la parada del motor.
- 2.11. «Ciclo de calentamiento», el tiempo de funcionamiento del vehículo suficiente para que la temperatura del refrigerante aumente en al menos 22 K desde el arranque del motor y alcance un valor mínimo de 343 K (70 °C).
- 2.12. «Reajuste de combustible», los reglajes efectuados por retroalimentación en el programa básico de calibración de combustible. Los reglajes del reajuste de combustible a corto plazo son dinámicos e instantáneos. Los reglajes del programa de calibración de combustible a largo plazo son mucho más graduales. Los reglajes a largo plazo compensan las diferencias entre vehículos y los cambios graduales que se producen con el paso del tiempo.

2.13. «Valor calculado de la carga», la indicación del flujo de aire actual dividido por el flujo de aire en su punto máximo, con este último corregido en función de la altitud cuando proceda. Esta definición proporciona un número adimensional que no es específico del motor y que suministra al técnico de servicio una indicación del porcentaje de la capacidad del motor que está siendo utilizada (tomando como apertura total de la válvula el 100 %).

$$CLV = \frac{\text{Flujo de aire actual}}{\text{Flujo de aire de pico (a nivel del mar)}} \cdot \frac{\text{Presión atmosférica (a nivel del mar)}}{\text{Presión barométrica}}$$

- 2.14. «Modo permanente de emisión por defecto», la situación en la que el controlador de gestión del motor cambia permanentemente a un reglaje que no requiere una señal de entrada de un componente o sistema averiado cuando dicho componente o sistema averiado dé lugar al aumento de las emisiones procedentes del vehículo hasta un nivel superior a los límites señalados en el punto 3.3.2 del presente anexo.
- 2.15. «Unidad de toma de fuerza», el dispositivo de salida accionado por el motor y destinado al accionamiento de equipos auxiliares montados en el vehículo.
- 2.16. «Acceso», la disponibilidad de todos los datos del diagnóstico a bordo relativos a las emisiones, incluidos todos los códigos de fallo necesarios para la inspección, el diagnóstico, el mantenimiento o la reparación de las piezas del vehículo relacionadas con las emisiones, a través de la interfaz serial de la conexión estándar de diagnóstico (de conformidad con el punto 6.5.3.5 del apéndice 1 del presente anexo).
- 2.17. «Ilimitado»:
- 2.17.1. el acceso que no depende de un código de acceso o dispositivo similar que solo puede facilitar el fabricante, o
- 2.17.2. el acceso que permite evaluar los datos generados sin necesidad de una información descodificadora única, salvo que la información misma esté estandarizada.
- 2.18. «Normalizado», el hecho de que toda la información del flujo de datos, incluidos los códigos de fallo utilizados, solo se genere de conformidad con unas normas industriales que, por estar claramente definidos su formato y las opciones permitidas, proporcionan un nivel máximo de armonización en la industria de los vehículos de motor y cuya utilización se autoriza expresamente en el presente Reglamento.
- 2.19. «Información sobre reparaciones», toda la información requerida para el diagnóstico, el mantenimiento, la inspección, la supervisión periódica o la reparación del vehículo, que los fabricantes ponen a disposición de los talleres/concesionarios autorizados. Cuando resulte necesario, esta información incluirá los manuales de servicio, las guías técnicas, las indicaciones de diagnóstico (por ejemplo, los valores teóricos mínimo y máximo requeridos para las mediciones), los diagramas de cableado, el número de identificación de calibración del software aplicable a un tipo de vehículo, las instrucciones para casos concretos y específicos, la información facilitada acerca de herramientas y equipos, la información sobre registros de datos y los datos bidireccionales de supervisión y ensayo. El fabricante no estará obligado a hacer pública la información que esté protegida por derechos de propiedad intelectual o forme parte de los conocimientos técnicos específicos de los fabricantes o los proveedores del equipo original; en este caso, no se denegará indebidamente la información técnica necesaria.
- 2.20. «Deficiencia», en relación con los sistemas de diagnóstico a bordo de los vehículos, que hasta dos componentes o sistemas diferentes supervisados contienen características de funcionamiento temporales o permanentes que afectan a la habitual eficacia de supervisión del diagnóstico a bordo de dichos componentes o sistemas o no cumplen todos los demás requisitos detallados del diagnóstico a bordo. Podrán recibir la homologación de tipo, matricularse y comercializarse los vehículos que presenten las deficiencias mencionadas de acuerdo con los requisitos del punto 4 del presente anexo.
- 3. REQUISITOS Y ENSAYOS
- 3.1. Todos los vehículos estarán equipados con un sistema de diagnóstico a bordo diseñado, fabricado e instalado de manera que pueda identificar los distintos tipos de deterioro o mal funcionamiento a lo largo de toda la vida del vehículo. Para cumplir este objetivo, la autoridad de homologación de tipo aceptará que los vehículos que hayan recorrido distancias superiores a la distancia de durabilidad de tipo V (de conformidad con el anexo 9 del presente Reglamento), a la que se hace referencia en el punto 3.3.1 del presente anexo, puedan presentar cierto deterioro en el funcionamiento del sistema de diagnóstico a bordo, de tal manera que puedan rebasarse los límites de las emisiones señalados en el punto 3.3.2 del presente anexo antes de que el sistema de diagnóstico a bordo indique un fallo al conductor del vehículo.
- 3.1.1. El acceso al sistema de diagnóstico a bordo necesario para la inspección, el diagnóstico, el mantenimiento o la reparación del vehículo deberá ser ilimitado y normalizado. Todos los códigos de fallo relacionados con las emisiones deberán ajustarse a lo dispuesto en el punto 6.5.3.4 del apéndice 1 del presente anexo.

3.1.2. El fabricante, a más tardar tres meses después de haber facilitado la información sobre reparaciones a cualquier concesionario o taller autorizado, deberá transmitir dicha información (incluidas todas las modificaciones y adiciones posteriores), a cambio de un pago razonable y no discriminatorio, y notificarlo en consecuencia a la autoridad de homologación de tipo.

En caso de incumplimiento de estas disposiciones, la autoridad de homologación de tipo adoptará las medidas adecuadas, de conformidad con los procedimientos relativos a la homologación y a la revisión, para garantizar que la información sobre reparaciones está disponible.

- 3.2. El sistema de diagnóstico a bordo estará diseñado, fabricado e instalado en el vehículo de manera que pueda cumplir los requisitos del presente anexo en condiciones normales de utilización.
- 3.2.1. Desactivación temporal del sistema de diagnóstico a bordo
- 3.2.1.1. El fabricante podrá inhabilitar el sistema de diagnóstico a bordo cuando su capacidad de control se vea afectada por niveles de combustible bajos. La inhabilitación no deberá producirse cuando el nivel del depósito de combustible sea superior al 20 % de su capacidad nominal.
- 3.2.1.2. El fabricante podrá inhabilitar el sistema de diagnóstico a bordo cuando la temperatura ambiente de arranque del motor sea inferior a 266 K (– 7 °C) o en altitudes superiores a 2 500 m sobre el nivel del mar, siempre que presente datos o una evaluación industrial que demuestre adecuadamente que la supervisión no sería fiable en tales condiciones. El fabricante también podrá solicitar la inhabilitación del sistema de diagnóstico a bordo a otras temperaturas ambiente de arranque del motor cuando demuestre al organismo competente, mediante datos o una evaluación industrial, que en tales condiciones se producirían errores en el diagnóstico. No será necesario iluminar el indicador de mal funcionamiento cuando se superen los umbrales del diagnóstico a bordo durante una regeneración, siempre y cuando no haya ningún defecto.
- 3.2.1.3. En los vehículos diseñados para permitir la instalación de unidades de toma de fuerza está permitida la inhabilitación de los sistemas de supervisión afectados siempre que esta se produzca únicamente cuando la unidad de toma de fuerza se encuentre activa.

Además de lo establecido en el presente punto, el fabricante podrá desactivar temporalmente el sistema de diagnóstico a bordo en las siguientes condiciones:

- a) en lo que respecta a los vehículos flexifuel o monocombustible/bicombustible de gas, durante un minuto tras repostar combustible para permitir a la unidad de control eléctrico reconocer la calidad y composición del mismo;
- b) en lo que respecta a los vehículos bicombustible, durante cinco segundos tras el cambio al otro combustible para permitir el reajuste de los parámetros del motor;
- c) el fabricante podrá desviarse de estos límites temporales si puede demostrar que la estabilización del sistema de alimentación tras la realimentación o el cambio a otro combustible requiere más tiempo por razones técnicas justificadas. En cualquier caso, se reactivará el sistema de diagnóstico a bordo tan pronto como se haya reconocido la calidad y la composición del combustible o se hayan reajustado los parámetros del motor.
- 3.2.2. Fallo de encendido del motor en los vehículos equipados con motor de encendido por chispa
- 3.2.2.1. En condiciones específicas de velocidad y carga del motor, los fabricantes podrán adoptar criterios de mal funcionamiento basados en un porcentaje de fallos de encendido más elevado que el declarado a la autoridad, siempre que se pueda demostrar que la detección de niveles inferiores de fallos de encendido no sería fiable.
- 3.2.2.2. Cuando un fabricante pueda demostrar a la autoridad que la detección de niveles superiores de porcentaje de fallos de encendido sigue sin ser viable o que los fallos de encendido no se pueden distinguir de otros efectos (carreteras en mal estado, cambios de transmisión, momento posterior al encendido, etc.), podrá desactivarse el sistema de supervisión de fallos de encendido.
- 3.3. Descripción de los ensayos
- 3.3.1. Los ensayos se llevarán a cabo en el vehículo utilizado para el ensayo de durabilidad de tipo V que figura en el anexo 9 del presente Reglamento utilizando el procedimiento de ensayo del apéndice 1 del presente anexo. Los ensayos se realizarán al término del ensayo de durabilidad de tipo V.
 - Cuando no se lleve a cabo el ensayo de durabilidad de tipo V o cuando así lo solicite el fabricante, podrá utilizarse para los ensayos de demostración del diagnóstico a bordo un vehículo representativo y sometido a un envejecimiento adecuado.
- 3.3.2. El sistema de diagnóstico a bordo indicará el fallo de un componente o sistema relacionado con las emisiones cuando dicho fallo dé como resultado emisiones que superen los límites umbral que figuran en los cuadros A11/1, A11/2 o A11/3 conforme a lo dispuesto en el punto 12 del presente Reglamento.

3.3.2.1. En el cuadro A11/1 figuran los límites umbral del diagnóstico a bordo para los vehículos que cuentan con la homologación de tipo con respecto a los límites de emisión establecidos en el cuadro 1 del punto 5.3.1.4 del presente Reglamento a partir de las fechas previstas en los puntos 12.2.3 y 12.2.4 del presente Reglamento en el caso de las nuevas homologaciones de tipo y los vehículos nuevos, respectivamente.

Cuadro A11/1
Límites umbral definitivos del diagnóstico a bordo

		Masa de refe- rencia (MR)	Masa de monóxido de carbono		Masa de hidrocarburos no metánicos		Masa de óxidos de nitrógeno		Masa de materia parti- culada (¹)		Número de partículas (¹)	
		kg	(CO) (mg/km)		(HCNM) (mg/km)		(NO _x) (mg/km)		(MP) (mg/km)		(NP) (nº/km)	
Cate- goría	Clase		ECH	ECM	ECH	ECM	ECH	ECM	ECM	ЕСН	ECM	ECH
M	_	Todos	1 900	1 750	170	290	90	140	12	12		
N_1	I	MR ≤ 1 305	1 900	1 750	170	290	90	140	12	12		
	II	1 305 < MR- ≤ 1 760	3 400	2 200	225	320	110	180	12	12		
	III	1 760 < MR	4 300	2 500	270	350	120	220	12	12		
N ₂		Todos	4 300	2 500	270	350	120	220	12	12		

ECH: encendido por chispa;

ECM: encendido por compresión.

3.3.2.2. Hasta las fechas previstas en los puntos 12.2.3 y 12.2.4 del presente Reglamento en relación con las nuevas homologaciones de tipo y los vehículos nuevos, respectivamente, los límites umbral del diagnóstico a bordo que figuran en el cuadro A11/2 se aplicarán a elección del fabricante a los vehículos que cuentan con la homologación de tipo con respecto a los límites de emisión establecidos en el cuadro 1 del punto 5.3.1.4 del presente Reglamento.

Cuadro A11/2
Límites umbral preliminares del diagnóstico a bordo

		Masa de refe- rencia (MR)	Masa de monóxido de carbono		Masa de hidrocar- buros no metá- nicos		Masa de óxidos de nitrógeno		Masa de materia particulada (¹)		
		kg		(CO) (mg/km)		(HCNM) (mg/km)		(NO _x) (mg/km)		(MP) (mg/km)	
Cate- goría	Clase		ЕСН	ECM	ECH	ECM	ECH	ECM	ECM	ECH	
M	_	Todos	1 900	1 750	170	290	150	180	25	25	
N_1	I	MR ≤ 1 305	1 900	1 750	170	290	150	180	25	25	
	II	1 305 < MR- ≤ 1 760	3 400	2 200	225	320	190	220	25	25	
	III	1 760 < MR	4 300	2 500	270	350	210	280	30	30	

⁽¹) Los límites relativos a la masa y al número de partículas correspondientes al encendido por chispa se aplican únicamente a los vehículos equipados con motores de inyección directa.

ES

		Masa de refe- rencia (MR)	Masa de r de car		Masa de hidrocar- buros no metá- nicos		Masa de óxidos de nitrógeno		Masa de materia particulada (¹)	
	kg (CO) (mg/km)		(HCNM) (mg/km)		(NO _x) (mg/km)		(MP) (mg/km)			
N ₂		Todos	4 300	2 500	270	350	210	280	30	30

ECH: encendido por chispa; ECM: encendido por compresión.

3.3.2.3. En el cuadro A11/3 figuran los límites umbral del diagnóstico a bordo para los vehículos de encendido por compresión que cumplen los valores límite de emisión expuestos en el cuadro 1 del punto 5.3.1.4 del presente Reglamento y que recibieron la homologación de tipo antes de las fechas mencionadas en el punto 12.2.1 de este Reglamento. Estos límites umbral dejarán de aplicarse a partir de las fechas establecidas en el punto 12.2.2 del presente Reglamento a los vehículos nuevos que sean matriculados, vendidos o puestos en circulación.

Cuadro A11/3
Límites umbral provisionales del diagnóstico a bordo

		Masa de refe- rencia	Masa de hidro- monóxido de carbono metánicos		Masa de óxidos de nitrógeno	Masa de materia parti- culada
		(MR) (kg)	(CO) (mg/km)	(HCNM) (mg/km)	(NO _x) (mg/km)	(MP) (mg/km)
Categoría	Clase		ECM	ECM	ECM	ECM
M		Todos	1 900	320	240	50
N_1	I	MR ≤ 1 305	1 900	320	240	50
	II	1 305 <mr≤- 1 760</mr≤- 	2 400	360	315	50
	III	1 760 < MR	2 800	400	375	50
N ₂	_	Todos	2 800	400	375	50

ECH: encendido por chispa;

ECM: encendido por compresión.

3.3.3. Requisitos de supervisión para vehículos equipados con motor de encendido por chispa.

Para cumplir los requisitos del punto 3.3.2 del presente anexo, el sistema de diagnóstico a bordo deberá supervisar, como mínimo, los elementos que figuran a continuación.

3.3.3.1. La reducción de la eficacia del convertidor catalítico con respecto a las emisiones de HCT y NO_x. Los fabricantes podrán supervisar el catalizador frontal solo o en combinación con el catalizador o catalizadores inmediatamente posteriores. Se considerará que un catalizador supervisado o una combinación de catalizadores supervisada funciona mal cuando las emisiones superen los límites umbral de HCNM o NO_x que figuran en el punto 3.3.2 del presente anexo.

⁽¹⁾ Los límites relativos a la masa y al número de partículas correspondientes al encendido por chispa se aplican únicamente a los vehículos equipados con motores de inyección directa.

- 3.3.2. La presencia de fallos de encendido en el ámbito de funcionamiento del motor delimitado por las líneas siguientes:
 - a) una velocidad máxima de 4 500 min⁻¹ o que sea 1 000 min⁻¹ superior a la velocidad más alta alcanzada durante un ciclo de ensayo de tipo I (la que sea inferior);
 - b) la línea de par positivo (es decir, la carga del motor con la transmisión en punto muerto);
 - c) una línea que una los siguientes puntos de funcionamiento del motor: la línea de par positivo a 3 000 min⁻¹ y un punto de la línea de velocidad máxima definida en la letra a) con un vacío en el colector del motor inferior en 13,33 kPa al de la línea de par positivo.
- 3.3.3.3. Deterioro del sensor de oxígeno
 - El presente punto significa que se supervisará el deterioro de todos los sensores de oxígeno instalados y utilizados para supervisar el mal funcionamiento del convertidor catalítico según los requisitos del presente anexo.
- 3.3.3.4. Si están activos en el combustible seleccionado otros sistemas o componentes del sistema de control de emisiones, o sistemas o componentes de la cadena de tracción relacionados con las emisiones que estén conectados a un ordenador, cuyo fallo pueda dar como resultado que las emisiones de escape superen los límites señalados en el punto 3.3.2 del presente anexo.
- 3.3.3.5. Salvo si se controla de otro modo, la continuidad del circuito de cualquier otro componente de la cadena de tracción relacionado con las emisiones y conectado a un ordenador, incluidos los sensores pertinentes que permitan efectuar las funciones de supervisión.
- 3.3.3.6. Como mínimo, la continuidad del circuito del control electrónico de purgado de las emisiones de evaporación.
- 3.3.3.7. Por lo que respecta a los motores de encendido por chispa con inyección directa, se supervisará todo mal funcionamiento que pueda dar lugar a emisiones que sobrepasen los límites umbral de partículas establecidos en el punto 3.3.2 del presente anexo y que deba supervisarse de acuerdo con los requisitos del presente anexo en los motores de encendido por compresión.
- 3.3.4. Requisitos de supervisión para vehículos equipados con motor de encendido por compresión
 - Para cumplir los requisitos del punto 3.3.2 del presente anexo, el sistema de diagnóstico a bordo deberá supervisar los elementos que figuran a continuación.
- 3.3.4.1. La reducción de la eficacia del convertidor catalítico cuando esté instalado.
- 3.3.4.2. La funcionalidad y la integridad del filtro de partículas cuando esté instalado.
- 3.3.4.3. La continuidad del circuito y el fallo total del accionador o accionadores electrónicos de cantidad de combustible inyectada y de avance del sistema de inyección de combustible.
- 3.3.4.4. Otros sistemas o componentes del sistema de control de emisiones, o sistemas o componentes de la cadena de tracción relacionados con las emisiones, que estén conectados a un ordenador y cuyo fallo pueda dar como resultado que las emisiones de escape superen los límites señalados en el punto 3.3.2 del presente anexo. Son ejemplos de tales sistemas o componentes los de supervisión y control del flujo másico de aire, el flujo volumétrico de aire (y la temperatura), la presión de sobrealimentación y la presión en el colector de admisión (así como los correspondientes sensores necesarios para la ejecución de estas funciones).
- 3.3.4.5. Salvo si se controla de otro modo, la continuidad del circuito de cualquier otro componente de la cadena de tracción relacionado con las emisiones y conectado a un ordenador.
- 3.3.4.6. Se supervisarán los casos de mal funcionamiento y la reducción de la eficiencia del sistema de recirculación de los gases.
- 3.3.4.7. Se supervisarán los casos de mal funcionamiento y la reducción de la eficiencia en todo sistema de postratamiento de NO_x que utilice un reactivo y en el subsistema de dosificación del reactivo.
- 3.3.4.8. Se supervisarán los casos de mal funcionamiento y la reducción de la eficiencia en todo sistema de postratamiento de NO_x que no utilice ningún reactivo.
- 3.3.4.9 No obstante, los dispositivos siguientes se supervisarán en cuanto al fallo total o a su retirada (si retirarlos puede provocar que se superen los límites de emisiones aplicables):
 - a) los filtros de partículas instalados en motores de encendido por compresión como unidades independientes o integrados en un dispositivo de control de emisiones combinado;

- b) los sistemas de postratamiento de NO_x instalados en motores de encendido por compresión como unidades independientes o integrados en un dispositivo de control de emisiones combinado;
- c) los catalizadores de oxidación diésel (DOC) instalados en motores de encendido por compresión como unidades independientes o integrados en un dispositivo de control de emisiones combinado.
- 3.3.4.10 Los dispositivos mencionados en el punto 3.3.4.9 de este anexo también se supervisarán en lo que respecta a cualquier fallo que pueda provocar que se superen los límites umbral del diagnóstico a bordo aplicables.
- 3.3.5. Los fabricantes podrán demostrar a la autoridad de homologación de tipo que determinados componentes o sistemas no requieren supervisión cuando, en caso de fallo total o retirada de los mismos, las emisiones no superen los límites señalados en el punto 3.3.2 del presente anexo.
- 3.4. Cada vez que se ponga en marcha el motor, se iniciará una secuencia de verificaciones de diagnóstico que se completará al menos una vez siempre que se cumplan las condiciones de ensayo adecuadas. Las condiciones de ensayo se seleccionarán de manera que todas ellas ocurran en condiciones normales de conducción, tal y como se indica en el ensayo de tipo I.
- 3.5. Activación del indicador de mal funcionamiento
- 3.5.1. El sistema de diagnóstico a bordo deberá incluir un indicador de mal funcionamiento fácilmente visible por el operador del vehículo. El indicador de mal funcionamiento se utilizará únicamente con el propósito de indicar al conductor el encendido de emergencia o el funcionamiento en modo degradado. El indicador de mal funcionamiento será visible en todas las condiciones de iluminación razonables. Cuando esté activado, mostrará un símbolo conforme a la norma ISO 2575. Ningún vehículo estará equipado con más de un indicador de mal funcionamiento de objetivo general para problemas relacionados con las emisiones. Se permite el uso de distintos indicadores luminosos para objetivos específicos (por ejemplo, para el sistema de frenos, el uso del cinturón de seguridad, la presión del aceite, etc.). Está prohibido utilizar el color rojo para el indicador de mal funcionamiento.
- 3.5.2. En relación con las estrategias que requieran más de dos ciclos de preacondicionamiento por cada activación del indicador de mal funcionamiento, el fabricante aportará datos o una evaluación industrial que demuestre adecuadamente que el sistema de supervisión es igualmente eficaz y oportuno en la detección del deterioro de componentes. No se aceptarán las estrategias que requieran una media de más de diez ciclos de conducción para la activación del indicador de mal funcionamiento. El indicador de mal funcionamiento deberá activarse asimismo cuando el control del motor pase a la modalidad permanente de funcionamiento por defecto si se superan los límites de las emisiones señalados en el punto 3.3.2 del presente anexo o si el sistema de diagnóstico a bordo no puede cumplir los requisitos básicos de supervisión especificados en los puntos 3.3.3 o 3.3.4 del presente anexo. El indicador de mal funcionamiento funcionará en un modo de señalización claro (por ejemplo, mediante una luz intermitente), en cualquier período en el que se produzcan fallos de encendido del motor a un nivel que pueda acarrear daños al catalizador de acuerdo con las especificaciones del fabricante. El indicador de mal funcionamiento se activará asimismo cuando el encendido del vehículo esté activado (llave en posición de contacto) antes del arranque del motor o del giro del cigüeñal y se desactivará después del arranque del motor si antes no se ha detectado un mal funcionamiento.
- 3.6. Almacenamiento de códigos de fallo
- 3.6.1. El sistema de diagnóstico a bordo deberá registrar el código o códigos de fallo que indiquen la situación del sistema de control de emisiones. Se utilizarán códigos de situación distintos para identificar los sistemas de control de emisiones que funcionan correctamente y los sistemas de control de emisiones que necesiten que el vehículo funcione más tiempo para poder proceder a su plena evaluación. Si el indicador de mal funcionamiento está activado a causa de un deterioro, un mal funcionamiento o modalidades permanentes de funcionamiento por defecto en relación con las emisiones, se almacenará un código de fallo que identifique el tipo de mal funcionamiento. Se almacenará asimismo un código de fallo en los casos a los que se refieren los puntos 3.3.3.5 y 3.3.4.5 del presente anexo.
- 3.6.2. La distancia recorrida por el vehículo mientras esté activado el indicador de mal funcionamiento estará disponible en todo momento a través del puerto serie del conector de enlace estándar.
- 3.6.3. En el caso de los vehículos equipados con motor de encendido por chispa, no será necesario identificar individualmente cada uno de los cilindros en los que se produzcan fallos de encendido, siempre que se almacene un código inequívoco por fallo de encendido en uno o varios cilindros.
- 3.7. Apagado del indicador de mal funcionamiento
- 3.7.1. Cuando dejen de producirse fallos de encendido a niveles que puedan dañar el catalizador (de acuerdo con la especificación del fabricante) o cuando cambien las condiciones de régimen y carga del motor de forma que el nivel de los fallos de encendido no dañe el catalizador, podrá conmutarse el indicador de mal funcionamiento al modo de activación anterior durante el primer ciclo de conducción en el que se hubiese detectado el nivel de fallos de encendido y podrá conmutarse al modo normal de activación en los ciclos de conducción siguientes. Cuando se conmute el indicador de mal funcionamiento al modo de activación anterior, podrán borrarse los códigos de fallo y las condiciones de imagen fija almacenadas correspondientes.

- 3.7.2. En todos los demás casos de mal funcionamiento, el indicador podrá desactivarse después de tres ciclos de conducción secuenciales sucesivos durante los cuales el sistema de supervisión encargado de activarlo deje de detectar el mal funcionamiento y siempre que no se haya detectado otro mal funcionamiento capaz de activar independientemente el indicador.
- 3.8. Borrado de un código de fallo
- 3.8.1. El sistema de diagnóstico a bordo podrá borrar un código de fallo, así como la distancia recorrida y la información de imagen fija si no se registra de nuevo el mismo código en 40 ciclos de calentamiento del motor como mínimo.
- 3.9. Vehículos bicombustible de gas

En general, en el caso de los vehículos bicombustible de gas, se aplican los mismos criterios del sistema de diagnóstico a bordo para cada tipo de combustible (gasolina y gas natural/biometano/GLP) que en el caso de los vehículos monocombustible. A tal fin, se utilizará una de las dos opciones indicadas en los puntos 3.9.1 o 3.9.2 del presente anexo o cualquier combinación de ambas.

- 3.9.1. Un sistema de diagnóstico a bordo para los dos tipos de combustible.
- 3.9.1.1. Se efectuarán las operaciones siguientes para cada diagnóstico, con un único sistema de diagnóstico a bordo, cuando el vehículo funcione con gasolina y con gas natural/biometano o GLP, independientemente del combustible utilizado en ese momento o de manera específica para el tipo de combustible:
 - a) activación del indicador de mal funcionamiento (véase el punto 3.5 del presente anexo);
 - b) almacenamiento del código de fallo (véase el punto 3.6 del presente anexo);
 - c) apagado del código de fallo (véase el punto 3.7 del presente anexo);
 - d) borrado del código de fallo (véase el punto 3.8 del presente anexo).

En los componentes o sistemas que deben supervisarse, pueden utilizarse diagnósticos separados para cada combustible o un diagnóstico común.

- 3.9.1.2. El sistema de diagnóstico a bordo puede ubicarse en uno o en varios ordenadores.
- 3.9.2. Dos sistemas de diagnóstico a bordo separados, uno para cada tipo de combustible.
- 3.9.2.1. Se efectuarán las operaciones siguientes, de manera independiente las unas de las otras, cuando el vehículo funcione con gasolina o (gas natural/biometano)/GLP:
 - a) activación del indicador de mal funcionamiento (véase el punto 3.5 del presente anexo);
 - b) almacenamiento del código de fallo (véase el punto 3.6 del presente anexo);
 - c) apagado del código de fallo (véase el punto 3.7 del presente anexo);
 - d) borrado del código de fallo (véase el punto 3.8 del presente anexo).
- 3.9.2.2. Los sistemas de diagnóstico a bordo separados pueden ubicarse en uno o en varios ordenadores.
- 3.9.3. Requisitos específicos relativos a la transmisión de señales de diagnóstico desde vehículos bicombustible de gas.
- 3.9.3.1. A petición de una herramienta exploradora de diagnóstico, las señales de diagnóstico se transmitirán en una o varias direcciones fuente. La utilización de las direcciones fuente se describe en la norma ISO DIS 15031-5, «Vehículos de carretera: comunicación entre un vehículo y un equipo de prueba externo para el diagnóstico relativo a las emisiones; parte 5: Servicios de diagnóstico en relación con las emisiones», de 1 de noviembre de 2001.
- 3.9.3.2. La identificación de la información específica del combustible puede realizarse:
 - a) utilizando direcciones fuente; y/o
 - b) utilizando un conmutador de selección de combustible; y/o
 - c) utilizando códigos de fallo específicos del combustible.

- 3.9.4. En lo que respecta al código de situación (tal como se describe en el punto 3.6 del presente anexo), si uno o más de los diagnósticos de buena disposición se refiere específicamente a un tipo de combustible, debe utilizarse una de las dos opciones siguientes:
 - a) el código de situación es específico del combustible; es decir, se utilizan dos códigos de situación, uno para cada tipo de combustible;
 - b) el código de situación indica que los sistemas de control se habrán evaluado plenamente para los dos tipos de combustible (gasolina y GN/biometano/GLP) cuando se hayan evaluado plenamente los sistemas de control respecto a uno de los tipos de combustible.

Si ninguno de los diagnósticos de buena disposición se refiere específicamente a un tipo de combustible, solo es necesario un código de situación.

- 4. REQUISITOS RELATIVOS A LA HOMOLOGACIÓN DE TIPO DE SISTEMAS DE DIAGNÓSTICO A BORDO
- 4.1. El fabricante podrá presentar ante la autoridad de homologación de tipo una solicitud de homologación de tipo para un sistema de diagnóstico a bordo aunque este tenga una o varias deficiencias que impidan el pleno cumplimiento de los requisitos específicos del presente anexo.
- 4.2. A la hora de estudiar la solicitud, la autoridad determinará si el cumplimiento de los requisitos del presente anexo es imposible o no es razonable.

La autoridad de homologación de tipo tendrá en cuenta los datos procedentes del fabricante que detallen, entre otros, factores tales como la viabilidad técnica, los plazos y los ciclos de producción, incluidas la introducción o retirada paulatinas de diseños de motores o vehículos y las mejoras programadas de los ordenadores, estableciendo hasta qué punto el sistema de diagnóstico a bordo resultante será eficaz para cumplir los requisitos del presente Reglamento y que el fabricante ha demostrado haber realizado un esfuerzo aceptable para cumplir dichos requisitos.

- 4.2.1. La autoridad de homologación de tipo no aceptará ninguna solicitud relativa a deficiencias que incluya la ausencia completa de un monitor de diagnóstico exigido o del registro y la comunicación obligatoria de datos relacionados con un monitor.
- 4.2.2. La autoridad de homologación de tipo no aceptará ninguna solicitud relativa a deficiencias que no respete los límites umbral del diagnóstico a bordo establecidos en el punto 3.3.2 del presente anexo.
- 4.3. En lo que respecta al orden de las deficiencias, se determinarán en primer lugar las relativas a los puntos 3.3.3.1, 3.3.3.2 y 3.3.3.3 del presente anexo en lo que se refiere a los motores de encendido por chispa y a los puntos 3.3.4.1, 3.3.4.2 y 3.3.4.3 en lo que respecta a los motores de encendido por compresión.
- 4.4. Con anterioridad a la homologación, o en el momento de la misma, no se aceptará ninguna deficiencia en relación con los requisitos del punto 6.5, excepto el punto 6.5.3.4 del apéndice 1 del presente anexo.
- 4.5. Período de deficiencia
- 4.5.1. Podrá admitirse una deficiencia durante un período de dos años a partir de la fecha de homologación de un tipo de vehículo, a menos que se pueda demostrar adecuadamente que, para corregir la deficiencia, sería necesario introducir cambios sustanciales en el equipo del vehículo y prolongar el plazo más allá de dos años. En ese caso, podrá mantenerse la deficiencia durante un período no superior a tres años.
- 4.5.2. Un fabricante podrá solicitar que la autoridad de homologación permita una deficiencia retrospectivamente cuando dicha deficiencia se descubra después de la homologación de tipo original. En ese caso, podrá mantenerse la deficiencia durante un período de dos años a partir de la fecha de notificación a la autoridad de homologación de tipo, a menos que se pueda demostrar adecuadamente que, para corregirla, sería necesario introducir cambios sustanciales en el equipo del vehículo y prolongar el plazo más allá de dos años. En ese caso, podrá mantenerse la deficiencia durante un período no superior a tres años.
- 4.6. La autoridad de homologación de tipo notificará su decisión de permitir una deficiencia a todas las demás Partes en el Acuerdo de 1958 que apliquen el presente Reglamento.
- 5. ACCESO A LA INFORMACIÓN DEL SISTEMA DE DIAGNÓSTICO A BORDO
- 5.1. Las solicitudes de homologación de tipo o de modificación de una homologación de tipo irán acompañadas de la información pertinente relativa al sistema de diagnóstico a bordo del vehículo. Dicha información permitirá a los fabricantes de componentes de recambio o de instalación posterior hacer compatibles las piezas que fabrican con el sistema de diagnóstico a bordo del vehículo a fin de permitir una utilización sin defectos que garantice al usuario del vehículo la ausencia de todo tipo de mal funcionamiento. De la misma forma, dicha información permitirá a los fabricantes de herramientas de diagnóstico y equipos de ensayo fabricar herramientas y equipos que proporcionen un diagnóstico eficaz y preciso de los sistemas de control de emisiones del vehículo.

- 5.2. Las autoridades de homologación de tipo pondrán a disposición de cualquier fabricante de componentes, herramientas de diagnóstico o equipos de ensayo que lo solicite, de forma no discriminatoria, el apéndice 1 del anexo 2 del presente Reglamento, que contiene la información pertinente sobre el sistema de diagnóstico a bordo.
- 5.2.1. Cuando una autoridad de homologación de tipo reciba una solicitud de información procedente de un fabricante de componentes, herramientas de diagnóstico o equipos de ensayo en relación con el sistema de diagnóstico a bordo de un vehículo que haya recibido la homologación de tipo con arreglo a una versión anterior del presente Reglamento:
 - a) dicha autoridad de homologación de tipo solicitará al fabricante del vehículo en cuestión, en un plazo de 30 días, que facilite la información requerida en el punto 3.2.12.2.7.6 del anexo 1 del presente Reglamento. No es aplicable el requisito de la segunda sección del punto 3.2.12.2.7.6 del anexo 1 (es decir, el texto siguiente: «salvo que dicha información esté protegida por derechos de propiedad intelectual o forme parte de los conocimientos técnicos específicos del fabricante o del proveedor o proveedores del fabricante del equipo original»);
 - b) el fabricante facilitará dicha información a la autoridad de homologación de tipo en un plazo de dos meses a partir de la solicitud;
 - c) La autoridad de homologación de tipo transmitirá la información a las autoridades de homologación de tipo de las Partes en el Acuerdo y la autoridad de homologación de tipo que concedió la homologación de tipo original adjuntará dicha información al anexo 1 del presente Reglamento de la información sobre homologación de tipo del vehículo.

El presente requisito no invalidará ninguna homologación concedida anteriormente con arreglo al Reglamento nº 83 ni impedirá extensiones de dichas homologaciones en el marco del Reglamento con arreglo al cual se concedieron inicialmente.

- 5.2.2. Solo podrá solicitarse información sobre piezas de recambio o de mantenimiento sujetas a homologación de tipo CEPE o sobre componentes que formen parte de un sistema sometido a homologación de tipo CEPE.
- 5.2.3. En la solicitud de información se especificará exactamente el modelo de vehículo en relación con el cual se solicita dicha información. Además, se confirmará que la información se solicita para la fabricación de piezas de recambio, accesorios, herramientas de diagnóstico o equipos de ensayo.

Apéndice 1

Aspectos funcionales de los sistemas de diagnóstico a bordo

1. INTRODUCCIÓN

En el presente apéndice se describe el procedimiento del ensayo especificado en el punto 3 del presente anexo. En el citado procedimiento se describe un método para verificar el funcionamiento del sistema de diagnóstico a bordo instalado en el vehículo mediante simulación de fallos de los correspondientes sistemas que configuran el sistema de gestión del motor o de control de emisiones. Se establecen asimismo los procedimientos para determinar la durabilidad de los sistemas de diagnóstico a bordo.

El fabricante facilitará los componentes o dispositivos eléctricos defectuosos que se utilizarán en la simulación de los fallos. Cuando se midan a través de un ciclo de ensayo de tipo I, dichos componentes o dispositivos defectuosos no darán lugar a emisiones del vehículo que sobrepasen en más del 20 % los límites del punto 3.3.2 del presente anexo.

Cuando el vehículo se someta a ensayo con el componente o dispositivo defectuoso instalado, se homologará el sistema de diagnóstico a bordo si está activado el indicador de mal funcionamiento. El sistema de diagnóstico a bordo se homologará también si el indicador de mal funcionamiento se activa por debajo de los límites umbral del citado sistema de diagnóstico a bordo.

2. DESCRIPCIÓN DEL ENSAYO

- 2.1. El ensayo de los sistemas de diagnóstico a bordo constará de las fases siguientes:
- 2.1.1. simulación de mal funcionamiento de un componente del sistema de gestión del motor o del sistema de control de emisiones;
- 2.1.2. preacondicionamiento del vehículo con simulación de mal funcionamiento durante el preacondicionamiento especificado en los puntos 6.2.1 o 6.2.2 del presente apéndice;
- 2.1.3. conducción del vehículo con simulación de mal funcionamiento durante el ciclo de ensayo de tipo I y medición de las emisiones del vehículo;
- 2.1.4. determinación de la reacción del sistema de diagnóstico a bordo al mal funcionamiento simulado y del modo en que este transmite el mal funcionamiento al conductor del vehículo.
- 2.2. A modo de alternativa y a petición del fabricante, podrá simularse electrónicamente el mal funcionamiento de uno o más componentes de conformidad con los requisitos del apartado 6 del presente apéndice.
- 2.3. Los fabricantes podrán pedir que la supervisión tenga lugar fuera del ciclo de ensayo de tipo I cuando pueda demostrarse ante el organismo competente que la supervisión en las condiciones del ciclo de ensayo de tipo I impondría condiciones de supervisión restrictivas cuando el vehículo esté en circulación.

3. VEHÍCULO Y COMBUSTIBLE DE ENSAYO

3.1. Vehículo

El vehículo de ensayo cumplirá los requisitos del punto 3.2 del anexo 4 bis del presente Reglamento.

3.2. Combustible

Para los ensayos se utilizará el combustible de referencia adecuado definido en el anexo 10 o 10 bis del presente Reglamento. La autoridad de homologación de tipo podrá seleccionar el tipo de combustible para cada modo de fallo que se va a someter a ensayo (véase el punto 6.3 del presente apéndice) entre los combustibles de referencia descritos en el anexo 10 bis del presente Reglamento, en el caso de los vehículos monocombustible, y entre los combustibles de referencia descritos en el anexo 10 y el anexo 10 bis del presente Reglamento, en el caso de los vehículos bicombustible. El tipo de combustible seleccionado no deberá cambiarse durante ninguna de las fases de ensayo (véanse los puntos 2.1 a 2.3 del presente apéndice). En caso de utilizarse GLP o GN/biometano como combustible, se permitirá que el motor se ponga en marcha con gasolina y cambie a GLP o GN/biometano tras un período de tiempo predeterminado, controlado automáticamente y no por el conductor.

- 4. TEMPERATURA Y PRESIÓN DE ENSAYO
- 4.1. La temperatura y la presión de ensayo deberán cumplir los requisitos del ensayo de tipo I tal como se describe en el punto 3.1 del anexo 4 bis del presente Reglamento.
- 5. EQUIPO DE ENSAYO
- 5.1. Banco dinamométrico

El banco dinamométrico deberá cumplir los requisitos del apéndice 1 del anexo 4 bis del presente Reglamento.

- 6. PROCEDIMIENTO DEL ENSAYO DEL DIAGNÓSTICO A BORDO
- 6.1. El ciclo de funcionamiento en el banco dinamométrico deberá cumplir los requisitos del anexo 4 bis del presente Reglamento.
- 6.2. Preacondicionamiento del vehículo
- 6.2.1. En función de tipo de motor y después de introducir uno de los modos de fallo indicados en el punto 6.3 del presente apéndice, se preacondicionará el vehículo sometiéndolo, como mínimo, a dos ensayos consecutivos de tipo I (partes 1 y 2). En el caso de los vehículos con motor de encendido por compresión, se permitirá un preacondicionamiento adicional de dos ciclos de la parte 2.
- 6.2.2. A petición del fabricante, podrán utilizarse métodos de preacondicionamiento alternativos.
- 6.3. Modos de fallo que han de someterse a ensayo
- 6.3.1. Vehículos con motor de encendido por chispa:
- 6.3.1.1. sustitución del catalizador por uno deteriorado o defectuoso, o simulación electrónica del fallo;
- 6.3.1.2. condiciones de fallo de encendido del motor de acuerdo con las condiciones de supervisión de fallos de encendido señaladas en el punto 3.3.3.2 del anexo 11 del presente Reglamento;
- 6.3.1.3. sustitución del sensor de oxígeno por uno deteriorado o defectuoso o simulación electrónica del fallo;
- 6.3.1.4. desconexión eléctrica de cualquier otro componente relativo a las emisiones conectado a un ordenador de gestión de la cadena de tracción (si está activo para el tipo de combustible seleccionado);
- 6.3.1.5. desconexión eléctrica del dispositivo electrónico de control de purga de evaporación (si el vehículo está equipado y si está activo para el tipo de combustible seleccionado). Para este modo de fallo específico, no es necesario realizar el ensayo de tipo I.
- 6.3.2. Vehículos con motor de encendido por compresión:
- 6.3.2.1. cuando el vehículo esté equipado con catalizador, sustitución de este por uno deteriorado o defectuoso, o simulación electrónica del fallo;
- 6.3.2.2. cuando el vehículo esté equipado con filtro de partículas, retirada total de este o, cuando los sensores formen parte integrante del mismo, instalación de un filtro defectuoso;
- 6.3.2.3. desconexión eléctrica de cualquier accionador electrónico de cantidad de combustible y de avance del sistema de alimentación;
- 6.3.2.4. desconexión eléctrica de cualquier otro componente relacionado con las emisiones conectado a un ordenador de gestión de la cadena de tracción.

- 6.3.2.5. En cumplimiento de los requisitos de los puntos 6.3.2.3 y 6.3.2.4 del presente apéndice, y previo consentimiento de la autoridad de homologación de tipo, el fabricante tomará las medidas adecuadas para demostrar que el sistema de diagnóstico a bordo indicará que ha habido un fallo cuando se produzca la desconexión.
- 6.3.2.6. El fabricante deberá demostrar que el sistema de diagnóstico a bordo detecta los casos de mal funcionamiento del caudal de la EGR y del refrigerador durante el ensayo de homologación del mismo
- 6.4. Ensayo del sistema de diagnóstico a bordo
- 6.4.1. Vehículos equipados con motor de encendido por chispa
- 6.4.1.1. El vehículo de ensayo, una vez preacondicionado con arreglo al punto 6.2 del presente apéndice, se someterá a un ensayo de tipo I (partes 1 y 2).

El indicador de mal funcionamiento se activará antes del final de este ensayo, en cualquiera de las condiciones señaladas en los puntos 6.4.1.2 a 6.4.1.5 del presente apéndice. El servicio técnico podrá sustituir dichas condiciones por otras que se ajusten a lo dispuesto en el punto 6.4.1.6 del presente apéndice. No obstante, a efectos de la homologación, el número total de fallos simulados no superará cuatro.

Si se somete a ensayo un vehículo bicombustible de gas, se utilizarán los dos tipos de combustible en un máximo de cuatro fallos simulados, a discreción de la autoridad de homologación de tipo.

- 6.4.1.2. Sustitución del catalizador por uno deteriorado o defectuoso, o simulación electrónica de un catalizador deteriorado o defectuoso que origine emisiones superiores al límite de HCNM señalado en el punto 3.3.2 del presente anexo.
- 6.4.1.3. Condiciones inducidas de fallo de encendido según las condiciones de supervisión de fallos de encendido señaladas en el punto 3.3.3.2 del presente anexo, que generen emisiones superiores a cualquiera de los límites establecidos en el punto 3.3.2 del mismo.
- 6.4.1.4. Sustitución de un sensor de oxígeno por otro deteriorado o defectuoso o simulación electrónica de un sensor de oxígeno deteriorado o defectuoso, que origine emisiones superiores a cualquiera de los límites señalados en el punto 3.3.2 del presente anexo.
- 6.4.1.5. Desconexión eléctrica del dispositivo electrónico de control de purga de evaporación (si el vehículo está equipado y si está activo para el tipo de combustible seleccionado).
- 6.4.1.6. Desconexión eléctrica de cualquier otro componente de la cadena de tracción relacionado con las emisiones y conectado a un ordenador, que genere emisiones superiores a cualquiera de los límites señalados en el punto 3.3.2 del presente anexo (si está activo para el tipo de combustible seleccionado).
- 6.4.2. Vehículos equipados con motor de encendido por compresión:
- 6.4.2.1. El vehículo de ensayo, una vez preacondicionado con arreglo al punto 6.2 del presente apéndice, se someterá a un ensayo de tipo I (partes 1 y 2).
 - El indicador de mal funcionamiento se activará antes del final de este ensayo, en cualquiera de las condiciones señaladas en los puntos 6.4.2.2 a 6.4.2.5 del presente apéndice. El servicio técnico podrá sustituir dichas condiciones por otras que se ajusten a lo dispuesto en el punto 6.4.2.5 del presente apéndice. No obstante, a efectos de homologación de tipo, el número total de fallos simulados no superará cuatro.
- 6.4.2.2. Si el vehículo va equipado con catalizador, sustitución del catalizador por uno deteriorado o defectuoso o simulación electrónica de un catalizador deteriorado o defectuoso, que origine emisiones superiores a los límites señalados en el punto 3.3.2 del presente anexo.
- 6.4.2.3. Si el vehículo está equipado con filtro de partículas, retirada total o sustitución del mismo por un filtro de partículas defectuoso conforme a las condiciones establecidas en el punto 6.3.2.2 del presente apéndice, que genere emisiones superiores a los límites señalados en el punto 3.3.2 del presente anexo.

- 6.4.2.4. En relación con el punto 6.3.2.5 del presente apéndice, desconexión de cualquier accionador electrónico de cantidad de combustible y de avance del sistema de alimentación que genere emisiones superiores a cualquiera de los límites señalados en el punto 3.3.2 del presente anexo.
- 6.4.2.5. En relación con el punto 6.3.2.5 del presente apéndice, desconexión de cualquier otro componente de la cadena de tracción relacionado con las emisiones y conectado a un ordenador, que genere emisiones superiores a cualquiera de los límites señalados en el punto 3.3.2 del presente anexo.
- 6.5. Señales de diagnóstico
- 6.5.1. Reservado
- 6.5.1.1. Cuando se determine el primer mal funcionamiento de cualquier componente o sistema, se almacenará en la memoria del ordenador una imagen fija de las condiciones del motor en ese momento. Si a continuación se produjese otro mal funcionamiento del sistema de alimentación o fallo de encendido, las condiciones de la imagen fija almacenada con anterioridad serán sustituidas por las condiciones del sistema de alimentación o del fallo de encendido (lo que ocurra primero). Las condiciones del motor almacenadas incluirán, entre otros datos, el valor de carga calculado, el régimen del motor, el valor o valores de reajuste de combustible (si están disponibles), la presión del combustible (si está disponible), la velocidad del vehículo (si está disponible), la temperatura del refrigerante, la presión en el colector de admisión (si está disponible), el funcionamiento en circuito cerrado o abierto (si está disponible) y el código de fallo que ha dado lugar al almacenamiento de los datos. El fabricante deberá elegir para el almacenamiento de imagen fija el conjunto de condiciones más adecuado para permitir las reparaciones eficaces. Solo es necesaria una imagen de datos. Los fabricantes podrán optar por almacenar imágenes adicionales, siempre y cuando al menos la imagen exigida pueda leerse utilizando un instrumento de exploración genérico que cumpla las especificaciones de los puntos 6.5.3.2 y 6.5.3.3 del presente apéndice. Si, de acuerdo con el punto 3.8 del presente anexo, se borra el código de fallo que ha dado lugar al almacenamiento de las condiciones, podrán borrarse también las condiciones del motor almacenadas.
- 6.5.1.2. Además de la información de imagen fija requerida, las siguientes señales, si se generan, estarán disponibles, previa petición, a través del puerto serie del conector de enlace de datos normalizado, siempre que la información pueda facilitarse al ordenador de a bordo o determinarse utilizando la información disponible para el ordenador de a bordo: códigos de diagnóstico de avería, temperatura de refrigerante del motor, estado del sistema de control de combustible (circuito cerrado, circuito abierto, otro distinto), reajuste de combustible, avance de encendido, temperatura del aire de admisión, presión del aire en el colector, caudal de aire, velocidad del motor, valor de salida del sensor de posición del acelerador, estado del aire secundario (corriente arriba, corriente abajo o a la atmósfera), valor de carga calculado, velocidad del vehículo y presión del combustible.
 - Se suministrarán las señales en unidades estándar a partir de las especificaciones señaladas en el punto 6.5.3 del presente apéndice. Se identificarán claramente las señales reales, separándolas de las señales de valor por defecto o de modo degradado.
- 6.5.1.3. Para todos los sistemas de control de emisiones en relación con los cuales se realicen ensayos específicos de evaluación a bordo (catalizador, sensor de oxígeno, etc.), excepto la detección de fallos de encendido, la supervisión del sistema de combustible y la supervisión de todos los componentes, los resultados del ensayo más reciente al que se haya sometido el vehículo y los límites con los que se haya comparado el sistema deberán estar disponibles a través del puerto serie de datos en el conector de enlace de datos normalizado de acuerdo con las especificaciones del punto 6.5.3 del presente apéndice. Para los componentes y sistemas supervisados objeto de la excepción mencionada, deberá estar disponible a través del conector de enlace de datos una indicación de aprobado o suspenso en relación con los resultados del ensayo más reciente.
 - Todos los datos cuyo almacenamiento se haya exigido en relación con el rendimiento en uso del diagnóstico a bordo, conforme a lo dispuesto en el punto 7.6 del presente apéndice, estarán disponibles a través del puerto serie de datos en el conector de enlace de datos normalizado conforme a las especificaciones del punto 6.5.3 del presente apéndice.
- 6.5.1.4. Los requisitos del diagnóstico a bordo con arreglo a los cuales se homologa el vehículo (es decir, los del anexo 11 o los requisitos alternativos especificados en el punto 5 del presente Reglamento) y los principales sistemas de control de emisiones supervisados por el sistema de diagnóstico a bordo de acuerdo con el punto 6.5.3.3 del presente apéndice deberán estar disponibles a través del puerto serie de datos en el conector de enlace de datos normalizado conforme a las especificaciones del punto 6.5.3 del presente apéndice.
- 6.5.1.5. A partir del 1 de enero de 2003 para los nuevos tipos y del 1 de enero de 2005 para todos los tipos de vehículos que entren en servicio, el número de identificación de calibración del software estará disponible a través del puerto serie del conector de enlace de datos normalizado. El número de identificación de calibración del software se facilitará en formato normalizado.

- 6.5.2. No es necesario que el sistema de diagnóstico del control de emisiones evalúe los componentes durante el mal funcionamiento cuando dicha evaluación pueda dar lugar a un riesgo para la seguridad o al fallo de un componente.
- 6.5.3. El sistema de diagnóstico del control de emisiones deberá facilitar el acceso normalizado y sin restricciones y ajustarse a las normas ISO o a la especificación SAE que figuran a continuación.
- 6.5.3.1. Como enlace de comunicaciones entre el vehículo y el exterior del vehículo se utilizará una de las siguientes normas con las restricciones que se indican:
 - ISO 9141-2: 1994 (modificada en 1996): «Vehículos de carretera. Sistemas de diagnosis. Parte 2: Requisitos CARB para el intercambio de información digital»;
 - SAE J1850: «Interfaz de red de comunicación de datos de clase B de marzo de 1998». En los mensajes relacionados con las emisiones se utilizarán el control de redundancia cíclica y la cabecera de tres octetos y no se utilizará la separación entre octetos ni las sumas de control;
 - ISO 14230: «Vehículos de carretera. Protocolo Keyword 2000 para sistemas de diagnóstico. Parte 4: Requisitos para sistemas relacionados con las emisiones»;
 - ISO DIS 15765-4: «Vehículos de carretera. Diagnósticos basados en la red CAN (Controller Area Network). Parte 4: Requisitos para sistemas relacionados con las emisiones», de 1 de noviembre de 2001.
- 6.5.3.2. El equipo de ensayo y las herramientas de diagnóstico necesarios para comunicar con los sistemas de diagnóstico a bordo deberán cumplir o superar la especificación funcional indicada en la norma ISO DIS 15031-4: «Vehículos de carretera. Comunicación entre el vehículo y el equipo de ensayo externo para diagnósticos relacionados con las emisiones. Parte 4: equipo de ensayo externo», de 1 de noviembre de 2001.
- 6.5.3.3. Se suministrarán datos básicos de diagnóstico (tal como se especifica en los puntos 6.5.1.1 a 6.5.1.5 del presente apéndice) e información de control bidireccional, utilizando el formato y las unidades descritos en la norma ISO DIS 15031-5: «Vehículos de carretera. Comunicación entre el vehículo y el equipo de ensayo externo para diagnósticos relacionados con las emisiones. Parte 5: Servicios de diagnóstico relacionados con las emisiones», de 1 de noviembre de 2001, que deberán ser accesibles a través de una herramienta de diagnóstico que cumpla los requisitos de la norma ISO DIS 15031-4.
 - El fabricante del vehículo comunicará al organismo nacional de normalización información detallada sobre cualquier diagnóstico relacionado con las emisiones (por ejemplo, PID, ID de monitor de diagnóstico a bordo o ID de ensayo) no especificado en la norma ISO DIS 15031-5, pero relacionado con el presente Reglamento.
- 6.5.3.4. Cuando se detecte un fallo, el fabricante lo identificará utilizando un código de fallo adecuado consecuente con los que figuran en el punto 6.3 de la norma ISO DIS 15031-6: «Vehículos de carretera. Comunicación entre el vehículo y el equipo de ensayo externo para diagnósticos relacionados con las emisiones. Parte 6: Definiciones de los códigos de problema de diagnóstico», en relación con los «códigos de problemas de diagnóstico del sistema relacionado con las emisiones». Si dicha identificación no fuera posible, el fabricante podrá utilizar los códigos de problemas de diagnóstico de acuerdo con las secciones 5.3 y 5.6 de la norma ISO DIS 15031-6. Los códigos de fallo deberán ser totalmente accesibles a través de un equipo de diagnóstico estandarizado que se ajuste a lo dispuesto en el punto 6.5.3.2 del presente apéndice.
 - El fabricante del vehículo comunicará al organismo nacional de normalización información detallada sobre cualquier diagnóstico relacionado con las emisiones (por ejemplo, PID, ID de monitor de diagnóstico a bordo o ID de ensayo) no especificado en la norma ISO DIS 15031-5, pero relacionado con el presente Reglamento.
- 6.5.3.5. La interfaz de conexión entre el vehículo y el comprobador de diagnóstico deberá estar estandarizada y cumplir todos los requisitos de la norma ISO DIS 15031-3: «Vehículos de carretera. Comunicación entre el vehículo y el equipo de ensayo externo para diagnósticos relacionados con las emisiones. Parte 3: Conector de diagnóstico y circuitos eléctricos asociados: especificación y uso», de 1 de noviembre de 2001. La posición de instalación estará sujeta a la aprobación de la autoridad de homologación de tipo de manera que sea fácilmente accesible por el personal de servicio pero esté protegida frente a manipulaciones por personal no cualificado.

6.5.3.6. El fabricante pondrá también a disposición, mediante pago si procede, la información técnica necesaria para la reparación o el mantenimiento de los vehículos de motor, salvo que dicha información esté amparada por un derecho de propiedad intelectual o constituya conocimientos técnicos secretos esenciales, que estén definidos de una forma adecuada, en cuyo caso no se denegará indebidamente la información técnica necesaria.

Tendrá derecho a recibir esa información cualquier persona que realice actividades de mantenimiento o reparación, asistencia en carretera, inspección o ensayo de vehículos, o de fabricación o venta de recambios o componentes de modificación retroactiva, herramientas de diagnóstico y equipos de ensayo.

- 7. RENDIMIENTO EN USO
- 7.1. Requisitos generales
- 7.1.1. Cada monitor del sistema de diagnóstico a bordo se ejecutará al menos una vez por ciclo de conducción en el que se cumplan las condiciones de supervisión especificadas en el punto 7.2 del presente apéndice. Los fabricantes no podrán utilizar la relación calculada (ni ningún elemento de la misma) ni ninguna otra indicación de frecuencia del monitor como condición de supervisión para ningún monitor.
- 7.1.2. La razón del rendimiento en uso (IUPR) de un monitor M específico de los sistemas de diagnóstico a bordo y del rendimiento en uso de los dispositivos de control de la contaminación será:

 $IUPR_{M} = Numerador_{M}/Denominador_{M}$

- 7.1.3. La comparación del numerador y del denominador da una idea de la frecuencia de funcionamiento de un monitor específico en relación con el funcionamiento del vehículo. A fin de garantizar un seguimiento uniforme de la IUPR_M por parte de todos los fabricantes, se exponen requisitos detallados para definir e incrementar estos contadores.
- 7.1.4. Si, de conformidad con los requisitos del presente anexo, el vehículo está equipado con un monitor específico M, la IUPR_M será mayor o igual a los valores mínimos siguientes:
 - a) 0,260 para los monitores del sistema de aire secundario y otros monitores relacionados con el arranque en frío;
 - b) 0,520 para los monitores de control de purgado de las emisiones de evaporación;
 - c) 0,336 para todos los demás monitores.
- 7.1.5. Los vehículos cumplirán los requisitos del punto 7.1.4 del presente apéndice durante un kilometraje de al menos 160 000 km. No obstante lo dispuesto, en los tipos de vehículos homologados, matriculados, vendidos o puestos en circulación antes de las fechas pertinentes que figuran en los puntos 12.2.1 y 12.2.2 del presente Reglamento, la IUPR_M será superior o igual a 0,1 en todos los monitores M. En el caso de las nuevas homologaciones de tipo y los vehículos nuevos, el monitor requerido por el punto 3.3.4.7 del presente anexo tendrá un IUPR superior o igual a 0,1 hasta las fechas especificadas respectivamente en los puntos 12.2.3 y 12.2.4 del presente Reglamento.
- 7.1.6. En el caso de un monitor M determinado, se considerarán satisfechos los requisitos del presente punto, siempre y cuando en todos los vehículos de una determinada familia de sistemas de diagnóstico a bordo fabricados en un año civil determinado se cumplan las condiciones estadísticas siguientes:
 - a) la IUPR_M media es igual o superior al valor mínimo aplicable al monitor;
 - b) en más de un 50 % de todos los vehículos, la $IUPR_M$ es igual o superior al valor mínimo aplicable al monitor.
- 7.1.7. El fabricante demostrará a la autoridad de homologación de tipo que se cumplen estas condiciones estadísticas por lo que respecta a todos los monitores a los que el sistema de diagnóstico a bordo deba transmitir información conforme a lo dispuesto en el punto 7.6 del presente apéndice, a más tardar 18 meses después. A tal fin, en el caso de las familias de sistemas de diagnóstico a bordo formadas por más de 1 000 matriculaciones en la Unión Europea o en una Parte en el Acuerdo no perteneciente a la UE, que están sometidas a muestreo dentro del período de muestreo, se aplicará el proceso descrito en el punto 9 del presente Reglamento sin perjuicio de lo dispuesto en el punto 7.1.9 del presente apéndice.

ES

Además de los requisitos previstos en el punto 9 del presente Reglamento e independientemente del resultado de la comprobación descrita en el punto 9.2 del presente Reglamento, la autoridad de homologación de tipo que concede la homologación aplicará la verificación de la conformidad en circulación relativa a la UIPR descrita en el apéndice 3 del presente Reglamento en un número apropiado de casos determinados al azar. Por «un número apropiado de casos determinados al azar» se entiende que esta medida tenga un efecto disuasorio en relación con el incumplimiento de los requisitos del punto 7 del presente apéndice o con la entrega de datos manipulados, falsos o no, representativos para la comprobación. Si no concurren circunstancias especiales y las autoridades de homologación de tipo pueden demostrarlo, se considerará que una aplicación aleatoria de la verificación de la conformidad en circulación al 5 % de las familias de sistemas de diagnóstico a bordo que han recibido la homologación de tipo es suficiente para cumplir este requisito. Con este fin, las autoridades de homologación de tipo podrán encontrar soluciones con el fabricante para la reducción de la duplicación de los ensayos de una familia de sistemas de diagnóstico a bordo concreta siempre y cuando estas soluciones no vayan en perjuicio del efecto disuasorio de la verificación de la conformidad en circulación de la propia autoridad de homologación de tipo sobre el incumplimiento de los requisitos del punto 7 del presente apéndice. Los datos recogidos por los Estados miembros de la UE en el marco de los programas de ensayos de vigilancia podrán utilizarse para las verificaciones de la conformidad en circulación. Cuando se les solicite, las autoridades de homologación de tipo transmitirán a la Comisión Europea y a otras autoridades de homologación de tipo datos sobre las comprobaciones y las verificaciones de la conformidad en circulación que se hayan realizado, incluida la metodología utilizada para identificar los casos que deben someterse a verificación de la conformidad en circulación aleatoria.

- 7.1.8. Para la totalidad de la muestra de vehículos de ensayo, el fabricante deberá comunicar al organismo pertinente todos los datos de rendimiento en uso que deba transmitir el sistema de diagnóstico a bordo de conformidad con el punto 7.6 del presente apéndice, junto con una identificación del vehículo sometido a ensayo y de la metodología utilizada para la selección de los vehículos sometidos a ensayo de la flota. La autoridad de homologación de tipo que conceda la homologación pondrá a disposición de la Comisión Europea y de otras autoridades de homologación, previa petición, estos datos y los resultados de la evaluación estadística.
- 7.1.9. Las autoridades públicas y sus delegados podrán efectuar nuevos ensayos en los vehículos o recoger los datos pertinentes registrados por los vehículos a fin de verificar el cumplimiento de los requisitos del presente anexo.

7.2. Numerador_M

7.2.1. El numerador de un monitor específico es un contador que mide el número de veces que se ha puesto en funcionamiento un vehículo de tal manera que se hayan dado todas las condiciones de supervisión necesarias, implementadas por el fabricante, que permitan que dicho monitor específico detecte un mal funcionamiento a fin de advertir al conductor. El numerador no se incrementará más que una vez por ciclo de conducción, a menos que exista una justificación técnica razonada.

7.3. Denominador_M

- 7.3.1. La finalidad del denominador es ofrecer un contador que indique el número de incidencias de conducción del vehículo, teniendo en cuenta las condiciones especiales para un monitor específico. El denominador se incrementará al menos una vez por ciclo de conducción, siempre que durante dicho ciclo de conducción se cumplan tales condiciones y se incremente el denominador general conforme a lo especificado en el punto 7.5 del presente apéndice, a menos que el denominador esté desactivado conforme al punto 7.7 del mismo.
- 7.3.2. Además de los requisitos del punto 7.3.1 del presente apéndice:
 - a) el denominador o los denominadores del monitor del sistema de aire secundario se incrementarán si el funcionamiento «on» ordenado de dicho sistema dura diez segundos o más. A los efectos de determinar este tiempo «on» ordenado, el sistema de diagnóstico a bordo podrá no registrar tiempo alguno durante el funcionamiento intrusivo del sistema de aire secundario con fines exclusivos de supervisión;
 - b) los denominadores de los monitores de los sistemas que solo estén activos durante el arranque en frío se incrementarán si el componente o la estrategia reciben una orden de funcionamiento «on» durante un tiempo superior o igual a diez segundos;
 - c) el denominador o los denominadores de los monitores de distribución variable de las válvulas (VVT) y/o de los sistemas de control se incrementarán si el componente en cuestión recibe la orden de funcionar (por ejemplo, orden «on», «abierto», «cerrado», «bloqueado», etc.) en dos o más ocasiones durante el ciclo de conducción, o durante un tiempo superior o igual a diez segundos si se produce antes;

- d) por lo que respecta a los monitores siguientes, el denominador o los denominadores se incrementarán en uno si, además de cumplir los requisitos del presente punto en al menos un ciclo de conducción, el vehículo ha acumulado al menos 800 km de funcionamiento desde la última vez que se incrementó el denominador:
 - i) catalizador de oxidación diésel,
 - ii) filtro de partículas diésel;
- e) sin perjuicio de los requisitos para el incremento de los denominadores de otros monitores, los denominadores de los monitores de los componentes siguientes se incrementarán únicamente en caso de que el ciclo de conducción se haya iniciado con un arranque en frío:
 - i) sensores de temperatura de los líquidos (aceite, refrigerante del motor, combustible o reactivo de reducción catalítica selectiva),
 - sensores de temperatura del aire limpio (aire ambiente, aire de admisión, aire de sobrealimentación o colector de admisión),
 - iii) sensores de temperatura del escape (recirculación/refrigeración de gases de escape, turbocompresión del gas de escape o catalizador);
- f) los denominadores de los monitores del sistema de control de la presión de sobrealimentación se incrementarán si se dan todas las condiciones siguientes:
 - i) se cumplen las condiciones del denominador general,
 - ii) el sistema de control de la presión de sobrealimentación está activo durante un tiempo superior o igual a 15 segundos.
- 7.3.3. Por lo que respecta a los vehículos híbridos, los vehículos que emplean equipos o estrategias alternativas de arranque del motor (estárter y generadores integrados), o los vehículos de combustibles alternativos (combustible específico, bicombustible o aplicaciones de combustible dual), el fabricante podrá solicitar la autorización de la autoridad de homologación de tipo para utilizar otros criterios alternativos a los establecidos en el presente punto para incrementar el denominador. En general, la autoridad de homologación de tipo no autorizará criterios alternativos para vehículos en los que la desconexión del motor solo se produzca en condiciones de parada o régimen de ralentí del vehículo o en condiciones que se aproximen a estas. La autorización de criterios alternativos por parte de la autoridad de homologación de tipo se basará en la equivalencia de los criterios alternativos para determinar el nivel de funcionamiento del vehículo en relación con la medida de funcionamiento convencional del vehículo conforme a lo dispuesto en el presente punto.
- 7.4. Contador del ciclo de encendido
- 7.4.1. El contador del ciclo de encendido indica el número de ciclos de encendido que ha experimentado un vehículo. Este contador no puede incrementarse más de una vez por ciclo de conducción.
- 7.5. Denominador general
- 7.5.1. El denominador general es un contador que mide el número de veces que se ha puesto en funcionamiento el vehículo. Se incrementará a los diez segundos, siempre y cuando se cumplan los criterios siguientes en un único ciclo de conducción y solo en ese caso:
 - a) el tiempo acumulado desde el arranque del motor es mayor o igual a 600 segundos a una altitud inferior a 2 440 m sobre el nivel del mar y una temperatura ambiente superior o igual a − 7 °C;
 - b) el funcionamiento acumulado del vehículo a 40 km/h o a más velocidad se produce durante 300 segundos o más a una altitud inferior a 2 440 m sobre el nivel del mar y una temperatura ambiente superior o igual a 7 °C:
 - c) el funcionamiento continuado del vehículo en régimen de ralentí (es decir, el conductor habrá levantado el pie del pedal del acelerador y la velocidad del vehículo será menor o igual a 1,6 km/h) se produce durante 30 segundos o más a una altitud inferior a 2 440 m sobre el nivel del mar y una temperatura ambiente superior o igual a -7 °C.
- 7.6. Transmisión de información e incremento de los contadores
- 7.6.1. De conformidad con las especificaciones de la norma ISO 15031-5, el sistema de diagnóstico a bordo transmitirá información al contador del ciclo de encendido y al denominador general, así como a los numeradores y denominadores de los monitores siguientes, si, conforme a lo dispuesto en el presente anexo, se requiere su presencia en el vehículo:
 - a) catalizadores (la información se dará sobre cada fila por separado);
 - b) sensores de oxígeno/gases de escape, incluidos los sensores de oxígeno secundarios (la transmisión de información se hará sobre cada sensor por separado);

- c) sistema evaporativo;
- d) sistema de EGR;
- e) sistema de VVT;
- f) sistema de aire secundario;
- g) filtro de partículas;
- h) sistema de postratamiento de NO_x (por ejempo, adsorbente de NO_x sistema de catalizador/reactivo de NO_x);
- i) sistema de control de la presión de sobrealimentación.
- 7.6.2. Por lo que respecta a los componentes o sistemas específicos que cuenten con múltiples monitores, en relación con los cuales se deba transmitir información con arreglo a lo dispuesto en el presente punto (por ejemplo, es posible que el bloque 1 del sensor de oxígeno cuente con múltiples monitores relacionados con la respuesta del sensor u otras características del mismo), el sistema de diagnóstico a bordo localizará, por separado, los numeradores y denominadores correspondientes a cada uno de los monitores específicos, excepto los que supervisen los fallos de circuito abierto o cortocircuito, y transmitirá información únicamente al numerador y denominador correspondientes al monitor específico cuya relación numérica sea más baja. En el caso de que las relaciones de dos o más monitores específicos sean idénticas, se transmitirá la información relativa al componente específico al numerador y denominador correspondientes al monitor específico cuyo denominador sea mayor.
- 7.6.3. Cuando se incrementen, todos los contadores lo harán en una unidad entera.
- 7.6.4. El valor mínimo de cada contador es 0 y el valor máximo no será menor que 65 535, con independencia de cualquier otro requisito en materia de almacenamiento y transmisión de información normalizados del sistema de diagnóstico a bordo.
- 7.6.5. En el caso de que el numerador o el denominador de un monitor específico alcance su valor máximo, ambos contadores de dicho monitor específico se dividirán por dos antes de volver a incrementarse de acuerdo con lo dispuesto en los puntos 7.2 y 7.3 del presente apéndice. Si el contador del ciclo de encendido o el denominador general alcanzan su valor máximo, el contador respectivo se ajustará a cero cuando vuelva a incrementarse respectivamente de acuerdo con lo dispuesto en los puntos 7.4 y 7.5 del presente apéndice.
- 7.6.6. Cada contador volverá a reiniciarse únicamente cuando se produzca un reajuste de la memoria no volátil (por ejemplo, una reprogramación, etc.) o, en el caso de que los números se almacenen en una memoria persistente (keep-alive memory o KAM), cuando la KAM se pierda debido a una interrupción del suministro de corriente eléctrica al módulo de control (por ejemplo, desconexión de la batería, etc.)
- 7.6.7. El fabricante tomará medidas para garantizar que los valores del numerador y el denominador no puedan reinicializarse ni modificarse, salvo en los casos establecidos explícitamente en este punto.
- 7.7. Desactivación de numeradores y denominadores y del denominador general
- 7.7.1. A los diez segundos de haberse detectado un mal funcionamiento que desactive cualquier monitor que deba cumplir las condiciones de supervisión especificadas en el presente anexo (es decir, se almacena un código pendiente o confirmado), el sistema de diagnóstico a bordo desactivará el incremento ulterior del numerador y el denominador correspondientes a cada monitor que esté desactivado. Una vez que deje de detectarse el mal funcionamiento [es decir, que el código pendiente haya sido borrado por medio de una función de autoborrado o por una orden dada a una herramienta de exploración (scan tool)], el incremento de todos los numeradores y denominadores correspondientes se reanudará en el plazo de diez segundos.
- 7.7.2. Dentro de los diez segundos posteriores al inicio de una operación de toma de fuerza que desactive un monitor que debe cumplir las condiciones de supervisión establecidas en el presente anexo, el sistema de diagnóstico a bordo desactivará todo nuevo incremento del numerador y del denominador correspondientes a cada monitor que sea desactivado. Cuando la PTO deje de funcionar, el aumento de todos los numeradores y denominadores correspondientes se reanudará a los diez segundos.
- 7.7.3. El sistema de diagnóstico a bordo desactivará todo incremento ulterior del numerador y denominador de un monitor específico en el plazo de diez segundos, cuando se haya detectado un mal funcionamiento de cualquier componente utilizado para determinar los criterios que definen el denominador del monitor específico (es decir, velocidad del vehículo, temperatura ambiente, elevación, funcionamiento en régimen de ralentí, arranque en frío del motor o tiempo de funcionamiento) y se haya almacenado el correspondiente código de fallo pendiente. El incremento del numerador y el denominador se reanudará en el plazo de diez segundos cuando deje de producirse el mal funcionamiento (por ejemplo, cuando el código pendiente haya sido borrado por medio de una función de autoborrado o por una orden dada a una herramienta de exploración).

7.7.4. El sistema de diagnóstico a bordo desactivará todo incremento ulterior del denominador general en el plazo de diez segundos, cuando se haya detectado un mal funcionamiento de cualquier componente utilizado para determinar si se han cumplido los criterios contemplados en el punto 7.5 del presente apéndice (es decir, velocidad del vehículo, temperatura ambiente, elevación, funcionamiento en régimen de ralentí o tiempo de funcionamiento) y se haya almacenado el correspondiente código de fallo pendiente. El aumento del denominador general no podrá desactivarse en otras condiciones. El incremento del denominador general se reanudará en el plazo de diez segundos, cuando deje de producirse el mal funcionamiento (por ejemplo, cuando el código pendiente haya sido borrado por medio de una función de autoborrado o por una orden dada a una herramienta de exploración).

Apéndice 2

Características esenciales de la familia de vehículos

1. PARÁMETROS QUE DEFINEN LA FAMILIA DE DIAGNÓSTICO A BORDO

Por familia OBD se entiende el agrupamiento de vehículos de un fabricante del cual, en razón de su diseño, se espera que tengan características similares en cuanto a las emisiones de escape y al sistema OBD. Cada motor de esta familia cumplirá los requisitos del presente Reglamento.

La familia OBD puede definirse mediante parámetros básicos de diseño que serán comunes a los vehículos incluidos en la familia. En algunos casos puede haber interacción de parámetros. Estos efectos también deben tenerse en cuenta al objeto de garantizar que solo los vehículos que tengan características similares en cuanto a las emisiones de escape estén incluidos en una misma familia OBD.

2. A TAL FIN, SE CONSIDERARÁ QUE PERTENECEN A LA MISMA COMBINACIÓN DE MOTOR/CONTROL DE EMISIONES/ SISTEMA OBD LOS TIPOS DE VEHÍCULOS CUYOS PARÁMETROS DESCRITOS A CONTINUACIÓN SEAN IDÉNTICOS.

Motor:

- a) proceso de combustión (encendido por chispa, encendido por compresión, dos tiempos, cuatro tiempos/rotativo);
- b) método de alimentación del motor (inyección de combustible monopunto o multipunto), y
- c) tipo de combustible (gasolina, diésel, flexifuel gasolina/etanol, flexifuel diésel/biodiésel, gas natural/biometano, GLP, biocombustible gasolina/gas natural/biometano, biocombustible gasolina/GLP).

Sistema de control de emisiones:

- a) tipo de convertidor catalítico (oxidación, tres vías, catalizador calentado, reducción catalítica selectiva, otros);
- b) tipo de filtro de partículas;
- c) inyección de aire secundario (con o sin), y
- d) recirculación de gases de escape (con o sin).

Partes y funcionamiento del diagnóstico a bordo.

Los métodos del diagnóstico a bordo para la supervisión del funcionamiento, la detección del mal funcionamiento y la indicación de este al conductor del vehículo.

ANEXO 12

Concesión de una homologación CEPE de tipo a un vehículo alimentado con gas licuado de petróleo (GLP) o gas natural/biometano

1. INTRODUCCIÓN

En el presente anexo se describen los requisitos especiales aplicables en caso de homologación de un vehículo que utilice GLP o gas natural/biometano o que pueda utilizar gasolina, GLP o gas natural/biometano, en lo que se refiere a los ensayos con GLP o gas natural/biometano.

En el caso del GLP y del gas natural/biometano, existen en el mercado grandes variaciones en la composición del combustible, que hacen necesario que el sistema de alimentación se adapte a las mismas. Para demostrar esta capacidad, el vehículo deberá someterse al ensayo de tipo I con dos combustibles de referencia extremos y demostrar la autoadaptabilidad del sistema de alimentación. Una vez demostrada la autoadaptabilidad del sistema de alimentación de un vehículo, dicho vehículo podrá considerarse vehículo de origen de una familia. Los vehículos que cumplan los requisitos de los miembros de esa familia, cuando estén equipados con el mismo sistema de alimentación, únicamente deberán someterse a ensayo con un combustible.

DEFINICIONES

A efectos del presente anexo, se aplicarán las definiciones siguientes:

- «Familia», el grupo de tipos de vehículos alimentados con GLP o gas natural/biometano e identificados mediante un vehículo de origen.
- 2.2. «Vehículo de origen», el vehículo seleccionado para actuar como vehículo en el que vaya a demostrarse la autoadaptabilidad de un sistema de alimentación y que vaya a servir de referencia a los miembros de una familia. Es posible que en una misma familia haya más de un vehículo de origen.
- 2.3. Miembro de la familia
- 2.3.1. «Miembro de la familia», el vehículo que comparte las siguientes características esenciales con su vehículo o vehículos de origen:
 - a) lo fabrica el mismo fabricante de vehículos;
 - b) está sujeto a los mismos límites de emisión;
 - c) si el sistema de alimentación de gas dispone de un sistema de medición central para todo el motor, tiene una potencia certificada de salida de entre 0,7 y 1,15 veces la del vehículo de origen;
 - d) si el sistema de alimentación de gas dispone de un sistema de medición individual por cilindro, tiene una potencia certificada de salida por cilindro de entre 0,7 y 1,15 veces la del vehículo de origen;
 - e) si está equipado con un catalizador, este es del mismo tipo, a saber: de tres vías, de oxidación o de NO_v;
 - f) posee un sistema de alimentación de gas (incluido el regulador de presión) del mismo fabricante del sistema y del mismo tipo: de inducción, de inyección de vapor (monopunto o multipunto) o de inyección de líquido (monopunto o multipunto);
 - g) este sistema de alimentación de gas está controlado por una unidad de control electrónico del mismo tipo y especificación técnica, que contiene los mismos principios de software y la misma estrategia de control. El vehículo puede tener una segunda unidad de control electrónico con respecto al vehículo de origen, siempre y cuando solo se use para controlar los inyectores, válvulas de cierre adicionales y la obtención de datos a partir de sensores adicionales.
- 2.3.2. En relación con los requisitos de las letras c) y d), cuando una demostración indique que dos vehículos alimentados con gas pueden ser miembros de una misma familia a excepción de sus potencias certificadas de salida, respectivamente P₁ y P₂ (P₁ < P₂), y ambos se sometan a ensayo como vehículos de origen, la relación de familia se considerará válida para cualquier vehículo con una potencia certificada de salida de entre 0,7 P₁ y 1,15 P₂.

3. CONCESIÓN DE UNA HOMOLOGACIÓN DE TIPO

La concesión de la homologación de tipo estará sujeta a los requisitos que figuran a continuación.

- 3.1. Homologación de las emisiones de escape de un vehículo de origen
- 3.1.1. El vehículo de origen debe demostrar su capacidad de adaptación a cualquier composición de combustible que pueda existir en el mercado. En el caso del GLP, existen variaciones en la composición C₃/C₄. En el caso del gas natural/biometano, existen en general dos tipos de combustible, el de alto poder calorífico (tipo H) y el de bajo poder calorífico (tipo L), aunque con una variedad significativa dentro de cada uno de ellos, que difieren notablemente en cuanto al índice de Wobbe. Estas variaciones se reflejan en los combustibles de referencia.
- 3.1.2. En el caso de vehículos alimentados con GLP o gas natural/biometano, el vehículo de origen se someterá al ensayo de tipo I con los dos combustibles de gas de referencia extremos establecidos en el anexo 10 bis del presente Reglamento. En el caso del gas natural/biometano, si la transición de un combustible a otro se realiza en la práctica con la ayuda de un interruptor, este no se utilizará durante la homologación de tipo. En este caso, a instancias del fabricante y con el acuerdo del servicio técnico, podrá ampliarse el ciclo de preacondicionamiento contemplado en el punto 6.3 del anexo 4 bis del presente Reglamento.
- 3.1.3. El vehículo se considerará conforme cuando respete los límites de emisión durante los ensayos y con los combustibles de referencia mencionados en el punto 3.1.2 del presente anexo.
- 3.1.4. En el caso de los vehículos alimentados con GLP o gas natural/biometano, la relación «r» de los resultados de las emisiones para cada contaminante se determinará del modo siguiente:

Tipos de combustible	Tipos de combustible Combustibles de referencia	
GLP y gasolina (homologación B)	Combustible A	
Únicamente GLP (homologación D)	Combustible B	
GN/biometano y gasolina (homologación B)	Combustible G ₂₀	"_ G25
Únicamente GN/biometano (homologación D)	Combustible G ₂₅	$r = \frac{G25}{G20}$

3.2. Homologación de las emisiones de escape de un miembro de la familia

A efectos de la homologación, como miembro de una familia, de un vehículo monocombustible de gas o de un vehículo bicombustible de gas, alimentado con GLP o gas natural/biometano que funcione en modo gas, se realizará un ensayo de tipo I con un combustible de gas de referencia. El combustible de referencia podrá ser cualquiera de los combustibles de gas de referencia. El vehículo se considerará conforme cuando se cumplan los requisitos que figuran a continuación:

- 3.2.1. el vehículo se ajusta a la definición de miembro de la familia que figura en el punto 2.3 del presente anexo;
- 3.2.2. cuando el combustible de ensayo sea el combustible de referencia A, en el caso del GLP, o G_{20} , en el caso del gas natural/biometano, el resultado de la emisión se multiplicará por el factor «r» pertinente, calculado en el punto 3.1.4 del presente anexo, si r > 1; si r < 1, no será necesaria ninguna corrección;
- 3.2.3. cuando el combustible de ensayo sea el combustible de referencia B, en el caso del GLP, o G_{25} , en el caso del gas natural/biometano, el resultado de la emisión se dividirá por el factor «r» pertinente, calculado en el punto 3.1.4 del presente anexo, si r < 1; si r > 1, no será necesaria ninguna corrección;
- 3.2.4. a instancias del fabricante, el ensayo de tipo I podrá llevarse a cabo con ambos combustibles de referencia, de modo que no sea necesaria ninguna corrección;
- 3.2.5. el vehículo cumplirá los límites de emisión válidos para la categoría pertinente tanto en las emisiones medidas como en las calculadas;

- 3.2.6. cuando se realicen ensayos repetidos del mismo motor, primero se calculará la media de los resultados obtenidos con el combustible de referencia G_{20} o A y con el combustible de referencia G_{25} o B, y a continuación se calculará el factor «r» a partir de dicha media;
- 3.2.7. sin perjuicio de lo dispuesto en el punto 6.4.1.3 del anexo 4 bis del presente Reglamento, durante el ensayo de tipo I se podrá utilizar gasolina exclusiva o simultáneamente con gas al funcionar en modo gas, a condición de que el consumo energético de gas sea superior al 80 % de la cantidad total de energía consumida durante el ensayo. Este porcentaje se calculará con el método previsto en el apéndice 1 (GLP) o en el apéndice 2 (GN/biometano) del presente anexo.

4. CONDICIONES GENERALES

4.1. Los ensayos de conformidad de la producción podrán llevarse a cabo con un combustible comercial cuya relación C_3/C_4 se encuentre entre las de los combustibles de referencia, en el caso del GLP, o cuyo índice de Wobbe se encuentre entre los de los combustibles de referencia extremos, en el caso del gas natural/biometano. En este caso, deberá presentarse un análisis del combustible.

Apéndice 1

Vehículo bicombustible de gas — Cálculo del coeficiente de energía del GLP

1. MEDICIÓN DE LA MASA DE GLP CONSUMIDA DURANTE EL CICLO DE ENSAYO DE TIPO I

La medición de la masa de GLP consumida durante el ciclo de ensayo de tipo I se hará mediante un sistema de pesado del combustible capaz de medir el peso del recipiente de almacenamiento del GLP durante el ensayo de acuerdo con lo siguiente:

Una precisión del ± 2 % de la diferencia entre las mediciones al principio y al final del ensayo, o mejor.

Se tomarán precauciones para evitar errores de medición.

Entre dichas precauciones, figurará, al menos, la instalación cuidadosa del dispositivo de acuerdo con las recomendaciones del fabricante del instrumento y con las buenas prácticas técnicas.

Se permiten otros métodos de medición si se puede demostrar que poseen una precisión equivalente.

2. CÁLCULO DEL COEFICIENTE DE ENERGÍA DEL GLP

El valor del consumo de carburante se calculará a partir de las emisiones de hidrocarburos, monóxido de carbono y dióxido de carbono determinadas en los resultados de la medición, suponiendo que tan solo se consume GLP durante el ensayo.

El coeficiente de energía del GLP en el ciclo se determinará como sigue:

$$G_{GLP} = M_{GLP} \cdot 10 \ 000/(FC_{norm} \cdot dist \cdot d)$$

Donde:

G_{GLP}: coeficiente de energía del GLP (%)

M_{GLP}: masa de GLP consumida durante el ciclo (kg)

FC_{norm}: consumo de combustible (l/100 km) calculado de conformidad con el punto 1.4.3, letra b), del anexo 6 del Reglamento nº 101. Si procede, se calculará el factor de corrección «cf» en la ecuación utilizada para determinar FC. utilizando la relación H/C del combustible secondo.

determinar FC_{norm} utilizando la relación H/C del combustible gaseoso

dist: distancia recorrida durante el ciclo (km)

d: densidad = 0.538 kg/l

Apéndice 2

Vehículo bicombustible — Cálculo del coeficiente de energía del GN/biometano

1. MEDICIÓN DE LA MASA DE GNC CONSUMIDA DURANTE EL CICLO DE ENSAYO DE TIPO I

La medición de la masa de GNC consumida durante el ciclo se hará mediante un sistema de pesado del combustible capaz de medir el recipiente de almacenamiento del GNC durante el ensayo de acuerdo con lo siguiente:

Una precisión del ± 2 % de la diferencia entre las mediciones al principio y al final del ensayo, o mejor.

Se tomarán precauciones para evitar errores de medición.

Entre dichas precauciones, figurará, al menos, la instalación cuidadosa del dispositivo de acuerdo con las recomendaciones del fabricante del instrumento y con las buenas prácticas técnicas.

Se permiten otros métodos de medición si se puede demostrar que poseen una precisión equivalente.

2. CÁLCULO DEL COEFICIENTE DE ENERGÍA DEL GNC

El valor del consumo de carburante se calculará a partir de las emisiones de hidrocarburos, monóxido de carbono y dióxido de carbono determinadas en los resultados de la medición, suponiendo que tan solo se consume GNC durante el ensayo.

El coeficiente de energía del GNC en el ciclo se determinará como sigue:

$$G_{GNC} = M_{GNC} \cdot fc \cdot 10 \ 000/(FC_{norm} \cdot dist \cdot d)$$

Donde:

G_{GNC}: coeficiente de energía del GNC (%)

M_{CNG}: masa de GNC consumida durante el ciclo (kg)

FC_{norm}: consumo de combustible (m³/100 km) calculado de conformidad con el punto 1.4.3, letra c), del anexo 6

del Reglamento nº 101

dist: distancia recorrida durante el ciclo (km)

d: densidad = 0.654 kg/m^3

fc: factor de corrección, suponiendo los valores siguientes:

fc = 1 en el caso del carburante de referencia G_{20}

fc = 0.78 en el caso del carburante de referencia G_{25}

ANEXO 13

Procedimiento de ensayo de emisiones para un vehículo equipado con sistema de regeneración periódica

1. INTRODUCCIÓN

En el presente anexo se establecen las disposiciones específicas relativas a la homologación de vehículos equipados con sistema de regeneración periódica, definido en el punto 2.20 del presente Reglamento.

2. ÁMBITO DE APLICACIÓN Y EXTENSIÓN DE LA HOMOLOGACIÓN DE TIPO

2.1. Grupos de familias de vehículos equipados con un sistema de regeneración periódica

El procedimiento se aplicará a los vehículos equipados con un sistema de regeneración periódica, definido en el punto 2.20 del presente Reglamento. A efectos del presente anexo, podrán establecerse grupos de familias de vehículos. Por consiguiente, se considerará que aquellos tipos de vehículos, dotados de sistemas de regeneración con parámetros idénticos o que se sitúen dentro de los límites de las tolerancias establecidas, pertenecen a la misma familia en lo que respecta a las mediciones específicas de los sistemas de regeneración periódica definidos.

2.1.1. Parámetros idénticos:

Motor:

a) Proceso de combustión.

Sistema de regeneración periódica (catalizador, filtro de partículas):

- a) configuración (tipo de cámara, tipo de metal precioso, tipo de sustrato y densidad celular);
- b) tipo y principio de funcionamiento;
- c) dosificación y sistema de adición;
- d) volumen ± 10 %;
- e) emplazamiento (temperatura ± 50 °C a 120 km/h o 5 % de diferencia de temperatura/presión máximas).
- 2.2. Tipos de vehículos con masas de referencia diferentes

Los factores K_i, establecidos mediante los procedimientos que figuran en el presente anexo para la homologación de un tipo de vehículo con sistema de regeneración periódica, definido en el punto 2.20 del presente Reglamento, podrán extenderse a otros vehículos del grupo de familia con una masa de referencia situada en alguna de las dos clases de inercia equivalente superiores más próximas o en cualquier inercia equivalente inferior.

3. PROCEDIMIENTO DE ENSAYO

El vehículo podrá estar equipado con un interruptor que pueda impedir o permitir el proceso de regeneración, siempre que esta operación no repercuta en la calibración original del motor. El interruptor estará permitido únicamente para impedir la regeneración durante la recarga del sistema de regeneración y durante los ciclos de acondicionamiento previo. Sin embargo, no se utilizará durante la medición de las emisiones en la fase de regeneración; el ensayo de emisiones se realizará con la unidad de control del fabricante del equipo original sin modificaciones.

- 3.1. Medición de las emisiones de escape entre dos ciclos en los que tienen lugar fases de regeneración
- 3.1.1. El promedio de emisiones entre las fases de regeneración y durante la carga del dispositivo de regeneración se determinará a partir de la media aritmética de varios ciclos de funcionamiento de tipo I o ciclos equivalentes del banco de ensayo de motores, aproximadamente equidistantes (cuando sean más de dos ciclos). A modo de alternativa, el fabricante podrá proporcionar datos para mostrar que las emisiones permanecen constantes (± 15 %) entre fases de regeneración. En este caso, podrán utilizarse las emisiones medidas durante el ensayo normal de tipo I. En los demás casos, se llevará a cabo la medición de emisiones para un mínimo de dos ciclos de funcionamiento de tipo I o ciclos equivalentes del banco de ensayo de motores: uno inmediatamente después de la regeneración (antes de una nueva carga) y el otro lo más cerca posible del inicio de una fase de

regeneración. La totalidad de las mediciones y de los cálculos de emisiones se llevarán a cabo con arreglo a los puntos 6.4 a 6.6 del anexo 4 bis del presente Reglamento. El promedio de emisiones para un sistema de regeneración único se determinará con arreglo al punto 3.3 del presente anexo y para un sistema de regeneración múltiple, con arreglo al punto 3.4 del mismo.

- 3.1.2. El proceso de recarga y la determinación del factor K_i se efectuarán durante el ciclo de funcionamiento de tipo I, en un banco dinamométrico o en un banco de ensayo de motores con un ciclo de ensayo equivalente. Estos ciclos podrán realizarse de manera continua (es decir, sin necesidad de apagar el motor entre ciclo y ciclo). Una vez que se ha completado un ciclo, podrá retirarse el vehículo del banco dinamométrico para continuar el ensayo más tarde.
- 3.1.3. El número de ciclos (D) entre dos ciclos en los que tengan lugar fases de regeneración, el número de ciclos a lo largo de los cuales se lleven a cabo mediciones de emisiones (n) y cada medición de las mismas (M'_{sij}) se indicarán en los puntos 3.2.12.2.1.11.1 a 3.2.12.2.1.11.4 o 3.2.12.2.6.4.1 a 3.2.12.2.6.4.4 del anexo 1 del presente Reglamento, según proceda.
- 3.2. Medición de emisiones durante la regeneración
- 3.2.1. La preparación del vehículo, cuando resulte necesaria para el ensayo de emisiones durante una fase de regeneración, podrá completarse utilizando los ciclos de preparación del punto 6.3 del anexo 4 bis del presente Reglamento o ciclos equivalentes del banco de ensayo de motores, según el procedimiento de carga escogido con arreglo al punto 3.1.2 del presente anexo.
- 3.2.2. Las condiciones de ensayo y del vehículo en el ensayo de tipo I, descritas en el anexo 4 bis del presente Reglamento, se aplicarán antes de que se lleve a cabo el primer ensayo de emisiones válido.
- 3.2.3. No deberá tener lugar la regeneración durante la preparación del vehículo. Ello podrá garantizarse mediante alguno de los métodos siguientes:
- 3.2.3.1. un sistema de regeneración simulado o parcial para los ciclos de acondicionamiento previo;
- 3.2.3.2. cualquier otro método que acuerden el fabricante y la autoridad de homologación de tipo.
- 3.2.4. Se realizará un ensayo de emisiones de escape con arranque en frío que incluya un proceso de regeneración con arreglo al ciclo de funcionamiento de tipo I o un ciclo equivalente del banco de ensayo de motores. Si los ensayos de emisiones entre dos ciclos en los que tengan lugar fases de regeneración se realizan en un banco de ensayo de motores, los ensayos de emisiones que incluyan una fase de regeneración deberán realizarse también en un banco de ensayo de motores.
- 3.2.5. Cuando el proceso de regeneración requiera más de un ciclo de funcionamiento, el ciclo o ciclos de ensayo posteriores se realizarán inmediatamente, sin apagar el motor, hasta completarse la regeneración (deberá completarse cada ciclo). El tiempo necesario para configurar un nuevo ensayo deberá ser lo más breve posible (por ejemplo, concretamente para el cambio del filtro de partículas). Durante ese período se apagará el motor.
- 3.2.6. Los valores de las emisiones durante la regeneración (M_{ri}) se calcularán con arreglo al punto 6.6 del anexo 4 bis del presente Reglamento. Deberá registrarse el número de ciclos de funcionamiento (d) medidos para una regeneración completa.
- 3.3. Cálculo de las emisiones de escape combinadas de un sistema de regeneración único

$$1)\ \ M_{si}=\frac{\sum\limits_{j=1}^{n}M'_{sij}}{n}\,n\geq2$$

2)
$$M_{ri} = \frac{\sum_{j=1}^{d} M'_{rij}}{d}$$

3)
$$M_{pi} = \left\{ \frac{M_{si} \times D + M_{ri} \times d}{D + d} \right\}$$

Donde, para cada contaminante (i) considerado:

M'_{sij} = emisiones másicas del contaminante i (g/km) a lo largo de un ciclo de funcionamiento de tipo I (o ciclo equivalente del banco de ensayo de motores) sin regeneración

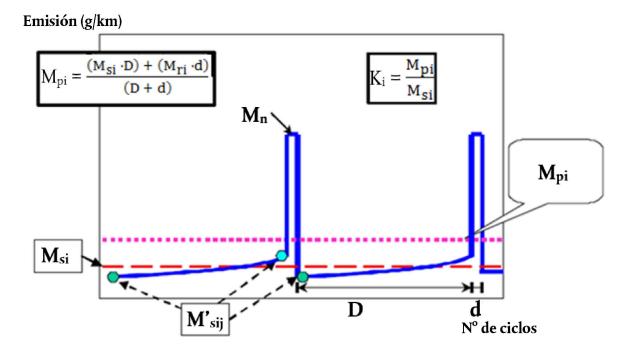
M'_{rij} = emisiones másicas del contaminante i (g/km) a lo largo de un ciclo de funcionamiento de tipo I (o ciclo equivalente del banco de ensayo de motores) durante la regeneración (cuando d > 1, el primer ensayo de tipo I se realiza en frío y los siguientes, en caliente)

M_{si} = emisiones másicas medias del contaminante «i» en g/km sin regeneración

M_{ri} = emisiones másicas medias del contaminante i (g/km) durante la regeneración

M_{pi} = emisiones másicas del contaminante i (g/km)

n = número de puntos de ensayo en los que se realizan mediciones de las emisiones (ciclos de funcionamiento de tipo I o ciclos equivalentes del banco de ensayo de motores) entre dos ciclos en los que tienen lugar fases de regeneración, ≥ 2


d = número de ciclos de funcionamiento necesarios para la regeneración

D = número de ciclos de funcionamiento entre dos ciclos en los que tienen lugar fases de regeneración

Véase la figura A13/1, donde se ilustran a modo de ejemplo los parámetros de medición.

Figura A13/1

Parámetros medidos durante los ensayos de emisiones, a lo largo de los ciclos en los que tiene lugar la regeneración y entre los mismos (ejemplo esquemático, las emisiones durante «D» pueden aumentar o disminuir)

3.3.1. Cálculo del factor de regeneración K para cada contaminante i considerado:

$$K_i = M_{pi}/M_{si}$$

Los resultados correspondientes a M_{si} , M_{pi} y K_i se registrarán en el informe de ensayo enviado por el servicio técnico.

K, podrá determinarse una vez completada una secuencia.

3.4. Cálculo de las emisiones de escape combinadas de sistemas de regeneración periódica múltiples:

1)
$$M_{sik} = \frac{\sum\limits_{j=1}^{n_k} M'_{sik,j}}{n_k} n_k \ge 2$$

2)
$$M_{rik} = \frac{\sum_{j=1}^{d_k} M'_{rik,j}}{d_j}$$

3)
$$M_{si} = \frac{\sum_{k=1}^{x} M_{sik} \cdot D_k}{\sum_{k=1}^{x} D_k}$$

4)
$$M_{ri} = \frac{\sum\limits_{k=1}^{x} M_{rik} \cdot d_k}{\sum\limits_{k=1}^{x} d_k}$$

5)
$$M_{pi} = \frac{M_{si} \cdot \sum\limits_{k=1}^{x} D_k + M_{ri} \cdot \sum\limits_{k=1}^{x} d_k}{\sum\limits_{k=1}^{x} (D_k + d_k)}$$

$$6) \ \ M_{pi} = \frac{\sum\limits_{k=1}^{x} (M_{sik} \cdot D_k + M_{rik} \cdot d_k)}{\sum\limits_{k=1}^{x} (D_k + d_k)}$$

7)
$$K_i = \frac{M_{pi}}{M_{ei}}$$

Donde:

 M_{si} = emisión másica media de todos los incidentes k del contaminante i (g/km) sin regeneración

M_{ri} = emisión másica media de todos los incidentes k del contaminante i (g/km) durante la regeneración

M_{pi} = emisión másica media de todos los incidentes k del contaminante i (g/km)

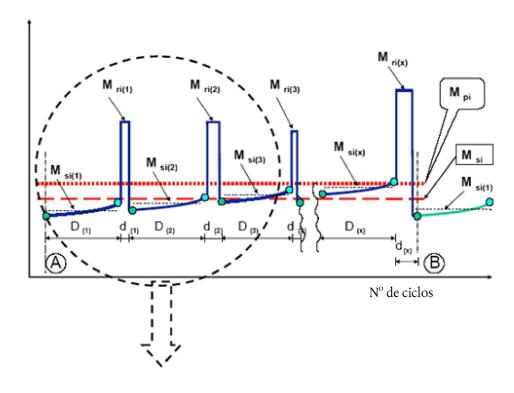
 $M_{\mbox{\tiny cil-}}$ = emisión másica media del incidente k del contaminante i (g/km) sin regeneración

 M_{rik} = emisión másica media del incidente k del contaminante i (g/km) durante la regeneración

 $M'_{sik,j}$ = emisiones másicas del incidente k del contaminante i (g/km) a lo largo de un ciclo de funcionamiento de tipo I (o ciclo equivalente del banco de ensayo de motores) sin regeneración, medidas en el punto j; $1 \le j \le n_k$

 $M'_{rik,j}$ = emisiones másicas del incidente k del contaminante i (g/km) a lo largo de un ciclo de funcionamiento de tipo I (o ciclo equivalente del banco de ensayo de motores) durante la regeneración (cuando j > 1, el primer ensayo de tipo I se realiza en frío y los siguientes, en caliente), medidas en el ciclo de funcionamiento j; $1 \le j \le n_k$

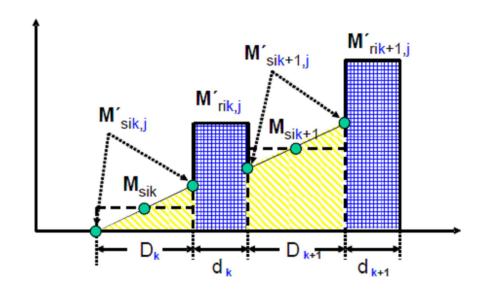
 n_k = número de puntos de ensayo de un proceso k en los que se realizan mediciones de las emisiones (ciclos de funcionamiento de tipo I o ciclos equivalentes en un banco de ensayo de motores) entre dos ciclos en los que tienen lugar fases de regeneración; ≥ 2


d_k = número de ciclos de funcionamiento del incidente k necesarios para la regeneración

D_k = número de ciclos de funcionamiento de un proceso k entre dos ciclos en los que tienen lugar fases de regeneración.

Véase la figura A13/2, donde se ilustran a modo de ejemplo los parámetros de medición.

Figura A13/2


Parámetros medidos durante un ensayo de emisiones y entre los ciclos en los que tiene lugar la regeneración (ejemplo esquemático)

Para obtener más información sobre el proceso esquemático, véase la figura A13/3.

Figura A13/3

Parámetros medidos durante un ensayo de emisiones y entre los ciclos en los que tiene lugar la regeneración (ejemplo esquemático)

Para la aplicación en un caso sencillo y realista, la descripción siguiente ofrece una explicación detallada del ejemplo esquemático de la figura A13/3:

1. Filtro de partículas diésel (DPF): procesos equidistantes, de regeneración, emisiones similares (± 15 %) de proceso a proceso:

$$D_k = D_{k+1} = D_1$$

$$d_k = d_{k+1} = d_1$$

$$M_{rik} - M_{sik} = M_{rik+1} - M_{sik+1}$$

$$n_k = n$$

2. DeNO_x: el proceso de desulfuración (eliminación del SO₂) se inicia antes de que se detecte la influencia del azufre en las emisiones (± 15 % de las emisiones medidas) y, en este ejemplo, por motivos exotérmicos, junto con el último proceso de regeneración mediante el filtro de partículas diésel llevado a cabo:

$$M'_{sik,j=1}$$
 = constante $\rightarrow M_{sik} = M_{sik+1} = M_{si2}$

$$\mathbf{M}_{\mathrm{rik}} = \mathbf{M}_{\mathrm{rik} + 1} = \mathbf{M}_{\mathrm{ri2}}$$

Para el proceso de eliminación M_{ri2} , M_{si2} , d_2 , D_2 , $n_2 = 1$ de SO₃:

3. Sistema completo (DPF + DeNO_x):

$$M_{si} = \frac{n \cdot M_{si1} \cdot D_1 + M_{si2} \cdot D_2}{n \cdot M_{si2} \cdot D_2}$$

$$M_{ri} = \frac{n \cdot M_{ri1} \cdot d_1 + M_{ri2} \cdot d_2}{n \cdot M_{ri1} \cdot d_1 + M_{ri2} \cdot d_2}$$

$$M_{pi} = \frac{M_{si} + M_{ri}}{n \cdot (D_1 + d_1) + D_2 + d_2} = \frac{n \cdot (M_{si1} \cdot D_1 + M_{ri1} \cdot d_1) + M_{si2} \cdot D_2 + M_{ri2} \cdot d_2}{n \cdot (D_1 + d_1) + D_2 + d_2}$$

El cálculo del factor K_i en relación con los sistemas de regeneración periódica de dispositivo múltiple solo es posible después de un cierto número de fases de regeneración de cada sistema. Después de realizarse el procedimiento completo (A a B, véase la figura A13/2), deben alcanzarse de nuevo las condiciones A originales de partida.

- 3.4.1. Extensión de la homologación de un sistema de regeneración periódica de dispositivo múltiple
- 3.4.1.1. Si se modifican el parámetro o parámetros técnicos o la estrategia de regeneración de un sistema de regeneración de dispositivo múltiple para todos los procesos dentro de este sistema mixto, debe ejecutarse el procedimiento completo, incluidos todos los dispositivos de regeneración, mediante mediciones a fin de actualizar el factor K_i múltiple.
- 3.4.1.2. Si un único dispositivo del sistema de regeneración de dispositivo múltiple solo cambia en cuanto a los parámetros de estrategia (como «D» y/o «d» en el caso del DPF) y el fabricante puede presentar al servicio técnico datos técnicos e información que indican:
 - a) que no hay interacción detectable con los demás dispositivos del sistema, y
 - b) que los parámetros importantes (configuración, principio de funcionamiento, volumen, emplazamiento, etc.) son idénticos.

Podría simplificarse el procedimiento de actualización necesario de K_i.

Según lo acordado entre el fabricante y el servicio técnico, en este caso solo debe llevarse a cabo un único proceso de muestreo/almacenamiento y regeneración, y los resultados del ensayo (« M_{si} » y « M_{ri} »), en combinación con los parámetros modificados («D» y/o «d»), pueden introducirse en la fórmula o fórmulas pertinentes para actualizar el factor K_i múltiple, siguiendo un método matemático, con la sustitución de la fórmula o fórmulas existentes de dicho factor K_i .

ANEXO 14

PROCEDIMIENTO DE ENSAYO DE EMISIONES PARA VEHÍCULOS ELÉCTRICOS HÍBRIDOS

- 1. INTRODUCCIÓN
- 1.1. En el presente anexo se establecen las disposiciones específicas relativas a la homologación de vehículos eléctricos híbridos, definidos en el punto 2.21.2 del presente Reglamento.
- 1.2. En general, los ensayos de los tipos I, II, III, IV, V y VI y de diagnóstico a bordo en relación con los vehículos eléctricos híbridos se realizarán con arreglo a los anexos 4 bis, 5, 6, 7, 9, 8 y 11 respectivamente, del presente Reglamento, salvo cuando se modifiquen por el presente anexo.
- 1.3. Únicamente en el caso del ensayo de tipo I, los vehículos que se cargan desde el exterior (de acuerdo con las categorías establecidas en el punto 2 del presente anexo) se someterán a ensayo de conformidad con las condiciones A y B. Los resultados del ensayo con arreglo a ambas condiciones, A y B, así como los valores ponderados, se indicarán en el formulario de comunicación.
- 1.4. Los resultados del ensayo de emisiones respetarán los límites establecidos en todas las condiciones de ensayo especificadas en el presente Reglamento.
- 2. CATEGORÍAS DE VEHÍCULOS ELÉCTRICOS HÍBRIDOS

Carga del vehículo	Vehículos que se cargan desde el exterior (¹)		Vehículos que no se cargan desde el exterior (²)	
Conmutador del modo de funciona- miento	Sin	Con	Sin	Con

- (1) También denominados «recargables desde el exterior».
- (2) También denominados «no recargables desde el exterior».
- 3. MÉTODOS DE ENSAYO DE TIPO I
- 3.1. Vehículos eléctricos híbridos que se cargan desde el exterior, sin conmutador del modo de funcionamiento
- 3.1.1. Se realizarán dos ensayos en las condiciones siguientes:
 - condición A: el ensayo se realizará con un dispositivo de acumulación de energía/potencia eléctrica completamente cargado;
 - condición B: el ensayo se realizará con un dispositivo de acumulación de energía/potencia eléctrica con el estado de carga al mínimo (máxima descarga de capacidad).

En el apéndice 1 del presente anexo figura el perfil del estado de carga del dispositivo de acumulación de energía/potencia eléctrica durante las diferentes etapas del ensayo de tipo I.

3.1.2. Condición A

- 3.1.2.1. Se iniciará el procedimiento con la descarga del dispositivo de acumulación de energía/potencia eléctrica del vehículo durante la conducción (en la pista de ensayo, en un banco dinamométrico, etc.):
 - a) a una velocidad constante de 50 km/h hasta que se ponga en marcha el motor térmico del vehículo eléctrico híbrido, o
 - b) si el vehículo no puede alcanzar una velocidad constante de 50 km/h sin que se ponga en marcha el motor térmico, se reducirá la velocidad hasta que el vehículo pueda funcionar a una velocidad inferior constante en la que el motor térmico no se ponga en marcha durante un tiempo o distancia establecidos (a determinar entre el servicio técnico y el fabricante), o
 - c) de acuerdo con las recomendaciones del fabricante.

El motor térmico se detendrá a los diez segundos de haberse puesto en marcha automáticamente.

- 3.1.2.2. Acondicionamiento del vehículo
- 3.1.2.2.1. Los vehículos con motor de encendido por compresión se someterán al ciclo de la parte 2, descrito en el cuadro A4a/2 (y en la figura A4a/3) del anexo 4 bis del presente Reglamento. Se realizarán tres ciclos consecutivos con arreglo al punto 3.1.2.5.3 del presente anexo.
- 3.1.2.2.2. El preacondicionamiento de los vehículos equipados con motor de encendido por chispa se llevará a cabo con un ciclo de conducción de la parte 1 y dos ciclos de la parte 2, con arreglo al punto 3.1.2.5.3 del presente anexo.
- 3.1.2.3. Después del acondicionamiento previo y antes de proceder al ensayo, el vehículo permanecerá en una sala en la que la temperatura se mantenga relativamente constante entre 293 y 303 K (20 y 30 °C). Este acondicionamiento se llevará a cabo durante al menos seis horas y continuará hasta que la temperatura del aceite del motor y la del refrigerante, en su caso, estén a ± 2 K de la temperatura de la sala, y el dispositivo de acumulación de energía/potencia eléctrica esté completamente cargado como consecuencia del proceso de carga descrito en el punto 3.1.2.4 del presente anexo.
- 3.1.2.4. Durante la estabilización, se cargará el dispositivo de acumulación de energía/potencia eléctrica:
 - a) con el cargador a bordo, si está instalado, o
 - b) con un cargador externo recomendado por el fabricante, siguiendo el procedimiento de carga nocturno habitual.

Dicho procedimiento excluye todos los tipos de cargas especiales que podrían iniciarse manualmente o de forma automática; por ejemplo, las cargas de ecualización o de mantenimiento.

El fabricante declarará que, durante el ensayo, no se ha seguido un procedimiento de recarga especial.

- 3.1.2.5. Procedimiento de ensayo
- 3.1.2.5.1. El vehículo se pondrá en marcha con los medios facilitados al conductor para su uso habitual. El primer ciclo empieza en el momento en que se inicia el procedimiento de arranque del motor.
- 3.1.2.5.2. Podrán aplicarse los procedimientos de ensayo definidos en los puntos 3.1.2.5.2.1 o 3.1.2.5.2.2 del presente anexo, en consonancia con el procedimiento elegido en el punto 3.2.3.2 del anexo 8 del Reglamento nº 101.
- 3.1.2.5.2.1. El muestreo comenzará antes o en el momento de inicio del procedimiento de arranque del motor y finalizará en el momento en que concluye el período final de ralentí en el ciclo por carretera (parte 2, final del muestreo).
- 3.1.2.5.2.2. El muestreo comenzará antes o en el momento del inicio del procedimiento de arranque del vehículo y continuará un número de ciclos de ensayo repetidos. Terminará cuando acabe el período final de ralentí del primer ciclo por carretera (parte 2), durante el cual la batería habrá alcanzado el estado mínimo de carga según el criterio definido más adelante (final del muestreo).

El balance eléctrico Q (Ah) se mide a lo largo de cada ciclo mixto mediante el procedimiento que se contempla en el apéndice 2 del anexo 8 del Reglamento n° 101 y se utiliza para determinar cuándo se ha alcanzado el estado de carga mínimo.

Se considera que se ha alcanzado el estado mínimo de carga de la batería en un ciclo mixto N si el balance eléctrico medido durante el ciclo mixto N + 1 no es superior a un 3 % de descarga, expresada en porcentaje de la capacidad nominal de la batería (en Ah) en su estado máximo de carga, según lo declarado por el fabricante. A petición del fabricante, podrán ejecutarse ciclos de ensayo adicionales y los resultados incluirse en los cálculos de los puntos 3.1.2.5.5 y 3.1.4.2 del presente anexo, siempre y cuando el balance eléctrico de cada ciclo de ensayo adicional indique una descarga de la batería menor que en el ciclo previo.

Entre cada ciclo se permitirá un período de parada caliente de un máximo de diez minutos. La cadena de tracción eléctrica deberá apagarse durante este período.

- 3.1.2.5.3. Se conducirá el vehículo de acuerdo con lo dispuesto en el anexo 4 bis del presente Reglamento o, cuando exista una estrategia especial de cambio de velocidades, de acuerdo con las instrucciones del fabricante, tal y como figuran en el manual de vehículos de producción del conductor y como se indica en el instrumento técnico de cambio de velocidades (destinado a informar al conductor). En relación con estos vehículos, no se aplicarán los puntos relativos al cambio de velocidades del anexo 4 bis del presente Reglamento. Con respecto al modelo de la curva de funcionamiento, se aplicará la descripción del punto 6.1.3 del anexo 4 bis del presente Reglamento.
- 3.1.2.5.4. Los gases de escape se analizarán con arreglo a lo dispuesto en el anexo 4 bis del presente Reglamento.
- 3.1.2.5.5. Se compararán los resultados del ensayo con los límites establecidos en el punto 5.3.1.4 del presente Reglamento y se calculará el promedio de emisiones de cada contaminante en gramos por kilómetro en la condición A (M₁₁).

En los ensayos con arreglo al punto 3.1.2.5.2.1 del presente anexo, M_{li} es simplemente el resultado del ciclo mixto único ejecutado.

En los ensayos con arreglo al punto 3.1.2.5.2.2 del presente anexo, el resultado del ensayo de cada ciclo mixto ejecutado, M_{lia} , multiplicado por el deterioro adecuado y los factores K_i será inferior a los límites establecidos en el punto 5.3.1.4 del presente Reglamento. Para el cálculo del punto 3.1.4 del presente anexo, M_{li} será:

$$M_{1i} = \frac{1}{N} \sum_{a=1}^{N} M_{1ia}$$

Donde:

- i: contaminante
- a: ciclo
- 3.1.3. Condición B
- 3.1.3.1. Acondicionamiento del vehículo
- 3.1.3.1.1. Los vehículos con motor de encendido por compresión se someterán al ciclo de la parte 2, descrito en el cuadro A4a/2 (y en la figura A4a/3) del anexo 4 bis del presente Reglamento. Se realizarán tres ciclos consecutivos con arreglo al punto 3.1.3.4.3 del presente anexo.
- 3.1.3.1.2. El preacondicionamiento de los vehículos equipados con motor de encendido por chispa se llevará a cabo con un ciclo de conducción de la parte 1 y dos ciclos de la parte 2, con arreglo al punto 3.1.3.4.3 del presente anexo.
- 3.1.3.2. El dispositivo de acumulación de energía/potencia eléctrica del vehículo se descargará durante la conducción (en la pista de ensayo, en un banco dinamométrico, etc.):
 - a) a una velocidad constante de 50 km/h hasta que se ponga en marcha el motor térmico del vehículo eléctrico híbrido, o
 - si el vehículo no puede alcanzar una velocidad constante de 50 km/h sin que se ponga en marcha el motor térmico, se reducirá la velocidad hasta que el vehículo pueda funcionar a una velocidad inferior constante en la que el motor térmico no se ponga en marcha durante un tiempo o distancia establecidos (a determinar entre el servicio técnico y el fabricante), o
 - c) de acuerdo con las recomendaciones del fabricante.

El motor térmico se detendrá a los diez segundos de haberse puesto en marcha automáticamente.

- 3.1.3.3. Después del acondicionamiento previo y antes de proceder al ensayo, el vehículo permanecerá en una sala en la que la temperatura se mantenga relativamente constante entre 293 y 303 K (20 y 30 °C). Este acondicionamiento durará seis horas como mínimo y proseguirá hasta que la temperatura del aceite del motor y la del líquido de refrigeración, en su caso, estén a ± 2 K de la temperatura de la sala.
- 3.1.3.4. Procedimiento de ensayo
- 3.1.3.4.1. El vehículo se pondrá en marcha con los medios facilitados al conductor para su uso habitual. El primer ciclo empieza en el momento en que se inicia el procedimiento de arranque del motor.
- 3.1.3.4.2. El muestreo comenzará antes o en el momento de inicio del procedimiento de arranque del motor *y* finalizará en el momento en que concluye el período final de ralentí en el ciclo por carretera (parte 2, final del muestreo).
- 3.1.3.4.3. Se conducirá el vehículo de acuerdo con lo dispuesto en el anexo 4 bis del presente Reglamento o, cuando exista una estrategia especial de cambio de velocidades, de acuerdo con las instrucciones del fabricante, tal y como figuran en el manual de vehículos de producción del conductor y como se indica en el instrumento técnico de cambio de velocidades (destinado a informar al conductor). En relación con estos vehículos, no se aplicarán los puntos relativos al cambio de velocidades del anexo 4 bis del presente Reglamento. Con respecto al modelo de la curva de funcionamiento, se aplicará la descripción del punto 6.1.3 del anexo 4 bis del presente Reglamento.
- 3.1.3.4.4. Los gases de escape se analizarán con arreglo a lo dispuesto en el anexo 4 bis del presente Reglamento.
- 3.1.3.5. Se compararán los resultados del ensayo con los límites establecidos en el punto 5.3.1.4 del presente Reglamento y se calculará el promedio de emisiones de cada contaminante en la condición B (M_{2i}) . Los resultados del ensayo, M_{2i} , multiplicados por el deterioro adecuado y los factores K_i serán inferiores a los límites establecidos en el punto 5.3.1.4 del presente Reglamento.
- 3.1.4. Resultados del ensayo
- 3.1.4.1. En caso de que el ensayo se realice conforme al punto 3.1.2.5.2.1 del presente anexo, a efectos de la comunicación, los valores ponderados se calcularán como sigue:

$$M_i = (De \cdot M_{1i} + Dav \cdot M_{2i})/(De + Dav)$$

Donde:

M_i = emisión másica del contaminante i (g/km)

- M_{1i} = promedio de la emisión másica del contaminante i (g/km) con un dispositivo de acumulación de energía/potencia eléctrica completamente cargado, calculado en el punto 3.1.2.5.5 del presente anexo
- M_{2i} = promedio de la emisión másica del contaminante i (g/km) con un dispositivo de acumulación de energía/potencia eléctrica con el estado de carga al mínimo (máxima descarga de capacidad), calculado en el punto 3.1.3.5 del presente anexo
- De = autonomía eléctrica del vehículo, con arreglo al procedimiento descrito en el Reglamento nº 101, anexo 9, cuando el fabricante deba proporcionar los medios para realizar las mediciones con el vehículo funcionando en modo eléctrico puro
- Dav = 25 km (distancia media entre dos recargas de batería)
- 3.1.4.2. En caso de que el ensayo se realice conforme al punto 3.1.2.5.2.2 del presente anexo, a efectos de la comunicación, los valores ponderados se calcularán como sigue:

$$M_i = (Dovc \cdot M_{1i} + Dav \cdot M_{2i})/(Dovc + Dav)$$

Donde:

- M_i = emisión másica del contaminante i (g/km)
- M_{1i} = promedio de la emisión másica del contaminante i (g/km) con un dispositivo de acumulación de energía/potencia eléctrica completamente cargado, calculado en el punto 3.1.2.5.5 del presente anexo
- M_{2i} = promedio de la emisión másica del contaminante i (g/km) con un dispositivo de acumulación de energía/potencia eléctrica con el estado de carga al mínimo (máxima descarga de capacidad), calculado en el punto 3.1.3.5 del presente anexo
- Dovc = autonomía de la carga desde el exterior, de conformidad con el procedimiento descrito en el Reglamento nº 101, anexo 9
- Dav = 25 km (distancia media entre dos recargas de batería)
- 3.2. Vehículos eléctricos híbridos que se cargan desde el exterior, con conmutador del modo de funcionamiento
- 3.2.1. Se realizarán dos ensayos en las condiciones siguientes:
- condición A: el ensayo se realizará con un dispositivo de acumulación de energía/potencia eléctrica completamente cargado;
- 3.2.1.2. condición B: el ensayo se realizará con un dispositivo de acumulación de energía/potencia eléctrica con el estado de carga al mínimo (máxima descarga de capacidad).
- 3.2.1.3. La posición del conmutador del modo de funcionamiento se establecerá de acuerdo con el cuadro A14/1.

Cuadro A14/1

Modos híbridos	— Eléctrico puro — Híbrido	— Térmico puro — Híbrido	— Eléctrico puro — Térmico puro — Híbrido	Modo híbrido n (¹) Modo híbrido m (¹)
Estado de carga de la batería	Conmutador en la posición	Conmutador en la posición	Conmutador en la posición	Conmutador en la posición
Condición A Completamente cargada	Híbrido	Híbrido	Híbrido	Modo fundamental- mente eléctrico (²)
Condición B Estado de carga mínimo	Híbrido	Térmico	Térmico	Modo fundamental- mente térmico (³)

Notas:

- (1) Por ejemplo:posición deportiva, económica, urbana, de carretera, etc.
- (2) Modo híbrido fundamentalmente eléctrico:
 modo híbrido en relación con el cual se puede demostrar que consume la mayor cantidad de electricidad de todos los
 modos híbridos que pueden seleccionarse cuando se somete a ensayo con arreglo a la condición A del punto 4 del
 anexo 8 del Reglamento nº 101, que se establece a partir de la información facilitada por el fabricante y de acuerdo
 con el servicio técnico.
- (3) Modo fundamentalmente térmico: modo híbrido en relación con el cual se puede demostrar que consume la mayor cantidad de combustible de todos los modos híbridos que pueden seleccionarse cuando se somete a ensayo con arreglo a la condición B del punto 4 del anexo 8 del Reglamento nº 101, que se establece a partir de la información facilitada por el fabricante y de acuerdo con el servicio técnico

3.2.2. Condición A

3.2.2.1. Cuando la autonomía eléctrica pura del vehículo sea superior a la de un ciclo completo, a petición del fabricante podrá realizarse el ensayo de tipo I en modo eléctrico puro. En este caso, podrá omitirse el preacondicionamiento del motor prescrito en los puntos 3.2.2.3.1 o 3.2.2.3.2 del presente anexo.

3.2.2.2. Se iniciará el procedimiento con la descarga, durante la conducción, del dispositivo de acumulación de energía/potencia eléctrica con el conmutador en posición «eléctrico puro» (en la pista de ensayo, en un banco dinamométrico, etc.), a una velocidad constante del 70 ± 5 % de la velocidad máxima durante 30 minutos del vehículo (determinada con arreglo al Reglamento nº 101).

La interrupción de la descarga tiene lugar en uno de los casos siguientes:

- a) cuando el vehículo no puede circular al 65 % de la velocidad máxima durante 30 minutos, o
- b) cuando los instrumentos estándar a bordo indican al conductor que detenga el vehículo, o
- c) después de recorrer una distancia de 100 km.
- Si el vehículo no está equipado con un modo eléctrico puro, el dispositivo de acumulación de energía/potencia eléctrica se descargará conduciendo el vehículo (en la pista de ensayo, en un banco dinamométrico, etc.):
- a) a una velocidad constante de 50 km/h hasta que se ponga en marcha el motor térmico del vehículo eléctrico híbrido, o
- b) si el vehículo no puede alcanzar una velocidad constante de 50 km/h sin que se ponga en marcha el motor térmico, se reducirá la velocidad hasta que el vehículo pueda funcionar a una velocidad inferior constante en la que el motor térmico no se ponga en marcha durante un tiempo o distancia establecidos (por el servicio técnico y el fabricante), o
- c) de acuerdo con las recomendaciones del fabricante.

El motor térmico se detendrá a los diez segundos de haberse puesto en marcha automáticamente.

- 3.2.2.3. Acondicionamiento del vehículo
- 3.2.2.3.1. Los vehículos con motor de encendido por compresión se someterán al ciclo de la parte 2, descrito en el cuadro A4a/2 (y en la figura A4a/3) del anexo 4 bis del presente Reglamento. Se realizarán tres ciclos consecutivos con arreglo al punto 3.2.2.6.3 del presente anexo.
- 3.2.2.3.2. El preacondicionamiento de los vehículos equipados con motor de encendido por chispa se llevará a cabo con un ciclo de conducción de la parte 1 y dos ciclos de la parte 2, con arreglo al punto 3.2.2.6.3 del presente anexo.
- 3.2.2.4. Después del acondicionamiento previo y antes de proceder al ensayo, el vehículo permanecerá en una sala en la que la temperatura se mantenga relativamente constante entre 293 y 303 K (20 y 30 °C). Este acondicionamiento se llevará a cabo durante al menos seis horas y continuará hasta que la temperatura del aceite del motor y la del refrigerante, en su caso, estén a ± 2 K de la temperatura de la sala, y el dispositivo de acumulación de energía/potencia eléctrica esté completamente cargado como consecuencia del proceso de carga descrito en el punto 3.2.2.5 del presente anexo.
- 3.2.2.5. Durante la estabilización, se cargará el dispositivo de acumulación de energía/potencia eléctrica:
 - a) con el cargador a bordo, si está instalado, o
 - b) con un cargador externo recomendado por el fabricante, siguiendo el procedimiento de carga nocturno habitual.

Dicho procedimiento excluye todos los tipos de cargas especiales que podrían iniciarse manualmente o de forma automática; por ejemplo, las cargas de ecualización o de mantenimiento.

El fabricante declarará que, durante el ensayo, no se ha seguido un procedimiento de recarga especial.

- 3.2.2.6. Procedimiento de ensayo
- 3.2.2.6.1. El vehículo se pondrá en marcha con los medios facilitados al conductor para su uso habitual. El primer ciclo empieza en el momento en que se inicia el procedimiento de arranque del motor.

- 3.2.2.6.2. Podrán aplicarse los procedimientos de ensayo definidos en los puntos 3.2.2.6.2.1 o 3.2.2.6.2.2 del presente anexo, en consonancia con el procedimiento elegido en el punto 4.2.4.2 del anexo 8 del Reglamento nº 101.
- 3.2.2.6.2.1. El muestreo comenzará antes o en el momento de inicio del procedimiento de arranque del motor *y* finalizará en el momento en que concluye el período final de ralentí en el ciclo por carretera (parte 2, final del muestreo).
- 3.2.2.6.2.2. El muestreo comenzará antes o en el momento del inicio del procedimiento de arranque del vehículo y continuará un número de ciclos de ensayo repetidos. Finalizará cuando concluya el último período de ralentí en el primer ciclo extraurbano (parte 2) durante el cual la batería haya alcanzado el estado de carga mínimo según la definición que figura a continuación (final del muestreo).

El balance eléctrico Q (Ah) se mide a lo largo del ciclo mixto mediante el procedimiento que se contempla en el apéndice 2 del anexo 8 del Reglamento nº 101 y se utiliza para determinar cuándo se ha alcanzado el estado de carga mínimo.

Se considera que se ha alcanzado el estado mínimo de carga de la batería en un ciclo mixto N,si el balance eléctrico medido durante el ciclo mixto N + 1 no es superior a un 3 % de descarga, expresada en porcentaje de la capacidad nominal de la batería (en Ah) en su estado máximo de carga, según lo declarado por el fabricante. A petición del fabricante, podrán realizase ciclos de ensayo adicionales y sus resultados podrán incluirse en los cálculos descritos en los puntos 3.2.2.7 y 3.2.4 del presente anexo, siempre que el balance eléctrico de cada ciclo de ensayo añadido registre una descarga menor de la batería que el ciclo anterior.

Entre cada ciclo se permitirá un período de parada caliente de un máximo de diez minutos. La cadena de tracción eléctrica deberá apagarse durante este período.

- 3.2.2.6.3. Se conducirá el vehículo de acuerdo con lo dispuesto en el anexo 4 bis del presente Reglamento o, cuando exista una estrategia especial de cambio de velocidades, de acuerdo con las instrucciones del fabricante, tal y como figuran en el manual de vehículos de producción del conductor y como se indica en el instrumento técnico de cambio de velocidades (destinado a informar al conductor). En relación con estos vehículos, no se aplicarán los puntos relativos al cambio de velocidades del anexo 4 bis del presente Reglamento. Con respecto al modelo de la curva de funcionamiento, se aplicará la descripción del punto 6.1.3 del anexo 4 bis del presente Reglamento.
- 3.2.2.6.4. Los gases de escape se analizarán con arreglo a lo dispuesto en el anexo 4 bis del presente Reglamento.
- 3.2.2.7. Se compararán los resultados del ensayo con los límites establecidos en el punto 5.3.1.4 del presente Reglamento y se calculará el promedio de emisiones de cada contaminante en gramos por kilómetro en la condición A (M_1) .

En los ensayos con arreglo al punto 3.2.2.6.2.1 del presente anexo, M_{li} es simplemente el resultado del ciclo mixto único ejecutado.

En los ensayos con arreglo al punto 3.2.2.6.2.2 del presente anexo, el resultado del ensayo de cada ciclo mixto ejecutado, M_{lia} , multiplicado por el deterioro adecuado y los factores K_i será inferior a los límites establecidos en el punto 5.3.1.4 del presente Reglamento. Para el cálculo del punto 3.2.4 del presente anexo, M_{li} será:

$$M_{1i} = \frac{1}{N} \sum_{n=1}^{N} M_{1ia}$$

Donde:

- i: contaminante
- a: ciclo

- 3.2.3. Condición B
- 3.2.3.1. Acondicionamiento del vehículo
- 3.2.3.1.1. Los vehículos con motor de encendido por compresión se someterán al ciclo de la parte 2, descrito en el cuadro A4a/2 (y en la figura A4a/2) del anexo 4 bis del presente Reglamento. Se realizarán tres ciclos consecutivos con arreglo al punto 3.2.3.4.3 del presente anexo.
- 3.2.3.1.2. El preacondicionamiento de los vehículos equipados con motor de encendido por chispa se llevará a cabo con un ciclo de conducción de la parte 1 y dos ciclos de la parte 2, con arreglo al punto 3.2.3.4.3 del presente anexo.
- 3.2.3.2. Se descargará el dispositivo de acumulación de energía/potencia eléctrica del vehículo con arreglo al punto 3.2.2.2 del presente anexo.
- 3.2.3.3. Después del acondicionamiento previo y antes de proceder al ensayo, el vehículo permanecerá en una sala en la que la temperatura se mantenga relativamente constante entre 293 y 303 K (20 y 30 °C). Este acondicionamiento durará seis horas como mínimo y proseguirá hasta que la temperatura del aceite del motor y la del líquido de refrigeración, en su caso, estén a ± 2 K de la temperatura de la sala.
- 3.2.3.4. Procedimiento de ensayo
- 3.2.3.4.1. El vehículo se pondrá en marcha con los medios facilitados al conductor para su uso habitual. El primer ciclo empieza en el momento en que se inicia el procedimiento de arranque del motor.
- 3.2.3.4.2. El muestreo comenzará antes o en el momento de inicio del procedimiento de arranque del motor *y* finalizará en el momento en que concluye el período final de ralentí en el ciclo por carretera (parte 2, final del muestreo).
- 3.2.3.4.3. Se conducirá el vehículo de acuerdo con lo dispuesto en el anexo 4 bis del presente Reglamento o, cuando exista una estrategia especial de cambio de velocidades, de acuerdo con las instrucciones del fabricante, tal y como figuran en el manual de vehículos de producción del conductor y como se indica en el instrumento técnico de cambio de velocidades (destinado a informar al conductor). En relación con estos vehículos, no se aplicarán los puntos relativos al cambio de velocidades del anexo 4 bis del presente Reglamento. Con respecto al modelo de la curva de funcionamiento, se aplicará la descripción del punto 6.1.3 del anexo 4 bis del presente Reglamento.
- 3.2.3.4.4. Los gases de escape se analizarán con arreglo a lo dispuesto en el anexo 4 bis del presente Reglamento.
- 3.2.3.5. Se compararán los resultados del ensayo con los límites establecidos en el punto 5.3.1.4 del presente Reglamento y se calculará el promedio de emisiones de cada contaminante en la condición B (M_{2i}). Los resultados del ensayo, M_{2i} , multiplicados por el deterioro adecuado y los factores K_i serán inferiores a los límites establecidos en el punto 5.3.1.4 del presente Reglamento.
- 3.2.4. Resultados del ensayo
- 3.2.4.1. En caso de que el ensayo se realice conforme al punto 3.2.2.6.2.1 del presente anexo, a efectos de la comunicación, los valores ponderados se calcularán como sigue:

$$M_i = (De \cdot M_{1i} + Dav \cdot M_{2i})/(De + Dav)$$

Donde:

M_i = emisión másica del contaminante i (g/km)

M_{1i} = promedio de la emisión másica del contaminante i (g/km) con un dispositivo de acumulación de energía/potencia eléctrica completamente cargado, calculado en el punto 3.2.2.7 del presente anexo

- M_{2i} = promedio de la emisión másica del contaminante i (g/km) con un dispositivo de acumulación de energía/potencia eléctrica con el estado de carga al mínimo (máxima descarga de capacidad), calculado en el punto 3.2.3.5 del presente anexo
- De = autonomía eléctrica del vehículo con el conmutador en posición «eléctrico puro», con arreglo al procedimiento descrito en el Reglamento nº 101, anexo 9. Cuando no exista posición «eléctrico puro», el fabricante deberá proporcionar los medios para realizar las mediciones con el vehículo funcionando en modo eléctrico puro.

Dav = 25 km (distancia media entre dos recargas de batería)

3.2.4.2. En caso de que el ensayo se realice conforme al punto 3.2.2.6.2.2 del presente anexo, a efectos de la comunicación, los valores ponderados se calcularán como sigue:

$$M_i = (Dovc \cdot M_{1i} + Dav \cdot M_{2i})/(Dovc + Dav)$$

Donde:

M_i = emisión másica del contaminante i (g/km)

M_{1i} = promedio de la emisión másica del contaminante i (g/km) con un dispositivo de acumulación de energía/potencia eléctrica completamente cargado, calculado en el punto 3.2.2.7 del presente anexo

M_{2i} = promedio de la emisión másica del contaminante i (g/km) con un dispositivo de acumulación de energía/potencia eléctrica con el estado de carga al mínimo (máxima descarga de capacidad), calculado en el punto 3.2.3.5 del presente anexo

Dovc = autonomía de la carga desde el exterior, de conformidad con el procedimiento descrito en el Reglamento nº 101, anexo 9

Dav = 25 km (distancia media entre dos recargas de batería)

- 3.3. Vehículos que no se cargan desde el exterior, sin conmutador del modo de funcionamiento
- 3.3.1. Estos vehículos se someterán a ensayo con arreglo al anexo 4 bis.
- 3.3.2. Para el preacondicionamiento, se realizarán al menos dos ciclos de conducción consecutivos completos (uno de la parte 1 y uno de la parte 2), sin estabilización.
- 3.3.3. Se conducirá el vehículo de acuerdo con lo dispuesto en el anexo 4 bis o, cuando exista una estrategia especial de cambio de velocidades, de acuerdo con las instrucciones del fabricante, tal y como figuran en el manual de vehículos de producción del conductor y como se indica en el instrumento técnico de cambio de velocidades (destinado a informar al conductor). En relación con estos vehículos, no se aplicarán los puntos relativos al cambio de velocidades del anexo 4 bis. Con respecto al modelo de la curva de funcionamiento, se aplicará la descripción del punto 6.1.3 del anexo 4 bis.
- 3.4. Vehículos que no se cargan desde el exterior, con conmutador del modo de funcionamiento
- 3.4.1. Estos vehículos se preacondicionarán y someterán a ensayo en modo híbrido con arreglo al anexo 4 bis. Cuando el vehículo disponga de varios modos híbridos, el ensayo se realizará en el modo que se establezca automáticamente tras girar la llave de contacto (modo normal). A partir de la información facilitada por el fabricante, el servicio técnico se asegurará de que se respetan los valores límite en todos los modos híbridos.
- 3.4.2. Para el preacondicionamiento, se realizarán al menos dos ciclos de conducción consecutivos completos (uno de la parte 1 y uno de la parte 2), sin estabilización.

- 3.4.3. Se conducirá el vehículo de acuerdo con lo dispuesto en el anexo 4 bis del presente Reglamento o, cuando exista una estrategia especial de cambio de velocidades, de acuerdo con las instrucciones del fabricante, tal y como figuran en el manual de vehículos de producción del conductor y como se indica en el instrumento técnico de cambio de velocidades (destinado a informar al conductor). En relación con estos vehículos, no se aplicarán los puntos relativos al cambio de velocidades del anexo 4 bis del presente Reglamento. Con respecto al modelo de la curva de funcionamiento, se aplicará la descripción del punto 6.1.3 del anexo 4 bis del presente Reglamento.
- 4. MÉTODOS DE ENSAYO DE TIPO II
- 4.1. Los vehículos se someterán a ensayo con arreglo al anexo 5, con el motor térmico en funcionamiento. El fabricante proporcionará un «modo de mantenimiento» que permita ejecutar este ensayo.

Cuando sea necesario, se recurrirá al procedimiento especial que figura en el punto 5.1.6 del presente Reglamento.

- 5. MÉTODOS DE ENSAYO DE TIPO III
- 5.1. Los vehículos se someterán a ensayo con arreglo al anexo 6, con el motor térmico en funcionamiento. El fabricante proporcionará un «modo de mantenimiento» que permita ejecutar este ensayo.
- 5.2. Los ensayos se llevarán a cabo únicamente en las condiciones 1 y 2 del punto 3.2 del anexo 6. Si, por cualquier motivo, no fuera posible realizar el ensayo en la condición 2, deberá realizarse en otra condición de velocidad estable (con el motor térmico funcionando con carga).
- 6. MÉTODOS DE ENSAYO DE TIPO IV
- 6.1. Los vehículos se someterán a ensayo con arreglo al anexo 7 del presente Reglamento.
- 6.2. Antes de iniciar el procedimiento de ensayo (punto 5.1 del anexo 7 del presente Reglamento), los vehículos se preacondicionarán como se indica a continuación.
- 6.2.1. Vehículos que se cargan desde el exterior:
- 6.2.1.1. Vehículos que se cargan desde el exterior, sin conmutador del modo de funcionamiento: se iniciará el procedimiento con la descarga del dispositivo de acumulación de energía/potencia eléctrica del vehículo durante la conducción (en la pista de ensayo, en un banco dinamométrico, etc.):
 - a) a una velocidad constante de 50 km/h hasta que se ponga en marcha el motor térmico del vehículo eléctrico híbrido, o
 - b) si el vehículo no puede alcanzar una velocidad constante de 50 km/h sin que se ponga en marcha el motor térmico, se reducirá la velocidad hasta que el vehículo pueda funcionar a una velocidad inferior constante en la que el motor de térmico no se ponga en marcha durante un tiempo o distancia establecidos (por el servicio técnico y el fabricante), o
 - c) de acuerdo con las recomendaciones del fabricante.

El motor térmico se detendrá a los diez segundos de haberse puesto en marcha automáticamente.

6.2.1.2. Vehículos que se cargan desde el exterior, con conmutador del modo de funcionamiento: se iniciará el procedimiento con la descarga, durante la conducción, del dispositivo de acumulación de energía/potencia eléctrica con el conmutador en posición «eléctrico puro» (en la pista de ensayo, en un banco dinamométrico, etc.), a una velocidad constante del 70 ± 5 % de la velocidad máxima durante 30 minutos del vehículo.

La interrupción de la descarga tiene lugar en uno de los casos siguientes:

a) si el vehículo no puede circular al 65 % de la velocidad máxima durante treinta minutos, o

- b) cuando los instrumentos estándar a bordo indiquen al conductor que detenga el vehículo, o
- c) después de recorrer una distancia de 100 km.

Cuando el vehículo no esté equipado con modo eléctrico puro, el dispositivo de acumulación de energía/potencia eléctrica se descargará conduciendo el vehículo (en la pista de ensayo, en un banco dinamométrico, etc.):

- a) a una velocidad constante de 50 km/h hasta que se ponga en marcha el motor térmico del vehículo eléctrico híbrido, o
- b) si el vehículo no puede alcanzar una velocidad constante de 50 km/h sin que se ponga en marcha el motor térmico, se reducirá la velocidad hasta que el vehículo pueda funcionar a una velocidad inferior constante en la que el motor térmico no se ponga en marcha durante un tiempo o distancia establecidos (por el servicio técnico y el fabricante), o
- c) de acuerdo con las recomendaciones del fabricante.

El motor se detendrá a los diez segundos de haberse puesto en marcha automáticamente.

- 6.2.2. Vehículos que no se cargan desde el exterior:
- 6.2.2.1. Vehículos que no se cargan desde el exterior, sin conmutador del modo de funcionamiento: se iniciará el procedimiento con un preacondicionamiento de al menos dos ciclos de conducción consecutivos completos (uno de la parte 1 y uno de la parte 2), sin estabilización.
- 6.2.2.2. Vehículos que no se cargan desde el exterior, con conmutador del modo de funcionamiento: se iniciará el procedimiento con un preacondicionamiento de al menos dos ciclos de conducción consecutivos completos (uno de la parte 1 y uno de la parte 2), sin estabilización, realizados con el vehículo funcionando en modo híbrido. Cuando existan varios modos híbridos, el ensayo se realizará en el modo que se establezca automáticamente tras girar la llave de contacto (modo normal).
- 6.3. La conducción de preacondicionamiento y el ensayo del dinamómetro se llevarán a cabo con arreglo a los puntos 5.2 y 5.4 del anexo 7 del presente Reglamento:
- 6.3.1. Vehículos que se cargan desde el exterior: en las condiciones de la condición B del ensayo de tipo I (puntos 3.1.3 y 3.2.3 del presente anexo).
- 6.3.2. Vehículos que no se cargan desde el exterior: en las condiciones del ensayo de tipo I.
- 7. MÉTODOS DE ENSAYO DE TIPO V
- 7.1. Los vehículos se someterán a ensayo con arreglo al anexo 9 del presente Reglamento.
- 7.2. Vehículos que se cargan desde el exterior:

Podrá cargarse el dispositivo de acumulación de energía/potencia eléctrica dos veces al día durante la acumulación de kilometraje.

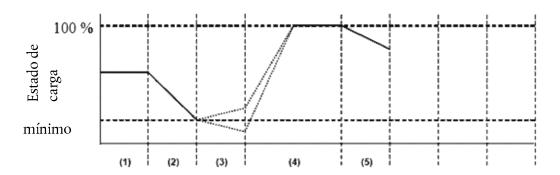
En los vehículos que se cargan desde el exterior, con conmutador del modo de funcionamiento, la acumulación de kilometraje se realizará en el modo que se establezca automáticamente después de girar la llave de contacto (modo normal).

Durante la acumulación de kilometraje, podrá cambiarse a otro modo híbrido cuando resulte necesario para seguir adelante con la acumulación de kilometraje, previo acuerdo del servicio técnico.

Las emisiones de contaminantes se medirán en las condiciones de la condición B del ensayo de tipo I (puntos 3.1.3 y 3.2.3 del presente anexo).

7.3. Vehículos que no se cargan desde el exterior:

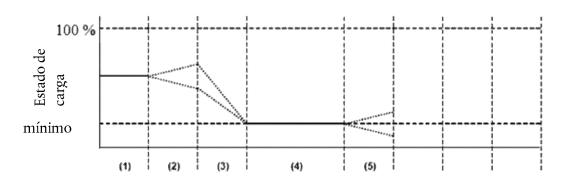
En los vehículos que no se cargan desde el exterior, con conmutador del modo de funcionamiento, la acumulación de kilometraje se realizará en el modo que se establezca automáticamente después de girar la llave de contacto (modo normal).


Las emisiones de contaminantes se medirán en las condiciones del ensayo de tipo I.

- 8. MÉTODOS DE ENSAYO DE TIPO VI
- 8.1. Los vehículos se someterán a ensayo con arreglo al anexo 8 del presente Reglamento.
- 8.2. En los vehículos que se cargan desde el exterior, las emisiones de contaminantes se medirán en las condiciones de la condición B del ensayo de tipo I (puntos 3.1.3 y 3.2.3 del presente anexo).
- 8.3. En los vehículos que no se cargan desde el exterior, las emisiones de contaminantes se medirán en las condiciones del ensayo de tipo I.
- 9. MÉTODOS DE ENSAYO DEL DIAGNÓSTICO A BORDO
- 9.1. Los vehículos se someterán a ensayo con arreglo al anexo 11 del presente Reglamento.
- 9.2. En los vehículos que se cargan desde el exterior, las emisiones de contaminantes se medirán en las condiciones de la condición B del ensayo de tipo I (puntos 3.1.3 y 3.2.3 del presente anexo).
- 9.3. En los vehículos que no se cargan desde el exterior, las emisiones de contaminantes se medirán en las condiciones del ensayo de tipo I.

Apéndice 1

Perfil del estado de carga del dispositivo de acumulación de energía/potencia eléctrica en el ensayo de tipo I de los vehículos eléctricos híbridos que se cargan desde el exterior


Condición A del ensayo de tipo I

Condición A:

- 1) estado de carga inicial del dispositivo de acumulación de energía/potencia eléctrica;
- 2) descarga con arreglo a los puntos 3.1.2.1 o 3.2.2.2 del presente anexo;
- 3) acondicionamiento del vehículo con arreglo a los puntos 3.1.2.2 o 3.2.2.3 del presente anexo;
- 4) carga durante la estabilización con arreglo a los puntos 3.1.2.3 y 3.1.2.4, o 3.2.2.4 y 3.2.2.5, del presente anexo;
- 5) ensayo con arreglo a los puntos 3.1.2.5 o 3.2.2.6 del presente anexo.

Condición B del ensayo de tipo I

Condición B:

- 1) estado de carga inicial;
- 2) acondicionamiento del vehículo con arreglo a los puntos 3.1.3.1 o 3.2.3.1 del presente anexo;
- 3) descarga con arreglo a los puntos 3.1.3.2 o 3.2.3.2 del presente anexo;
- 4) estabilización con arreglo a los puntos 3.1.3.3 o 3.2.3.3 del presente anexo;
- 5) ensayo con arreglo a los puntos 3.1.3.4 o 3.2.3.4 del presente anexo.